
Three-dimensional shape-based imaging of
absorption perturbation for diffuse optical tomography

Misha E. Kilmer, Eric L. Miller, Alethea Barbaro, and David Boas

We present a shape-based approach to three-dimensional image reconstruction from diffuse optical data.
Our approach differs from others in the literature in that we jointly reconstruct object and background
characterization and localization simultaneously, rather than sequentially process for optical properties
and postprocess for edges. The key to the efficiency and robustness of our algorithm is in the model we
propose for the optical properties of the background and anomaly: We use a low-order parameterization
of the background and another for the interior of the anomaly, and we use an ellipsoid to describe the
boundary of the anomaly. This model has the effect of regularizing the inversion problem and provides
a natural means of including additional physical properties if they are known a priori. A Gauss–
Newton-type algorithm with line search is implemented to solve the underlying nonlinear least-squares
problem and thereby determine the coefficients of the parameterizations and the descriptors of the
ellipsoid. Numerical results show the effectiveness of this method. © 2003 Optical Society of America
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1. Introduction

In diffuse optical imaging, modulated, near-infrared
light is transmitted into the body from an array of
detectors placed on the surface of the region to be
imaged.1 The diffuse optical systems then measure
the photon fluence that results from the interaction
�scattering and absorption� of photons by that region
of the body. The goal is to use the diffuse optical
data to reconstruct an image of the space-varying
optical absorption and reduced scattering coefficients
in the region of interest. These physical parameters
are directly related to, for example, the hemodynamic
state of the tissue. Because the hemodynamics are
directly impacted by, e.g., the presence of a tumor in
the case of breast imaging2 or activity in the cortex for
functional brain mapping,3,4 diffuse optical tomogra-
phy �DOT� offers the hope of providing significant
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insight in a noninvasive manner into these and re-
lated problems.

From an information extraction perspective, the
DOT problem amounts to the determination of the
subsurface structure of the tissue given a limited
quantity of fluence data obtained at the air–tissue
interface. Reconstructing a three-dimensional �3-D�
image of the absorption and scattering coefficients is
an example of a discrete ill-posed problem, meaning
that the quality and accuracy of the reconstruction
are especially sensitive to noise in the data and other
unmodeled physical effects. Generally, some form of
regularization must be used to desensitize the prob-
lem to noise. To further complicate matters, the
problem is nonlinear; and for our application, breast
tissue imaging, the discrete problem is highly under-
determined.

The ultimate goal of breast imaging is obviously
the localization and characterization of tumorous re-
gions in the tissue. In the case of DOT imaging, the
existence of a tumor is signaled by changes in the
optical absorption coefficient as well as in the reduced
scattering coefficient. In this paper we concern our-
selves only with the recovery of the optical absorption
parameter although we are currently exploring the
generalization to problems wherein scattering per-
turbations are also of interest. The task of isolating
these localized perturbations is significantly compli-
cated by the fact that the nominal breast is far from
a homogeneous, known background in which the per-
turbations are embedded. The classical approach to
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overcoming this difficulty is to voxelate the region of
interest and treat the values of the absorption coef-
ficient in each voxel as an unknown. Stable recov-
ery of the thousand or even millions of voxel values is
facilitated though use of a Tikhonov-type regulariza-
tion scheme.5–7

The nonlinearity of the problem necessitates that a
forward solver be incorporated directly into the in-
version method. Hence such an imaging approach
can quickly become intractable when the number of
voxels becomes large. Furthermore, such methods
require the selection of a regularization parameter to
lessen the effects of the noise, and choosing the right
parameter is far from simple.8,9 Some methods pro-
posed in the literature for 3-D DOT imaging are not
applicable in our case because they assume data can
be taken across the entire surface of the object to be
imaged �see, for example Ref. 10�, but breast imaging
data cannot be obtained from the internal side of the
breast, and sometimes the data are collected only
over a limited surface to be consistent with tradi-
tional mammography.

Newer techniques, presented only in a two-
dimensional �2-D� case, treat the absorption coeffi-
cient as if it were a piecewise constant �PWC�
function.11,12 Under such an assumption, two
classes of methods have been proposed. Some as-
sume that the absorption values in the background
and anomalies are known and seek to find only a
low-dimensional descriptor of the absorption pertur-
bation boundaries.11 Other proposed schemes first
generate a pixel-based reconstruction of the 2-D re-
gion of interest. The resulting image is postpro-
cessed to obtain an initial indication as to the number
of anomalies, their boundaries, and contrasts. Iter-
ative schemes are employed to improve the estimates
of the boundaries and their absorption values.12 In
addition to the fact that these methods have been
examined only for 2-D geometries, the robustness of
the PWC assumption to data consistent with a spa-
tially inhomogeneous background and tumor has not
been examined for 3-D problems involving limited
data and a nonlinear forward model, although a re-
cent study examines the affects of background het-
erogenities under a linearized model.13

