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Abstract

Multi-atlas segmentation (MAS), first introduced and popularized by the pioneering work of Rohlfing, Brandt, Menzel
and Maurer Jr (2004), Klein, Mensh, Ghosh, Tourville and Hirsch (2005), and Heckemann, Hajnal, Aljabar, Rueckert and
Hammers (2006), is becoming one of the most widely-used and successful image segmentation techniques in biomedical
applications. By manipulating and utilizing the entire dataset of “atlases” (training images that have been previously
labeled, e.g., manually by an expert), rather than some model-based average representation, MAS has the flexibility
to better capture anatomical variation, thus offering superior segmentation accuracy. This benefit, however, typically
comes at a high computational cost. Recent advancements in computer hardware and image processing software have
been instrumental in addressing this challenge and facilitated the wide adoption of MAS. Today, MAS has come a
long way and the approach includes a wide array of sophisticated algorithms that employ ideas from machine learning,
probabilistic modeling, optimization, and computer vision, among other fields. This paper presents a survey of published
MAS algorithms and studies that have applied these methods to various biomedical problems. In writing this survey, we
have three distinct aims. Our primary goal is to document how MAS was originally conceived, later evolved, and now
relates to alternative methods. Second, this paper is intended to be a detailed reference of past research activity in MAS,
which now spans over a decade (2003 - 2014) and entails novel methodological developments and application-specific
solutions. Finally, our goal is to also present a perspective on the future of MAS, which, we believe, will be one of the
dominant approaches in biomedical image segmentation.
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1. Historical Introduction and Background

Segmentation is one of the fundamental problems in
biomedical image analysis and refers to the process of tag-
ging image pixels or voxels with biologically meaningful
labels, such as anatomical structures and tissue types. De-
pending on the application, these labels might constitute
a handful of, possibly disjoint, regions of interest (ROIs)
and a “background”, which would refer to the parts of the
image one might ignore in subsequent analysis. Alterna-
tively, the labels might densely cover a substantial portion
or all of the image, which is sometimes referred to as “par-
cellation.”

The traditional approach to segment a given biomedi-
cal image involves the manual delineation (sometimes re-
ferred to as “annotation”) of the ROIs by a trained expert.
This practice, however, can be painstakingly slow, prone
to error, hard to reproduce, expensive, and unscalable.
Furthermore, the quality of the results will depend on the
performance of the expert. Thus, manual delineation is
typically not suitable for deploying on large-scale datasets
or in applications where time is critical, such as treatment
planning. Automatic or semi-automatic segmentation al-

gorithms can address these challenges, by speeding up the
process, reducing the cost, and offering reliability, repeata-
bility, and scalability.

Some segmentation algorithms, such as those that as-
sign voxels to tissue types (Kapur et al., 1996), might
not require the availability of training data in the form of
manually delineated images (commonly called “atlases”).
However, the class of methods we consider for this survey
will depend on such training data and thus can be viewed
as supervised learning algorithms. The goal of atlas-guided
segmentation is to use/encode the relationship between the
segmentation labels and image intensities observed in the
atlases, in order to assign segmentation labels to the pixels
or voxels of an unlabeled (i.e., novel) image.

In the early days of atlas-guided segmentation, atlases
were rare commodities. In fact, in many applications,
there was only a single atlas1, i.e., a single image that
was delineated by an expert. In this context, the classi-

1The word “atlas” is a legacy of this era, where, for a given prob-
lem, one exploited a single map of labels denoting the biological
meaning of the observed anatomy, for example, as captured by an
image.
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cal atlas-guided approach treats segmentation as an im-
age registration problem (Pham et al., 2000), where spa-
tial correspondence is established between the atlas and
novel image coordinates. Registration is typically a com-
putationally expensive task that involves deforming (using
some appropriate deformation model) one of the images
until it is similar to the other one. The resulting mapping
between the two coordinate systems can then be employed
to transfer (or “propagate”) the segmentation labels from
the atlas to the novel image voxels (Christensen et al.,
1997; Collins et al., 1995; Davatzikos, 1996; Dawant et al.,
1999; Lancaster et al., 1997; Sandor and Leahy, 1997). We
refer to this technique as registration-based segmentation.

A single atlas coupled with a deformation model is usu-
ally insufficient to capture wide anatomical variation (Doan
et al., 2010). Therefore, the use of several atlases is ex-
pected to yield improved segmentation results. Initial meth-
ods that utilized several atlases for segmentation took a
two-step approach. In the first step, the most relevant at-
las was identified, which was then used in a second registration-
based segmentation step (Rohlfing et al., 2003a). As we
will see below, this can be viewed as a special case of
multi-atlas segmentation, since all atlases are consulted
for segmentation. However, the approach that dominated
early atlas-guided segmentation was probabilistic atlas-
based segmentation (Ashburner and Friston, 2005; Fischl
et al., 2002; Park et al., 2003; Pohl et al., 2006; Yeo et al.,
2008), which had two distinctive properties. First, there
was a single atlas coordinate frame, defined through the
co-registration of the training images used to build the at-
las. Second, statistics about the labels, such as the prob-
ability of observing a particular label at a given location,
are precomputed in atlas space. The novel image was then
segmented in the atlas coordinate frame with a probabilis-
tic inference procedure that utilized parametric statistical
models. The spatial normalization to the atlas could be
computed via registration with a population template cre-
ated at training, or estimated jointly with the segmenta-
tion within the probabilistic model; the latter alternative
has the advantage that it is adaptive to variations in im-
age intensity profiles, such as MRI contrast (Ashburner
and Friston, 2005).

Probabilistic atlas-based segmentation offered two ma-
jor advantages. First, by employing a single coordinate
frame, to which all images were normalized, one automat-
ically established spatial correspondence across all images.
This facilitated the statistical analysis of biological vari-
ation across the population, as famously exemplified in
voxel-based morphometry (Ashburner and Friston, 2000).
The second advantage was computational. One needed to
run the computationally expensive image registration step
(spatial normalization) only once per novel image.

In 2003-2004, in a series of papers (Rohlfing et al.,
2003b,c,d, 2004), Rohlfing and colleagues proposed an al-
ternative segmentation strategy, which at the time might
have not seemed radically different. Yet, as we elaborate
below, this work inspired a rapidly growing class of meth-

Figure 1: Cumulative number of papers, cited in this survey, that
introduce a novel MAS method or present a novel application of
MAS.

ods (see Figure 1), including the pioneering work of Klein
et al. (2005), Heckemann et al. (2006) and others. We col-
lectively refer to these methods as multi-atlas segmentation
(MAS). In this approach, the atlases are not summarized
in a (probabilistic) model. Instead, each atlas is available
and potentially used for segmenting the novel image. A
classical example involves applying a pairwise registration
between the novel image and each atlas image. These reg-
istration results are then used to propagate the atlas labels
to the novel image coordinates, where at each voxel, the
most frequent label is selected. This is commonly referred
to as “majority voting.”

We can subdivide a MAS algorithm into several compo-
nents that we depict in Figure 2. These components might
be implemented as independent, sequential steps, where
earlier steps are placed above in the illustration. However,
there are many exceptions to this structural organization.
For example, in some algorithms, some blocks might be
unified, form feedback loops, swap places, or even be omit-
ted altogether. That said, we find this diagram useful for
organizing methodological developments in MAS. There-
fore, the part of our survey covering methods will adhere to
this organization, with subsections corresponding to each
one of these components.

The remainder of this survey is structured as follows.
Section 2 presents an account of published MAS methods,
organized into the aforementioned building blocks. Sec-
tion 3 surveys published studies that apply a MAS algo-
rithm to a novel biomedical problem. We conclude with
a discussion and pointers to promising future directions of
research in Section 4. Finally, we would like to note that
we have made all effort to cover the relevant literature as
comprehensively as possible (as of the end of 2014). Yet,
we are bound to have missed some pertinent publications.
Furthermore, we made the conscious choice to leave out
some redundant papers. For example, earlier conference
versions of more detailed journal publications were typi-
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Figure 2: Building blocks of MAS. Dashed blocks can be considered
optional.

cally omitted.

2. Survey of Methodological Developments

2.1. Generation of Atlases
Atlases, i.e., labeled training images, form the core

foundation of MAS algorithms. They are typically ob-
tained by the meticulous and costly effort of a domain-
specific expert who relies on an interactive visualization
software, such as (Criminisi et al., 2008; Heiberg et al.,
2010; Pieper et al., 2004; Yushkevich et al., 2006), and
might exploit multiple imaging modalities, while recruiting
textbook anatomical knowledge. However, as we discuss
below, there are exceptions to this rule.