In this paper we present an approach to the tumor
localization and characterization problem that is de-
signed directly for full 3-D diagnostic situations and
that is sufficiently flexible to allow us to begin the
quantitative exploration of the effects of unknown
inhomogeneities specifically in the nontumor regions
of the breast. Our research here was motivated by
our past experience with anomaly characterization
problems for 2-D inverse scattering problems. The
method we presented in Ref. 14 for the 2-D case is
closely related to the method in Ref. 12. In Ref. 14
we used B-spline basis functions to define a low-order
parameterization of the boundary of the anomaly;
therefore only a few unknowns had to be recovered to
determine the boundary. At the same time, we ex-
plicitly modeled the variations in the background as
a weighted linear combination of a small ��5� collec-

tion of space-varying basis functions. The problem
became one of jointly estimating the control points
specifying the boundary and the few expansion coef-
ficients describing the background and anomaly, re-
spectively.

For 3-D problems, use of B-splines to model sur-
faces is not at all natural. Although one could resort
to other, less parametric modeling approaches �e.g.,
using level sets as in Ref. 15�, again 3-D implemen-
tations are quite involved. Thus, in this paper, we
consider the estimation of anomalies that have an
ellipsoidal shape. Ellipsoids are defined by the �x, y,
z� location of their center, the lengths of their three
axes, and a set of three rotation angles. Thus esti-
mating a best-fit ellipsoidal anomaly requires that we
determine only these nine geometric parameters as
well as a small �less than ten� number of parameters
that model the spatial variations of the absorption
coefficient over the support of the ellipsoid and over
the background—a far less underdetermined task
than full voxel estimation or even level-set methods.

In practice, tumors are clearly not ellipsoidal; how-
ever, use of a parametric model as we are advocating
is nonetheless advantageous for a number of reasons.
As we demonstrate in Section 4, the estimation of an
ellipsoid can provide important information concern-
ing the location, size, orientation, and contrast of
even a nonellipsoidal object. Such information in
and of itself will have medical benefit. Moreover,
this level of localization can be used to focus the effort
of other, less parametric methods �level sets, con-
straint imaging methods�, thereby improving their
performance and lowering their computational cost.
This is a task we reserve for future effort. Finally,
and most importantly, by limiting our attention here
to ellipsoidal objects, we are more easily able to ex-
amine the far more challenging and relevant problem
of anomaly localization in the presence of unknown,
volumetric, background perturbations.

The results in Section 4 do in fact demonstrate the
utility of this parametric inversion approach. We
show through a large number of numerical examples
that it is possible to accurately recover the size, loca-
tion, and orientation of an ellipsoid-shaped object
when the model we employ to describe the back-
ground �i.e., nonanomalous� variations in the absorp-
tion coefficient is not able to reproduce the true
spatial variations. Moreover, even when the true
object is not itself an ellipsoid, the structure we re-
cover using our inversion approach does provide
strong localization of the true anomaly, thereby indi-
cating that our shape-based method has the potential
for use in and of itself and as a focus of attention
preprocessor for other finer-grain imaging algo-
rithms. Thus the numerical experiments in this pa-
per demonstrate that this shape-based inversion
scheme is robust to the types of modeling error that
will be encountered when real sensor data are pro-
cessed and justify both the further development of
this technique and the other related geometry inver-
sion schemes.

This paper is organized as follows. In Section 2 we
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provide the mathematical formulation of the problem.
The description of the model and the correspondingly
reformulated nonlinear inversion problem are pro-
vided in Section 3. Extensive numerical results are
presented in Section 4 and conclusions and future re-
search are detailed in Section 5.

2. Mathematical Description and Background

As indicated in Section 1, the research in this paper
is aimed at absorption imaging for breast analysis.
Within this context, we are particularly concerned
with DOT sensing systems that can be used as an
adjunct to traditional mammography. For this class
of problems the breast is constrained by a pair of
compression plates. Hence, under the assumption
that the optodes are located far from the edges of the
compressed breast, it is appropriate to employ a slab
geometry to describe the sensing system.

To model these sensing systems, it is well known
that the Boltzmann transport equation is the best
mathematical descriptor of the underlying physical
process relating optical properties to photon fluence
and flux.16 However, a more tractable mathemati-
cal model, known to be accurate and also widely used
in media such as breast tissue where scattering dom-
inates absorption, is the diffusion equation.16 In
terms of diffusion modeling, one always has the
choice of using either the partial differential equation
�PDE� or of using an equivalent integral equation �IE�
formulation to generate the forward data. Gener-
ally, the sparse matrix structure arising from the
discretization of the PDE is preferable to the require-
ment of handling large dense matrices that is encoun-
tered when an IE approach is used. However, for
the slab geometry of interest here, the IE matrices
possess significant structure. We choose not to elab-
orate on the matrix structure here as such a discus-
sion would take us too far afield. However, we note
that the consequence of this structure is that it en-
ables one to store the matrices compactly and to per-
form fast matrix–vector products. Thus the IE
version gives rise to a system of equations that is
amenable to solution with the appropriate Krylov
iterative solver. Therefore the solution time of the
discrete IE equations is competitive with the solution
time for the discretized PDE; so for the remainder of
this paper, we present only the IE forward model.