Before seeing the to-be-segmented novel image, most
methods treat each manually segmented image equally.
Yet, to improve performance, one might identify high qual-
ity training cases, for example via visual inspection (Yang
et al., 2010). Another option is to borrow ideas from the
feature selection literature (Pudil et al., 1994) to auto-
matically preselect the subset of atlases that is expected
to yield the maximal performance when new data are seg-
mented (Iglesias and Karssemeijer, 2009; Isgum et al., 2009).
Prior knowledge on the problem at hand can also be used
to preselect the atlases. For example, Tung et al. (2013)
selected the atlases with narrow lumen in a neointima seg-
mentation method in coronary optical coherence tomogra-
phy (OCT), since neointima only exists in coronary arter-

ies with narrow lumen. Such approaches can increase the
accuracy of segmentation by discarding low quality train-
ing data, but a decrease in segmentation quality is also
possible due to the reduction of the atlas pool size, which
also represents a waste of labeling effort. Another way of
improving the performance of the segmentation is to apply
population-level preprocessing (e.g., by co-registering the
atlases) to increase their signal-to-noise (SNR) ratio (Zhuang
et al., 2010). While higher SNR can yield a more ac-
curate registration and segmentation of the novel image,
this improvement will depend on the quality of the co-
registration and noise properties of the data. A similar
approach was recently used to compute multiple popula-
tion templates via a clustering strategy, which were man-
ually labeled (Gao et al., 2014).

In applications where the atlases might not be a repre-
sentative sample of the population, one can synthesize at-
lases that offer a better representation of anatomical vari-
ability. Despite the higher computational cost in the sub-
sequent analysis, such an approach can increase the accu-
racy of the segmentation by enriching the atlas pool. For
example, Jia et al. (2012) used a statistical model based
on principal component analysis (PCA) to synthesize de-
formations. One disadvantage of this technique is that the
synthetic deformations might not always be anatomically
plausible. In a related effort, Doshi et al. (2013) proposed
to cluster all available training images using k-means on
the L2 norm of intensity differences in order to identify a
representative subset of cases that can be then manually
labeled. Their algorithm, which is closely related to active
learning, can greatly reduce the manual labeling effort,
but also requires a large pool of unlabeled data. Recently,
Awate and Whitaker (2014) presented a strategy that used
a small number of labeled cases and a model of MAS based
on non-parametric regression in the space of images, in or-
der to predict the total number of atlases that need to be
manually segmented to obtain a desired level of segmen-
tation accuracy within a MAS framework. This technique
can be useful for planning the manual segmentation phase.

In an alternative approach, one might exploit the wide
availability of non-expert segmenters, instead of trying to
obtain high quality expert manual segmentations. Trad-
ing off quality of annotations for number of atlases can
be beneficial in some applications. For example, Bogovic
et al. (2013) consider this scenario and propose to di-
rectly model the unknown “expertise” of each atlas, en-
coded in a confusion matrix between true and estimated
labels. Bryan et al. (2014), on the other hand, consider re-
lying on the self-declared “confidences” of the manual seg-
menters, which are used to weigh their contributions when
merging their “opinions” in the segmentation of novel im-
ages. In other scenarios, atlases might have been seg-
mented multiple times, as in (Weisenfeld and Warfield,
2011b; Wang and Yushkevich, 2012a), or only portions
(e.g. certain slices) of the training data might have been
manually traced, as in (Landman et al., 2012b). This in-
formation needs to be considered in the subsequent steps of
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the MAS pipeline. Finally, there are several proposed ap-
proaches, e.g. (Chakravarty et al., 2013; Gass et al., 2013;
Heckemann et al., 2006; Jia et al., 2012; Liao et al., 2013;
Shen et al., 2010; Wang and Yushkevich, 2013a; Wolz et al.,
2010a; Kotrotsou et al., 2014; Janes et al., 2014), that ex-
ploit the novel, unlabeled images to enrich the training
data, for instance, by employing automatic segmentations
as atlases, or by using them to generate different regis-
tration paths between the atlases and the target scan to
segment. The former can be seen as a form of self-training
(a semi-supervised learning technique in which unlabeled
data are automatically classified and added to the pool of
training samples). While it can take advantage of unla-
beled data, it also inherits self-training’s shortcoming that
segmentation mistakes reinforce themselves. The latter
(using multiple registration paths) can increase the per-
formance by generating more training segmentations for
label fusion (i.e., the combination of propagated labels
into a segmentation estimate), but at the same time, these
might be poor candidates due to suboptimal registration
and eventually worsen the final segmentation.

2.2. Offline Learning
Classical MAS algorithms applied no or very little pro-

cessing to the atlas data offline, i.e., prior to observing
the novel image. Atlases were manipulated and analyzed
solely based on information from the image to be seg-
mented. However, some of the more recent methods we
review here perform what we call “offline learning,” where
the atlases are analyzed offline and some sort of informa-
tion is garnered to be used during the segmentation of
the novel image. For example, one can learn a strategy
to compute rough regions of interest in the novel image,
in order to constrain or guide subsequent processing steps
and/or reduce computational cost (Li et al., 2013; Ramus
et al., 2010; van Rikxoort et al., 2010; Shi et al., 2010). In
a very different approach, van der Lijn et al. (2008) pro-
posed to construct a likelihood model on the training data,
which quantifies the probability of observed image inten-
sities conditioned on the underlying labels. While such
a model can improve the segmentation by linking labels
and image intensities, it can also degrade it if the intensi-
ties of the atlases and novel image are not well matched.
Similarly, Zikic et al. (2014b) suggest to train a random
forest classifier corresponding to each atlas, which learns
to predict labels based on the image appearance. Instead
of labels propagated via a registration step, atlas predic-
tions computed using these classifiers are combined into
a segmentation. Since classification with random forests
is fast, this method can be computationally more efficient
than conventional registration-based multi-atlas segmen-
tation, but also less accurate, as it will fail to capitalize on
the high accuracy of modern registration methods. In a
related effort, Wang and Yushkevich (2013b) considered a
tumor segmentation application, where the algorithm can-
not rely on spatial correspondences between the images.
Instead, they employed a data-driven clustering strategy

on atlas voxels to identify super-voxels (i.e., patches of ir-
regular size), which were then used by a k-nearest neighbor
classifier to segment the novel image. In a parallel effort,
Wang et al. (2014a) proposed to use a local random forest
classifier trained on the atlases to predict the segmentation
label in the novel image.

Another direction involves analyzing the training data
in order to learn how to assign weights to each atlas when
conducting label fusion. One such strategy estimates mea-
sures of reliability associated with the atlases by co-registering
them and computing the agreement between the propa-
gated labels; atlases than can better predict the labels of
others’ receive higher weights (Sdika, 2010; Wan et al.,
2008). Alternatively, supervised learning approaches have
been proposed to predict the weights from the novel image.
For example, Sjöberg and Ahnesjö (2013) pre-registered
the atlases and learned the distribution of Dice scores given
the registration similarity measure; label fusion weights
were derived from this distribution. In a similar fashion,
Sanroma et al. (2014a) trained a support vector machine
to predict a ranking of the atlases based on image fea-
tures. The main disadvantage of these approaches is that
they do not always generalize well beyond the training
data. A related, yet different technique involves applying
clustering (Langerak et al., 2013; Shi et al., 2010), mani-
fold learning (Cao et al., 2011b,a, 2012; Duc et al., 2013;
Wolz et al., 2010a; Gao et al., 2014), or computing a mini-
mum spanning tree on the atlases (Jia et al., 2012). These
learning algorithms are employed to construct a structure
on the space of training images, which yields the means
to efficiently compute distances between the atlases and
novel image(s), run registrations, and propagate manual
labels.

2.3. Registration
Registration is the task of establishing spatial corre-

spondence between images and is considered one of the
fundamental problems in biomedical image processing. Im-
age registration involves deforming (or warping) one or
more images to maximize an objective function that com-
bines a metric of spatial alignment with a regularizer that
quantifies the plausibility of the deformation. The three
components of an image registration algorithm are thus
the deformation model, the objective function, and the
optimizer. The deformation model represents the class of
spatial transformations that are plausible in the applica-
tion at hand. This can be as simple as a rigid transform,
or as complex as a non-parametric model in which each
location is assigned a spatial transformation vector. Some
deformation models incorporate constraints that exploit
prior knowledge to make the spatial transforms more re-
alistic. These constraints can be integrated in the defor-
mation model (e.g., inverse consistency, diffeomorphism),
or explicitly specified in the objective function through
regularizers. The objective function is typically based on
either the spatial distance between corresponding land-
marks (manually placed or automatically detected) or on
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image intensities. In the latter case, metrics such as sum
of squares or cross-correlation have been widely used in
intramodality scenarios, whereas statistical metrics such
as mutual information have been popular when register-
ing across modalities. Finally, the optimization method is
often an iterative algorithm, e.g., gradient descent, con-
jugate gradient, Levenberg-Marquardt, of the BFGS algo-
rithm. However, discrete, graph-based methods are also
becoming popular, e.g., Glocker et al. (2008). An exten-
sive review on deformation models, objective functions and
optimizers can be found in Sotiras et al. (2013).

The optimal choice of algorithm specifics largely de-
pends on the biomedical application, its goal (Yeo et al.,
2010), and operational constraints, such as available com-
putational resources, desired accuracy, and restrictions on
time. Once registration is complete, the resulting spatial
transform can then be used to map from the frame of one
image to the coordinates of another.

In MAS, registration is the step that determines the
spatial correspondence between each atlas and the novel
image. Early MAS methods, such as (Heckemann et al.,
2006; Rohlfing et al., 2004; Wan et al., 2008), relied on
nonlinear deformation models, such as spline-based pa-
rameterized transformations (Rohde et al., 2003; Rueck-
ert et al., 1999) or non-parametric diffeomorphisms (Beg
et al., 2005; Vercauteren et al., 2009), which seek voxel-
level alignment accuracy. Several studies (Bai et al., 2012;
Lotjonen et al., 2009; Lötjönen et al., 2010; Sjöberg and
Ahnesjö, 2013) have conducted empirical comparisons of
the impact of different registration algorithms on MAS
performance in different applications.

Typically, one independent registration is computed
between each atlas and the novel image and generic intensity-
based registration tools, such as (Avants et al., 2009; Klein
et al., 2010; Rueckert et al., 1999; Ou et al., 2011), are
used. Yet, Rohlfing and Maurer Jr (2005) experimented
with running the registration step several times with differ-
ent parameter settings and combining all resulting propa-
gated labels. As explained in Section 2.1 above, generating
more candidate segmentations can improve the subsequent
fusion, but also might worsen it by introducing poor can-
didates generated by suboptimal registrations. A similar
strategy, proposed by Wang et al. (2013a), employs pre-
computed registrations between pairs of atlases to gener-
ate a multitude of propagated labels by concatenating the
pairwise registration results. In a parallel effort, Datteri
et al. (2014) relied on pre-registered atlases to estimate
registration accuracy for the novel image based on regis-
tration circuits. Also, several authors proposed to employ
the manual segmentations (Han et al., 2008; Nie and Shen,
2013; Tamez-Pena et al., 2012; Lee et al., 2014a), multiple
imaging channels (Yushkevich et al., 2010), or automati-
cally computed tissue maps (Heckemann et al., 2010; Ledig
et al., 2014) to establish more accurate alignment, often
at a higher computational cost. Instead of computing the
pairwise atlas-to-novel image registrations independently,
Lee et al. (2014a) recently proposed to solve them simul-

taneously in a group-wise registration framework. In an-
other parallel effort, motivated by the observation that the
registration step would benefit from the knowledge of the
underlying segmentation labels, Hao et al. (2012), Igle-
sias et al. (2013c), Tang et al. (2013), and Stavros et al.
(2014) developed MAS algorithms that integrated the reg-
istration and label fusion steps. Thus, instead of treating
registration as an independent preprocessing step, these
algorithms iterate between registration and segmentation,
which yields a small increase in segmentation accuracy at
the expense of reduced computational efficiency.

Typically, MAS treats the unknown deformation be-
tween the atlas and novel image as a nuisance, which once
computed is only used to deform the atlas image intensi-
ties and/or propagate the labels. Yet, a growing num-
ber of methods recognize the value in the deformation
fields themselves and propose to use information about
the amount of deformation in the computations of the fu-
sion weights. For example, Commowick and Malandain
(2007) used the Euclidean norm of the deformation, Ra-
mus et al. (2010) used its Jacobian determinant, and Wang
et al. (2014b) used its harmonic energy.

The registration step is the computational bottleneck
of the MAS algorithm and largely determines run time.
One strategy to reduce the computational burden intro-
duced by registration is via atlas selection (see next sec-
tion), which can obviate expensive registrations with unse-
lected atlases. An alternative, popular approach employs a
common coordinate system, similar to conventional prob-
abilistic atlas segmentation methods, either via a stan-
dard template (Aljabar et al., 2007, 2009), a population
average (Artaechevarria et al., 2008; Commowick and Ma-
landain, 2007; Commowick et al., 2009; Depa et al., 2011;
Fonov et al., 2012; Ramus et al., 2010; Shi et al., 2010,
2013; Zhuang et al., 2010), or one of the atlases (van Rikx-
oort et al., 2010; Sjöberg et al., 2014). Here, all atlases
are co-registered offline, and the novel image is registered
with the template image. The template-to-novel image
transformation can then be concatenated with the atlas-
to-template transformations in order to propagate labels
from the atlases to the novel image (Artaechevarria et al.,
2008; Depa et al., 2011; Ramus et al., 2010; Rivest-Hénault
et al., 2014). Such an approach can reduce the computa-
tional cost of registration, but also might negatively im-
pact the performance due to the suboptimality of the reg-
istrations. The use of a common coordinate frame further
enables the definition of regions of interests, which the seg-
mentation algorithm can employ in subsequent steps, e.g.,
atlas selection (Shi et al., 2010) or label fusion (Commow-
ick et al., 2009; Ramus et al., 2010). Yet another strategy
to accelerate the registration step is to exploit the rapidly
growing availability and capability of GPU processors, as
proposed in (Duc et al., 2013; Han et al., 2009; Modat
et al., 2010; Cardoso et al., 2013).

A recent technique is inspired by the non-local means
method (Buades et al., 2005) and utilizes a patch-based
search strategy to identify correspondences with the at-
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lases. This technique was introduced to biomedical MAS
by Coupé et al. (2011) and recently has been gaining popu-
larity (Asman and Landman, 2013; Bai et al., 2013; Fonov
et al., 2012; Konukoglu et al., 2013; Rousseau et al., 2011;
Wang et al., 2011, 2013b; Wolz et al., 2013; Wang et al.,
2014e; Zhang et al., 2011, 2012; Wang et al., 2014c,a; Ta
et al., 2014; Wang et al., 2014f,d; Sanroma et al., 2014b).
These papers have demonstrated that a patch-based search
strategy can be used in a wide range of MAS methods to
improve performance, for example, by relaxing the one-
to-one correspondence assumption or eliminating the need
for highly accurate registration results. In contrast with
common implementations of non-local means in computer
vision, its biomedical applications can be computationally
efficient, cf. (Ta et al., 2014), for instance, by assuming
a rough alignment (e.g., achieved via a linear transforma-
tion model), which allows one to restrict the patch search
to a local neighborhood of each voxel. Furthermore, the
anatomical context can be used to improve the quality
of the patch matches, as demonstrated in (Wang et al.,
2014f,d).

2.4. Atlas Selection
There are two main motivations not to use all available

atlases in MAS. First, by reducing the number of atlases,
one can improve computational efficiency. This might be
particularly important for applications where time is a sig-
nificant constraint. A typical MAS algorithm’s computa-
tional demand is at least linear with respect to the number
of utilized atlases. So, selecting only half of all available
atlases would be expected to about double the speed of the
algorithm and reduce the memory requirements by up to
a half. Second, by excluding irrelevant atlases that might
misguide the segmentation procedure, one might expect to
improve final segmentation accuracy. The specifics of the
problem and utilized algorithm determine how applicable
and significant these two points are. For example, it has
been observed that atlas selection can improve the accu-
racy of majority voting (Aljabar et al., 2007), but is less
critical for weighted fusion (Sabuncu et al., 2010).

The effectiveness and efficiency of atlas selection are
closely related to the registration step. If all atlases are
nonlinearly registered to the novel images, the atlas se-
lection step will be well informed by the similarity of the
images, but the computational savings will be nonexistent
or minimal. If no registration is performed, the compu-
tational efficiency of the algorithm is much higher, but it
is more difficult to select the atlases that are most rel-
evant to the novel images to segment. A compromise
can be achieved by linearly registering all the atlases to
the novel scan, performing the selection, and continuing
with the nonlinear component of the registration only for
the chosen atlases. While the selection is typically con-
ducted prior to the segmentation of the novel image, sev-
eral authors (Langerak et al., 2013, 2010; van Rikxoort
et al., 2010; Weisenfeld and Warfield, 2011a) have pro-
posed methods that iterate between segmentation and at-

las selection, pruning or adding to the selected atlas set
based on the current estimate of the segmentation.

Early atlas selection methods employed a metric to
rank the relevance of the atlases. These metrics included
similarity measures based on image intensities, e.g., sum of
squared differences, correlation or mutual information (Al-
jabar et al., 2007, 2009; Aribisala et al., 2013; Tung et al.,
2013; Xie and Ruan, 2014; Wu et al., 2007); non-image
meta-data such as age (Aljabar et al., 2007; Aribisala et al.,
2013); registration consistency (Heckemann et al., 2009);
amount of deformation (Commowick and Malandain, 2007;
Commowick et al., 2009); and anatomical geometry (Teng
et al., 2010). Several studies have conducted empirical
comparisons of these different atlas selection strategies in
various MAS applications (Aljabar et al., 2007; Acosta
et al., 2011; Avants et al., 2010; Lötjönen et al., 2010; Ra-
mus and Malandain, 2010), concluding that sum of squared
differences and cross-correlation (after histogram match-
ing) of intensity values, along with age difference, are reli-
able metrics to rank the relevance of atlases.

More recently, other works have proposed to define sim-
ilarity measures based on an image manifold structure. For
example, Duc et al. (2013) used Isomap, locally linear em-
bedding and Laplacian eigenmaps to learn the manifold.
Cao et al. (2011a) used locality preserving projections, and
Asman et al. (2014) used principal components analysis.
These approaches introduce additional complexity to the
system, but can outperform standard similarity measures
in the atlas selection task. Another approach to increase
the efficiency and accuracy of atlas selection utilizes clus-
tering, where the atlases, possibly together with the novel
image(s), are analyzed to identify clusters of similar cases
using methods such as k-means (Nouranian et al., 2014),
affinity propagation (Langerak et al., 2013) and Floyd’s
algorithm (Wang et al., 2014b). Then, cluster representa-
tives (or exemplars) are used for the initial search of the
most relevant atlases. These methods can yield a perfor-
mance similar to approaches that do not preselect atlases,
but at a much lower computational cost. Alternatively, at-
las selection can be treated as a learning problem, where
the optimal strategy to choose the relevant atlases can be
learned on the atlases themselves, utilizing the manual seg-
mentations, as demonstrated by Cao et al. (2012) (mani-
fold learning), Konukoglu et al. (2013) (random forests)
and Sanroma et al. (2014a) (support vector machines).
These strategies are not straightforward to implement but
have been shown to improve segmentation performance.

While the atlas selection method has a significant im-
pact on segmentation performance, with notable excep-
tions (Awate and Whitaker, 2014; Heckemann et al., 2006),
the optimal number of atlases to be selected seems to be
an overlooked topic of research. Some algorithms simply
choose the most suitable single atlas, and apply registration-
based segmentation (Commowick and Malandain, 2007;
Teng et al., 2010; Wu et al., 2007). Yet most MAS meth-
ods end up using more than one atlas (Rohlfing et al., 2004;
Klein et al., 2005; Heckemann et al., 2006). Typically, the

6



number of atlases to be selected is either estimated, e.g.,
based on heuristics such as computational expectations, or
determined empirically via cross-validation, bootstrapping
or a similar sampling strategy.

2.5. Label Propagation
Once the relevant atlases are selected, and spatial cor-

respondence is established with the novel image, the clas-
sical multi-atlas segmentation strategy proceeds by prop-
agating the atlas labels to the novel image coordinates.
Since early MAS methods (Heckemann et al., 2006), one
of the most popular strategies has been to utilize “nearest
neighbor interpolation,” where each atlas transfers a sin-
gle label to each novel image voxel, e.g., (Artaechevarria
et al., 2009; Langerak et al., 2010, 2013; Sabuncu et al.,
2010). Although this label corresponds to that of the clos-
est voxel in atlas space, Sdika (2010) showed that higher
performance can be achieved by augmenting the informa-
tion with a tissue consistency step. That is, the nearest
neighbor search is conducted among those atlas voxels with
a tissue segmentation (obtained automatically, from a sep-
arate step) consistent with the target voxel. However, this
approach depends on the performance of the separate tis-
sue segmentation step, which can be sensitive to outliers,
as in the case of very old or diseased subjects not repre-
sented in the atlas pool. The nearest neighbor strategy
can further be refined using, for example, linear interpo-
lation (Rohlfing et al., 2004; Sabuncu et al., 2010), where
each atlas’s vote is spread over multiple labels, with asso-
ciated weights that reflect the ratio of partial volumes.

An alternative approach involves using the signed dis-
tance maps of the original atlas label images (Gholipour
et al., 2012; Gorthi et al., 2013; Sabuncu et al., 2010;
Sjöberg and Ahnesjö, 2013; Weisenfeld and Warfield, 2011a;
Xu et al., 2014b). Each label has an associated signed dis-
tance map, which takes positive values within the corre-
sponding structure, negative values outside, and the mag-
nitude is proportional to the closest distance to the la-
bel boundary. The signed distance map encodes the un-
certainty close to label boundaries and the relative confi-
dence deep within a region. While signed distance maps
are not naturally normalized (i.e., the scale depends on
the size and shape of the anatomical structure), one strat-
egy is to use them to compute label probabilities, e.g.,
via the logistic mapping (Sabuncu et al., 2010). A com-
plementary technique transforms the atlas label bound-
aries directly, rather than applying a volumetric warp to
the images (Chou et al., 2008; Klein et al., 2005; Nie and
Shen, 2013; Tamez-Pena et al., 2012). Finally, rather than
transferring over atlas labels via a geometric deformation
model, one can employ learning algorithms trained on each
atlas to generate voxel-level candidate label estimates for
each atlas, as recently proposed in (Zikic et al., 2014b).
This technique does not seem to increase segmentation ac-
curacy, but can considerably reduce the run time of the
algorithm by requiring only one nonlinear registration (to
align a probabilistic atlas to the novel scan).

2.6. Online Learning
The labels of the atlases that have been propagated to

novel image coordinates are often merged directly into a
single estimate of the segmentation with a label fusion al-
gorithm. However, several MAS methods perform an “on-
line learning” step, which aims to boost the performance
of the algorithm by exploiting the relationships between
the registered atlases and the novel images.

Some methods use the estimated segmentation of the
novel image to iteratively perform atlas selection and/or
registration. For example, the selected atlas set can be
determined based on the similarity between the deformed
atlas labels and the current estimate of the segmentation,
which can increase segmentation accuracy by excluding
outlier atlases from fusion (Langerak et al., 2010). Alter-
natively, van Rikxoort et al. (2010) divide the novel image
into blocks, which are used to update the local registra-
tions and selection of atlases. This way, they are able to
automatically stop the local registration of atlases when
no improvement is expected, reducing the computational
cost without a negative impact on performance.

Other approaches exploit the relationship between the
labels and intensities of the novel image in order to assist
the fusion step. This can be achieved via conditional Gaus-
sian models (Lotjonen et al., 2009), or non-parametric den-
sity estimators (Weisenfeld and Warfield, 2011a), which
can be employed to refine the propagated labels. However,
this strategy can be counterproductive when the intensi-
ties of the atlases and the novel scan are not well matched.
In a related effort, Hao et al. (2014) use a discriminative
technique to model the posterior label probability directly.
More specifically, they use the intensities and labels of the
registered atlases in a window around each spatial loca-
tion to build a set of local classifiers – one per voxel of the
novel image. Each classifier is an L1-regularized support
vector machine that predicts the label of the voxel at hand
from hundreds of image features computed with different
filters. In this case, label fusion is implicitly carried out in
the classification.

Finally, we have semi-supervised approaches that uti-
lize the collection of novel images along with the atlases.
For example, the LEAP algorithm (Wolz et al., 2010a)
first learns a manifold structure on all (novel plus train-
ing) images. Next, a small number of novel images closest
to the atlases are automatically segmented via a multi-
atlas procedure. These automatically segmented novel im-
ages are then added to the atlas list and the whole pro-
cedure is repeated. By using stepping stones, this strat-
egy boosts the performance in cases where some novel im-
ages are considerably different from the atlases. There
are other algorithms that also rely on self-training, i.e.,
using the automatically segmented images as new train-
ing data (Chakravarty et al., 2013; Liao et al., 2013; Shen
et al., 2010; Wang and Yushkevich, 2013a). These ap-
proaches have the disadvantage that segmentation mis-
takes reinforce themselves. Another way of exploiting un-

7



labeled data is to use unlabeled scans to generate multi-
ple deformations of a single labeled atlas to a novel scan,
again using the unlabeled volumes as stepping stones (Gass
et al., 2013).

2.7. Label Fusion
Label fusion, i.e., the step of combining propagated

atlas labels, is one of the core components of MAS. The
earliest and simplest fusion methods are best atlas selec-
tion (Rohlfing et al., 2004) and majority voting (Hecke-
mann et al., 2006; Klein et al., 2005; Rohlfing et al., 2004).
In best atlas selection, a single atlas is utilized, which is
usually chosen based on examining the match between the
registered atlas and novel image intensities, for example,
as captured by the registration cost function (e.g., sum of
squared differences, normalized cross-correlation, or mu-
tual information). Relying on a single atlas disregards po-
tentially useful information in all other atlases. Majority
voting chooses the most frequent label at each location,
therefore using information from all atlases at all loca-
tions; however, it has the drawback that it ignores image
intensity information.

An extension of majority voting is weighted voting,
where each atlas is associated with a weight (global or lo-
cal) that reflects the similarity between the atlas and novel
image. The first method using global weights was proposed
by Artaechevarria et al. (2008), who used weights propor-
tional to the normalized mutual information between the
registered atlas image and novel image intensities. A re-
lated approach is to estimate the weights by posing it as
a least squares problem, where the novel image intensities
are assumed to be equal to the weighted combination of at-
las intensities (Cao et al., 2011b). An alternative strategy
involves defining the weights based on the similarity of the
labels, which can be computed iteratively with respect to
the current segmentation, either globally (Langerak et al.,
2010) or within predefined ROIs (Langerak et al., 2011); or
estimated by examining the pairwise similarities between
the atlases (Datteri et al., 2011).

Global weights cannot model the spatially-varying na-
ture of registration accuracy. For this reason, the use of
global weights was later replaced by local and semi-local
weighting schemes. The earliest examples of this strategy
used weights inversely proportional to the absolute differ-
ence between local intensities of the novel image and de-
formed atlas (Isgum et al., 2009; Iglesias and Karssemeijer,
2009), and standard local intensity-based registration met-
rics such as local cross-correlation (Artaechevarria et al.,
2009). Alternative local weighting strategies were further
explored, including the use of a precomputed local reliabil-
ity measure (Wan et al., 2008), the Jacobian determinant
of the deformation fields (Ramus et al., 2010), a Gaussian
intensity difference function (Depa et al., 2010; Jia et al.,
2012), the inverse of the squared standard score (Tamez-
Pena et al., 2012), a measure of the saliency of each at-
las (Ou et al., 2012), local mutual information (Nie and

Shen, 2013), estimates of local registration accuracy (Dat-
teri et al., 2014), and structural relationships between lo-
cally extracted wavelet features (Kasiri et al., 2014).
Other studies have used weights defined as a function of
ranks of local similarity, computed with correlations (Yushke-
vich et al., 2010) or Jacobian determinants (Doshi et al.,
2013). Bridging global and local weighting, Wolz et al.
(2013) used weights that combined three different terms,
reflecting global, organ-level and local (intensity-based)
similarities. In a related effort, a combination of region-
wise and voxel-wise similarities (all based on sum of squares)
were used in (Xie and Ruan, 2014). Even though these
strategies improve the segmentation accuracy obtained with
global weights, the optimality of the chosen local weight
metrics remains unclear.

In a series of papers, Wang et al. (2011, 2013b) com-
puted fusion weights that exploited the correlation struc-
ture between the atlases. The weights were optimized to
minimize the expectation of segmentation error, which in
turn led to relaxing the common independence assump-
tion on the atlases. Moreover, the registration-determined
correspondence was refined via a local patch search. In
a later paper, the same authors improved their algorithm
to make the segmentations of the novel images consistent,
such that the automatic segmentations are recruited as at-
lases, but with a lower weight than the manually labeled
ones (Wang and Yushkevich, 2013a).

Other works have used more complicated schemes to
define local weights, for example via offline learning. One
such method assumed that the weights were a linear com-
bination of the dissimilarities of the voxels at each loca-
tion, and learned them with Tikhonov-regularized least
squares (ridge regression) (Khan et al., 2011). Another
related approach pre-registered all the atlases with each
other to compute a reliability metric as the average agree-
ment of the propagated labels; the reliabilities were then
used as weights in the fusion (Sdika, 2010). Along a simi-
lar direction, Zhang et al. (2011) used a forward-backward,
patch-based search to compute a measure of correspon-
dence specificity with respect to each atlas. Label fusion is
then conducted in a sequential manner, starting at voxels
that the algorithm is confident about segmenting and em-
ploying already segmented voxels within the neighborhood
for guiding the segmentation of yet-to-be-labeled voxels.
A related method that was recently proposed by Koch
et al. (2014), uses a graph that connects similar regions
across images to allow label information to iteratively flow
from high confidence to low confidence voxels. In a differ-
ent approach, Wachinger and Golland (2012) used spectral
clustering to identify homogeneous regions, and then per-
formed semi-local label fusion within each region to finally
compute a single label per region by pooling the votes
within its boundaries.

An alternative label fusion strategy involves the use of
patches to compute weights at each voxel, which can be
used with a conventional label fusion method (Coupé et al.,
2011; Fonov et al., 2012). This technique has recently be-
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come more sophisticated. For example, Xiao et al. (2014a)
and Wang et al. (2014d) used this approach to compute
local label fusion weights using multi-channel MRI data.
Wang et al. (2014f) proposed to use the anatomical con-
text to improve the quality of the patch matches. Instead
of labeling the central voxel, one can segment the whole
patch, and overlapping segmentations can then be fused
(e.g. via majority voting) (Rousseau et al., 2011; Sanroma
et al., 2014b). These methods have produced state-of-the-
art segmentation accuracy, often at a high computational
cost.

Rather than directly using the similarity between patches,
one can also compute the label fusion weights by seeking
sparse linear combinations from a patch dictionary to re-
construct each patch of the novel image (Liao et al., 2013;
Zhang et al., 2012; Wang et al., 2014d). Along a similar
direction, Sanroma et al. (2014b) recently formulated la-
bel fusion as a matrix completion problem, which can be
viewed as unifying the weight estimation framework with
a learning-based approach. Cao et al. (2011a) also used
weights that best reconstructed the intensities of the novel
images from the k nearest atlases, computed on an image
manifold. Instead of focusing on reconstruction error, a
different method (Wu et al., 2014) involves modifying the
framework to reflect the consistency in the segmentations,
such that atlases that propagate similar labels to the seg-
mentation have a similar contribution.

A different view of label fusion formulates segmenta-
tion as an optimization problem, where the agreement with
the propagated atlases makes up a data fit term. In this
framework, one can incorporate prior expectations such as
spatial and temporal smoothness in longitudinal data, as
in (Li et al., 2014).

Some of the label fusion techniques discussed above can
be derived from probabilistic models of the data. Casting
a segmentation method as a Bayesian inference problem
in a probabilistic model has several advantages. First, it
can easily deal with missing data, e.g., lack of labels in a
given region of an atlas. Second, the estimated parameters
of the model might have a direct interpretation that can
provide us with some insight about the data and the fit
of the model. Third, the modeling assumptions have to
be clearly stated and their effect on final accuracy can be
empirically examined. Fourth, the impact of the inference
or estimation strategy can also be assessed by investigat-
ing alternative methods. Finally, Bayesian methods are
based on a principled and flexible framework, which can
be adapted to the specifications of the problem at hand.

A generative probabilistic model of label fusion was
first proposed by Sabuncu et al. (2010, 2009). The model
comprises of an unknown discrete membership field that
indexes the atlas that “generated” each voxel of the novel
image and an additive Gaussian noise component. This
generative model framework unifies some of the most pop-
ular label fusion algorithms, generalizing local, semi-local
and global weighted fusion methods, including majority
voting and best atlas selection. The generative model

has been extended to intermodality fusion (Iglesias et al.,
2013b), replacing the Gaussian noise by a joint histogram;
and to patch-based fusion (Bai et al., 2013), by augment-
ing the membership field with a spatial shift and defining
the intensity likelihood term as a function of patches.

There is a family of generative models for label fu-
sion that can be viewed as a modification of Sabuncu’s
model (Sabuncu et al., 2009, 2010), where the latent mem-
bership field is only used to define a prior on the labels and
the novel image intensities are generated directly from the
underlying segmentation, e.g., via a parametric Gaussian.
This model does not utilize the relationship between the
image intensities and labels observed in the atlases and
thus can be used to segment images of a modality dif-
ferent from the atlases (Iglesias et al., 2012a), or multi-
channel images (Iglesias et al., 2012b). This strategy will
be suboptimal for scenarios where the intensity profiles of
the atlases and the novel scans are matched. Iglesias, Tang
and colleagues later proposed to integrate registration into
this generative model (Iglesias et al., 2013c; Tang et al.,
2013), which offers a small but significant improvement in
segmentation accuracy at an increased computational cost.
Finally, many methods that use label fusion to construct a
prior in a probabilistic segmentation algorithm (Lotjonen
et al., 2009; van der Lijn et al., 2008; Van Der Lijn et al.,
2012; Wang et al., 2014c; Wachinger and Golland, 2014;
Wolz et al., 2009, 2010b; Platero and Tobar, 2014) can be
viewed to be (approximate and/or modified) instantiations
of the probabilistic generative label fusion framework.

Another family of probabilistic fusion methods builds
on the STAPLE algorithm (Warfield et al., 2004). STA-
PLE was originally developed to model manual segmenta-
tions as noisy observations of the hidden (ground truth)
segmentation and the noise was modeled with a stationary
confusion matrix {θn}. The original STAPLE algorithm
only supported binary segmentations (Warfield et al., 2004),
but was soon after extended to the multi-class setting (Rohlf-
ing et al., 2003b,c,d). Many extensions of STAPLE cor-
respond (or can be shown to correspond) to modifica-
tions of the original probabilistic model, for example plac-
ing a Beta prior on the parameters of the confusion ma-
trix (Commowick and Warfield, 2010), replacing the hard
atlas segmentations with probabilistic maps (Weisenfeld
and Warfield, 2011b), dealing with missing atlas label data (Land-
man et al., 2012b), altering the confusion matrix to ac-
count for self-assessed uncertainty (Asman and Landman,
2011; Bryan et al., 2014), employing a hierarchical noise
model (Asman and Landman, 2014), introducing and es-
timating unknown reliability weight maps (Akhondi-Asl
et al., 2014), and learning and exploiting the relationship
between performance parameters and intensity similari-
ties (Gorthi et al., 2014).

Rather than making explicit changes to the original
framework and solving the corresponding model, some ex-
tensions of STAPLE are based on ad-hoc modifications.
For instance, some researchers have introduced spatially
varying performance parameters to the model by estimat-
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ing local confusion matrices from windows around each
voxel (Asman and Landman, 2012; Commowick et al.,
2012). One can view these methods as approximate solvers
to a version of the STAPLE model, in which the noise
parameters vary smoothly over space. In a different ap-
proach, Langerak et al. (2010), Cardoso et al. (2013), Noura-
nian et al. (2014), and Weisenfeld and Warfield (2011a)
proposed using only a subset of atlases in label fusion.
Langerak et al. ’s SIMPLE algorithm integrates the atlas
selection step into STAPLE and solves for that iteratively.
The SIMPLE method was recently integrated with context
learning to exploit exogenous information, e.g, about tis-
sue likelihood (Xu et al., 2014a). Cardoso et al. ’s method
obtains the subset by ranking the atlases in terms of local
similarity to the novel image; Nouranian et al. ’s algorithm
iteratively computes the segmentation with STAPLE and
removes the atlases that do not agree with the current
estimate of the labels; and Weisenfeld et al. use a proba-
bilistic formulation to disregard atlases that do not agree
with the current segmentation estimate. Again, these algo-
rithms can be seen as an approximate solution to a model,
in which the atlases to be explained are indicated by a
latent field. Finally, Asman and Landman (2013) incor-
porated information from intensity image patches in STA-
PLE. From a probabilistic modeling perspective, this ap-
proach would require modifying STAPLE’s model to con-
nect the novel image intensities to the training images.

2.8. Post-processing
The label fusion result does not necessarily represent

the final segmentation; sometimes it is fed to another al-
gorithm to estimate the output labels. The extent to
which this post-processing changes the segmentation varies
across methods.

Some methods use the output of label fusion to sim-
ply initialize a subsequent algorithm, for instance, to de-
termine the bounding box where a segmentation method
is applied (van Rikxoort et al., 2007a), to start the evo-
lution of an active contour (Fritscher et al., 2014; Hol-
lensen et al., 2010), or to fit a smooth contour to the
object boundary (Nouranian et al., 2014). Other MAS
algorithms rely on applying heavy post-processing to the
label fusion output, for example by employing an error de-
tection and correction classifier (Yushkevich et al. 2010,
who use AdaBoost), deriving features to drive a subse-
quent voxel-wise segmentation method, based for example
on level sets (Gholipour et al., 2012; Schreibmann et al.,
2014), random forests (Han, 2013), support vector ma-
chines (Hao et al., 2014), patch-based techniques (Wang
et al., 2014e), or a graph-cut-based method (Candemir
et al., 2014; Lee et al., 2014b). Along a similar direction,
one can apply a refinement to the MAS results, for exam-
ple, by comparing the observed intensities in the novel
image to tissue-based expected intensity profiles (Ledig
et al., 2014). Alternatively, label fusion results have been
used to compute priors in probabilistic segmentation algo-
rithms (Fortunati et al., 2013; Shi et al., 2010; van der Lijn

et al., 2008; Van Der Lijn et al., 2012; Wang et al., 2014c;
Wolz et al., 2009, 2010b; Xu et al., 2014b; Platero et al.,
2014; Makropoulos et al., 2014; Yan et al., 2014). These
methods can be robust to changes in image appearance, for
example, in applications where there is significant varia-
tion in imaging parameters or the novel subject’s anatomy
is not represented in the atlases. However, they will be less
accurate than standard MAS methods when the intensity
profiles and appearance distribution are well matched be-
tween the novel image and atlases. In a related effort, Liu
et al. (2014) used MAS to define a prior for the detection
of lymph nodes in thoracic CT scans. A different strat-
egy is to examine summary measurements (e.g., volume
of an ROI) computed from the MAS to statistically de-
termine whether the segmentation result is an outlier and
thus might have failed – in which case one can resort to
manual delineation (van Rikxoort et al., 2009).

There are also methods that operate on the posterior
probability map obtained from label fusion, rather than
applying a hard threshold to obtain a segmentation. For
example, applying a deconvolution to the probability map
has been shown to reduce the spatial bias in the segmenta-
tion of convex structures (Wang and Yushkevich, 2012b).
In the context of neointima (scar tissue) segmentation in
coronary optical coherence tomography, Tung et al. (2013)
augment the posterior probability with an anatomically-
informed probability, defined upon the distance to the ves-
sel wall. While this prior knowledge enhances the perfor-
mance of the method, it is highly domain specific and not
applicable to other problems. In a parallel approach, As-
man et al. (2013) propose to analyze the posterior proba-
bilities to detect outliers that are not well represented in
the atlas set. This is shown to be beneficial in the presence
of anomalous regions (e.g., tumors).

3. Survey of Applications

Since its original application to confocal microscopy of
bee brains (Rohlfing et al., 2004; Rohlfing and Maurer Jr,
2005), MAS has been successfully used in a large variety
of biomedical segmentation problems. The most preva-
lent field of application has been brain MRI analysis, for
two different reasons; first, segmentation’s crucial role in a
wide range of widely studied neuroimaging problems; and
second, the success of image registration techniques in this
field.

Most of the MAS work applied to brain MRI data has
focused on the segmentation of cortical and subcortical
regions in structural images, typically acquired with T1-
weighted MRI sequences. Many methods have been de-
veloped to parcellate the whole brain, segmenting it into
a large number of regions (Aljabar et al., 2008; Babalola
et al., 2009; Fonov et al., 2012; Han et al., 2009; Hecke-
mann et al., 2010, 2011; Keihaninejad et al., 2010; Kotrot-
sou et al., 2014; Svarer et al., 2005; Wang et al., 2012;
Ledig et al., 2014), while other studies have focused on
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small sets or individual ROIs, such as the caudate nu-
cleus (van Rikxoort et al., 2007b); the cerebellum (Park
et al., 2014; Van Der Lijn et al., 2012; Weier et al., 2014);
the amygdala (Hanson et al., 2012; Klein-Koerkamp et al.,
2014); the corpus callosum (Ardekani et al., 2014; Gao
et al., 2014; Meyer, 2014); the striatum (Janes et al., 2014);
the subthalamic nucleus, red nucleus and substantia ni-
gra (Xiao et al., 2014b,a); the ventricles (Chou et al., 2008;
Raamana et al., 2014); and, most notably, the hippocam-
pus, which has attracted much attention due to its asso-
ciation with dementia and Alzheimer’s disease (Akhondi-
Asl et al., 2010; Bishop et al., 2010; Clerx et al., 2013;
Hammers et al., 2007; Iglesias et al., 2010; Kim et al.,
2012; Leung et al., 2010; Pipitone et al., 2014; Pluta et al.,
2012; Raamana et al., 2014; van der Lijn et al., 2008; Van
Der Lijn et al., 2012; Winston et al., 2013; Wolz et al.,
2010b; Yushkevich et al., 2010; Platero et al., 2014; Ta
et al., 2014).

In the context of segmentation of structural human
brain MRI, multi-atlas techniques have also been applied
to preprocessing tasks such as skull stripping (Leung et al.,
2011; Weisenfeld and Warfield, 2011b) and tissue classifi-
cation (Bouix et al., 2007; Crum, 2009), the segmenta-
tion of tumors (Zikic et al., 2014a; Wang and Yushkevich,
2013b; Warfield et al., 2004), eyes and optic nerves (Dat-
teri et al., 2014; Harrigan et al., 2014). MAS has also
been employed for the segmentation of cortical and sub-
cortical structures in MRI data from fetuses, neonates, and
infants too (Gholipour et al., 2012; Gousias et al., 2008,
2010, 2013; Shi et al., 2010; Wang et al., 2014e; Li et al.,
2014; Koch et al., 2014; Makropoulos et al., 2014; Wang
et al., 2014d), in which the contrast inversion due to on-
going myelination complicates the segmentation. Another
area of application of MAS has been the segmentation of
brain MRI in animal studies, e.g., mice (Da et al., 2012;
Ma et al., 2014; Nie and Shen, 2013; Lee et al., 2014a; Khan
et al., 2014), rats (Lancelot et al., 2014) and non-human
primates (Ballanger et al., 2013). Finally, there are also
studies that have applied MAS to the analysis of diffusion
brain MRI data of humans (Jin et al., 2012; Tang et al.,
2014; Traynor et al., 2010), which requires specific strate-
gies for the registration, atlas selection and label fusion
steps, due to the nature of the data, which are typically
described by directional functions defined on the sphere at
each voxel.

Outside brain imaging, the prevalence of prostate can-
cer in men has sparked interest in applications within prostate
imaging, using modalities such as MRI (Langerak et al.,
2010; Litjens et al., 2014; Rivest-Hénault et al., 2014),
CT (Acosta et al., 2011; Sjöberg et al., 2013; Acosta et al.,
2014) and ultrasound (Nouranian et al., 2014). Likewise,
interest in radiotherapy treatment planning has been the
main driver of applications in head, neck, and thoracic
CT segmentation (Han et al., 2008; Wang et al., 2014c),
which have mainly focused on segmenting tumors (Ra-
mus and Malandain, 2010), organs at risk (e.g, the parotid
glands, Fritscher et al. 2014; Gorthi et al. 2010; Han et al.

2010; Hollensen et al. 2010; Yang et al. 2010 or mediasti-
nal lymph nodes, Liu et al. 2014) and lymph node metas-
tases (Sjöberg et al., 2013; Teng et al., 2010). MAS has
also been used in abdominal imaging, despite the rela-
tively poor performance of image registration in this do-
main (e.g., compared with brain MRI) due to the shifting
of organs within the abdominal cavity. Nonetheless, MAS
has been successful in liver (van Rikxoort et al., 2007a;
Platero and Tobar, 2014), spleen (Li et al., 2013; Xu et al.,
2014b) and multi-organ segmentation (Wolz et al., 2013;
Schreibmann et al., 2014) in CT scans.

Finally, there are many other applications that have
benefited from MAS within human medical imaging, in-
cluding: segmentation of pelvic bones in MRI (Weisen-
feld and Warfield, 2011b; Akhondi-Asl et al., 2014); lungs
in CT scans (van Rikxoort et al., 2009) and chest X-
rays (Candemir et al., 2014); heart and its ventricles in
CT (van Rikxoort et al., 2010; Dey et al., 2010), MRI (Zhuang
et al., 2010; Zuluaga et al., 2014), MR angiography (Wachinger
and Golland, 2012), ultrasound (Wang et al., 2014a), and
CT angiography (Kirişli et al., 2010; Yang et al., 2014a);
breast tissues and lesions in X-ray mammography (Igle-
sias and Karssemeijer, 2009) and MRI (Gubern-Mérida
et al., 2012; Lee et al., 2013); cartilage and bone in knee
MRI (Tamez-Pena et al., 2012; Lee et al., 2014b; Shan
et al., 2014); the vertebrae in spinal MRI (Asman et al.,
2014); scar tissue in intravascular coronary optical coher-
ence tomography (OCT) (Tung et al., 2013); the mitral
valve in transesophageal echocardiography (Wang et al.,
2013a; Pouch et al., 2014); skeletal muscle in whole-body
MRI (Karlsson et al., 2014); kidneys in CT images (Yang
et al., 2014b); and bone in dental cone-beam CT images (Wang
et al., 2014c).

4. Discussion and Future Directions

By taking full advantage of the entire training data,
rather than a model-based summary, MAS delivers highly
accurate segmentation algorithms. This approach has come
a long way since the early days of “majority voting”, which
basically consisted of three independent steps: registra-
tion, label propagation, and fusion. Today, most MAS al-
gorithms have many more steps, some of which form feed-
back loops. Furthermore, each one of these steps is becom-
ing increasingly more sophisticated, employing ideas from
optimization, computer vision, machine learning, proba-
bilistic modeling, and other fields.

The biggest shortcoming of MAS is its ravenous ap-
petite for computational resources. Analyzing, manipu-
lating, and processing all atlases typically demands a sub-
stantial amount of memory and time. We believe this is
one of the main reasons why MAS has not been widely
adopted in clinical applications yet, even though, research
suggests that it can produce state of the art segmentation
tools in many domains. However we expect that several re-
cent developments alleviate the computational challenges
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of MAS. Firstly, the continued exponential growth in com-
puter hardware technologies is to our advantage. We note,
however, this technological benefit is to some extent coun-
tered by the rapidly increasing resolution of biomedical
images, which multiplies the computational burden. Sec-
ondly, we observe that many of the subcomponents of MAS
are parallelizable and thus can take advantage of multi-
core architectures and GPUs. At the coarsest level, the
registrations that need to be computed with each atlas
can be solved in parallel. Furthermore, each registration
can be implemented such that the bulk of the voxel- or
region-level computations can be distributed over multiple
processors. This approach has already been used for the
GPU-acceleration of the registration step (Cardoso et al.,
2013; Duc et al., 2013; Han et al., 2009; Modat et al.,
2010). A similar strategy can be adopted in the label
fusion step, particularly by algorithms that conduct nu-
merical optimization in label fusion and not just simple
counting. Finally, some of the online computational bur-
den can be shifted offline, via learning structure on the
training images, which can then be utilized to optimize the
processing of the novel image, as proposed in (Jia et al.,
2012).

The manually delineated training data form the main
foundation of atlas-based segmentation. Empirical evi-
dence suggests that the number and quality of training
cases can critically impact segmentation accuracy. For this
reason, the careful definition and standardization of anno-
tation guidelines is paramount to obtaining accurate auto-
matic segmentations, especially when the atlases are man-
ually delineated by multiple experts. Yet, obtaining high
quality segmentations annotated by experts is both time
consuming and expensive. Most past research has dealt
with scenarios where the development of the segmentation
algorithm is independent of the manual segmentation pro-
cess. We believe a better strategy is to integrate the two
pipelines. For example, as recently demonstrated (Awate
and Whitaker, 2014), given a segmentation method, one
can estimate the number of cases that need to be manually
delineated to achieve a desired level of accuracy.

Furthermore, one can imagine an algorithm that indi-
cates the cases, which, if manually segmented, assist the
segmentation algorithm the most. Active learning can pro-
vide the framework to derive such an algorithm. An al-
ternative approach is to use automatic segmentations as
atlases, after applying a quality control step. Yet a dif-
ferent strategy is to harness the potential of non-expert
segmenters (Bogovic et al., 2013; Bryan et al., 2014), for
example, via a crowd-sourcing framework (Landman et al.,
2012a; Maier-Hein et al., 2014). Although many biomed-
ical segmentation problems rely on anatomical expertise,
it is not clear whether this expertise has to be deployed in
the delineation of every single atlas. One can imagine cer-
tain scenarios, where the expert(s) provides a handful of
example annotations, which can be used to train or guide
non-experts. Finally, we believe that the idea to combine
heterogeneous sets of atlases, delineated with different pro-

tocols, is a promising future direction. This strategy can
both yield better accuracy by enriching the training data
and offer the ability to identify ROIs that were technically
not part of any single manual delineation protocol but can
be defined by intersections (Iglesias et al., 2015). More-
over, such an approach could also potentially minimize
the impact of the variability of the manual delineations
(within or across experts) on the final segmentation, au-
tomatically learning the biases of the annotations.

Crowdsourcing offers another attractive solution to the
atlas generation problem of MAS. Instead of high quality
manual delineations from trained experts, one might con-
sider using lower quality data from non-experts (Maier-
Hein et al., 2014). Alternatively, the non-expert crowd
can be used to correct or filter the segmentations. We ex-
pect that outsourcing certain aspects of MAS, particularly
those related to the offline stages of the pipeline, to non-
expert and/or expert masses in an online community will
be investigated in the near future.

While speeding up the registration step might be con-
sidered top priority for some applications, many biomed-
ical problems seek very high accuracy, even at high com-
putational cost. For such applications, one strategy is to
improve registration accuracy and the quality of propa-
gated labels. The probabilistic modeling perspective offers
a complementary approach. From this viewpoint, registra-
tion is a nuisance parameter and thus should be marginal-
ized out, e.g., via variational techniques (Simpson et al.,
2011) or a sampling procedure such as Markov Chain Monte
Carlo (Iglesias et al., 2013a). In other words, one should
integrate over all possible registration results, rather than
attempting to find the most likely one and using that for
the fusion step. Note that this approach would be dif-
ferent from the latest algorithms that combine the reg-
istration and label fusion steps, as done in (Hao et al.,
2012; Iglesias et al., 2013c; Tang et al., 2013). Currently,
the marginalization strategy might seem computationally
prohibitive for MAS. However, the recent successful ap-
plications of this idea in other biomedical image analysis
scenarios suggest that in the near future we can expect to
see label fusion algorithms that integrate out the unknown
registrations.

Another direction of future work in MAS is to develop
algorithms that are robust against changes in image in-
tensity profiles, e.g., MRI contrast, due to variation in ac-
quisition protocols, hardware, and other imaging parame-
ters. Such robust methods will be invaluable for large-scale
multi-site studies and clinical applications, where the stan-
dardization of the imaging protocol might be unrealistic.
Although some existing label fusion algorithms (e.g., Igle-
sias et al. 2012a, 2013b) have been developed to handle dif-
ferent modalities, they are application-specific and make
strong assumptions about the data (e.g., locally Gaussian
intensity distributions).

We believe that the fields of machine learning and com-
puter vision have also a lot to contribute to MAS. Re-
cent years have witnessed dramatic technical advances in
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both of these fields, such as unsupervised feature learn-
ing in vision (Erhan et al., 2010) and efficient learning
methods on deep architectures (Hinton and Salakhutdinov,
2006), which have facilitated tremendous gains in perfor-
mance. Recent developments suggest that researchers are
currently working on translating such ideas to biomedical
image analysis problems, including MAS.

The probabilistic perspective, with its flexibility and
principled inference machinery, offers another promising
direction for future research. In particular, this approach
enables the derivation of methods that can handle missing
labels, heterogeneous labels, variable imaging modalities,
estimate and utilize model uncertainty, and integrate do-
main knowledge, for example about the anatomy or imag-
ing physics. Furthermore, probabilistic algorithms offer
the capability to quantify the uncertainty in the final seg-
mentation estimate, which can further be utilized for ob-
taining more accurate measurements, for example of the
volume of structures (Iglesias et al., 2013a).

Rather than segmenting each novel image independently,
empirical evidence suggests that solving the segmentations
of multiple novel images simultaneously might yield im-
proved results (Wang et al., 2012). This can be a par-
ticularly promising approach for segmenting serial scans.
Longitudinal image analysis is an area of growing impor-
tance and the detection of subtle longitudinal changes can
call for highly accurate segmentation (Reuter et al., 2012).
Encouraged by some recent applications (Wolz et al. 2010b
and Li et al. 2014), we believe MAS will be a critical tool
for longitudinal biomedical image analysis.

So far, most of the applications of MAS have been in
the domain of human brain MRI, in which modern regis-
tration algorithms achieve good alignment and even the
simplest fusion algorithms (e.g., majority voting) yield
good performance. Registration is however less effective
in other modalities and body parts, such as in abdominal
imaging, in which the sliding between organ walls (e.g.,
due to respiratory motion) is problematic for current algo-
rithms. We believe, though, that the development of regis-
tration methods that can cope with these difficulties, along
with the improvements in label fusion techniques (which
will make them more robust against misregistration), will
make the use of the multi-atlas approach ubiquitous in a
growing number of novel biomedical image segmentation
problems.

Finally, it is important to note that there is no univer-
sally optimal segmentation algorithm. Each application
brings with it a unique set of constraints and objectives,
making certain types of methods more suitable than oth-
ers. Yet, we believe that the large class of MAS methods,
with its rich set of instantiations that enable compromis-
ing between different application tradeoffs and consider-
ing various objectives while exploiting different sources of
information, offer a framework that promises to yield ef-
fective and useful solutions for a wide range of biomedical
applications. That said, we can identify general trends
that have emerged. There seems to be a global tradeoff

between computational efficiency and segmentation accu-
racy. Incorporating domain knowledge and adopting re-
alistic models that are based on the physical and biologi-
cal context, can yield significant improvements. Complex,
more advanced methods can pay off and should be some-
thing we continue to work on. However, this endeavor
critically depends on a proper evaluation of the methods,
as demonstrated in some recent efforts (Rueda et al., 2014;
Menze et al., 2014; Panda et al., 2014; Goksel et al., 2014).
Going forward, a grand challenge of biomedical image seg-
mentation will be to establish standardized datasets and
performance evaluation metrics to be used to objectively
compare various segmentation algorithms, including MAS-
based techniques.
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Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H.,
Arheden, H., 2010. Design and validation of segment-freely avail-
able software for cardiovascular image analysis. BMC medical
imaging 10, 1.

Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimension-
ality of data with neural networks. Science 313, 504–507.

Hollensen, C., Hansen, M.F., Højgaard, L., Specht, L., Larsen, R.,
2010. Segmenting the parotid gland using registration and level set
methods. MICCAI: Grand Challenges in Medical Image Analysis:
Head & Neck Autosegmentation Challenge, Beijing .

Iglesias, J.E., Dinov, I., Singh, J., Tong, G., Tu, Z., 2010. Syn-
thetic MRI signal standardization: application to multi-atlas
analysis, in: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2010. Springer, pp. 81–88.

Iglesias, J.E., Karssemeijer, N., 2009. Robust initial detection of
landmarks in film-screen mammograms using multiple FFDM at-
lases. Medical Imaging, IEEE Transactions on 28, 1815–1824.

Iglesias, J.E., Sabuncu, M.R., Aganj, I., Bhatt, P., Casillas, C., Salat,
D., Boxer, A., Fischl, B., Van Leemput, K., 2015. An algorithm
for optimal fusion of atlases with different labeling protocols. Neu-
roImage 106, 451–463.

Iglesias, J.E., Sabuncu, M.R., Van Leemput, K., 2012a. A generative
model for multi-atlas segmentation across modalities, in: Biomed-
ical Imaging (ISBI), 2012 9th IEEE International Symposium on,
IEEE. pp. 888–891.

Iglesias, J.E., Sabuncu, M.R., Van Leemput, K., 2012b. A genera-
tive model for probabilistic label fusion of multimodal data, in:
Multimodal Brain Image Analysis. Springer, pp. 115–133.

Iglesias, J.E., Sabuncu, M.R., Van Leemput, K., 2013a. Improved
inference in bayesian segmentation using monte carlo sampling:
Application to hippocampal subfield volumetry. Medical image
analysis 17, 766–778.

Iglesias, J.E., Sabuncu, M.R., Van Leemput, K., 2013b. A probabilis-
tic, non-parametric framework for inter-modality label fusion, in:
Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2013. Springer, pp. 576–583.

Iglesias, J.E., Sabuncu, M.R., Van Leemput, K., 2013c. A unified
framework for cross-modality multi-atlas segmentation of brain
MRI. Medical image analysis 17, 1181–1191.

Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van
Ginneken, B., 2009. Multi-atlas-based segmentation with local
decision fusion: Application to cardiac and aortic segmentation in
CT scans. Medical Imaging, IEEE Transactions on 28, 1000–1010.

Janes, A.C., Park, M.T.M., Farmer, S., Chakravarty, M.M., 2014.
Striatal morphology is associated with tobacco cigarette craving.
Neuropsychopharmacology , 406–411.

Jia, H., Yap, P.T., Shen, D., 2012. Iterative multi-atlas-based multi-
image segmentation with tree-based registration. Neuroimage 59,
422–430.

Jin, Y., Shi, Y., Zhan, L., Li, J., de Zubicaray, G.I., McMahon, K.L.,
Martin, N.G., Wright, M.J., Thompson, P.M., 2012. Automatic
population HARDI white matter tract clustering by label fusion
of multiple tract atlases, in: Multimodal Brain Image Analysis.
Springer, pp. 147–156.

Kapur, T., Grimson, W.E.L., Wells III, W.M., Kikinis, R., 1996. Seg-
mentation of brain tissue from magnetic resonance images. Med-
ical image analysis 1, 109–127.

Karlsson, A., Rosander, J., Romu, T., Tallberg, J., Grönqvist, A.,
Borga, M., Dahlqvist Leinhard, O., 2014. Automatic and quan-
titative assessment of regional muscle volume by multi-atlas seg-
mentation using whole-body water-fat MRI. Journal of Magnetic
Resonance Imaging .

Kasiri, K., Fieguth, P., Clausi, D., et al., 2014. Cross modality label
fusion in multi-atlas segmentation, in: Image Processing (ICIP),
2014 IEEE International Conference on, IEEE. pp. 16–20.

Keihaninejad, S., Heckemann, R., Gousias, I.S., Aljabar, P., Hajnal,
J.V., Rueckert, D., Hammers, A., 2010. Automatic volumetry can
reveal visually undetected disease features on brain MR images in
temporal lobe epilepsy, in: Biomedical Imaging: From Nano to
Macro, 2010 IEEE International Symposium on, IEEE. pp. 105–
108.

Khan, A.R., Cherbuin, N., Wen, W., Anstey, K.J., Sachdev, P.,
Beg, M.F., 2011. Optimal weights for local multi-atlas fusion
using supervised learning and dynamic information (SuperDyn):
Validation on hippocampus segmentation. Neuroimage 56, 126–
139.

Khan, U.A., Liu, L., Provenzano, F.A., Berman, D.E., Profaci, C.P.,
Sloan, R., Mayeux, R., Duff, K.E., Small, S.A., 2014. Molecular
drivers and cortical spread of lateral entorhinal cortex dysfunction
in preclinical alzheimer’s disease. Nature neuroscience 17, 304–
311.

Kim, H., Chupin, M., Colliot, O., Bernhardt, B.C., Bernasconi, N.,
Bernasconi, A., 2012. Automatic hippocampal segmentation in
temporal lobe epilepsy: impact of developmental abnormalities.
Neuroimage 59, 3178–3186.
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