To present the IE forward model we let r � �x, y, z�
denote an arbitrary point in space. For a source s
located at position rs we have

�tot,s�r; �� � �inc,s�r; ��

� �
�

G�r, r̃; ���tot,s�r̃; ��	�r̃; ��dr̃. (1)

Here the incident field at source s, �inc,s, and G are
known and the scalar � represents frequency. The
volume � is the region of interest. The function 	
denotes the absorption perturbation around a nominal
value �in the DOT literature, what we refer to as 	 is
often denoted as 
�a or ��a�. The G is an appropri-

ately scaled Green’s function for a slab geometry17

based on nominal, constant values of absorption and
scattering as detailed in Section 4. A method of im-
ages approach is used to construct G�r, r̃��: The
boundary condition is the index-matched extrapolated
zero boundary condition as described in Ref. 18. The
unknown quantities are �tot,s, the fluence �or flux, de-
pending on location� due to the input at source s, and
	, the function representing the perturbation of the
absorption about the above-mentioned nominal value.

All quantities depend on the intensity modulation
frequency of light; that is, there is one such equation
for each modulation frequency �. For ease of nota-
tion and for consistency with our numerical results,
we consider only the case when � � 0, and so from
this point on we suppress the dependence on fre-
quency.

Discretizing Eq. �1�, at any position rp, the total
fluence or flux due to source s is given by

�tot,s�rp� � �inc,s�rp� � 
 �
rk��

G�rp, rk��tot�rk�	�rk�,

(2)

where 
 is a constant dependent on the grid spacing.
Let n denote the number of voxels and m denote the

number of detectors. Suppose rk � �. Let the vec-
tors �tot,s

�1� and �inc,s
�1� have entries �tot,s�rk� and

�inc,s�rk�. These vectors have length n. Then by
moving the summation to the other side of approxi-
mation �2�, we can write the equations only for rk � �
in matrix–vector form

�In � G�1�DIAG�	���tot,s
�1� � �inc,s

�1� , (3)

where In denotes the n � n identity matrix, DIAG���
is a diagonal matrix with � on the main diagonal, and
G�1� has �k, j� entry 
G�rk, rj�, where rk, rj � �.

Now if we let �tot,s
�2� , �inc,s

�2� have entries �tot,s�rd�,
�inc,s�rd� and rd is a detector location, the correspond-
ing matrix–vector equation can be written, according
to approximation �2�, as

�tot,s
�2� � �inc,s

�2� � G�2�DIAG�	��tot,s
�1� . (4)

Here G�2� has as its �d, k� entry 
G�rd, rk� where rd is
a detector location but rk � �. Because there are m
detectors, �tot,s

�2� and �inc,s
�2� are m-length vectors and

G�2� is m � n.
The total field due to source s that is available to us

for imaging is only that which is collected over the
receivers, namely, �tot,s

�2� . Because �inc,s
�2� is known,

the available data according to Eq. �4� are

ys � �tot,s
�2� � �inc,s

�2�

� G�2�DIAG�	��tot,s
�1�

� G�2�DIAG��tot,s
�1� �	

� hs�	�. (5)

However, because �tot,s
�1� is a function of the vector 	

through Eq. �3�, there is a nonlinear relation between
the data ys and the unknown 	.

If we stack the subvectors ys and hs�	�, we obtain
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the model y � h�	�. Thus the problem we should be
solving given data y is the nonlinear least-squares
problem:

min
	

�W� y � h�	���2
2, (6)

where the weighting matrix W is often taken as the
inverse square root of the covariance matrix of any
noise corrupting the data. There are several diffi-
culties with the solution to this nonlinear least-
square problem. First, the solution is sensitive to
small changes in y such as noise, even if there are as
many equations as unknowns 	i. Worse, the prob-
lem is usually underdetermined �there are n un-
knowns 	i and only mk components in the data vector
y, where k is the number of sources, so there are
generally many solutions.

Most traditional methods of estimating the desired
solution to this underdetermined and ill-posed prob-
lem take a Tikhonov approach. That is, the solution
is approximated as the solution to the regularized
problem:

min
	

�W� y � h�	���2
2 � ���	�,

where � is a positive regularization parameter that
balances the fidelity to the data with the need to
dampen noise and ��	� is a regularization operator
such as �	�2

2. The differences among DOT imaging
methods can be summarized as follows:

• Differences in forward model h: Often, h is
taken to be linear because the solution of linear equa-
tions is considerably faster. However, nonlinear
models, based either on the PDE or the IE formula-
tion, are more accurate.

• Choice of �: A typical choice is �L	�p
p where L

is a matrix and 1 � p � 2. The regularization term
can have the effect of making the solution unique.
On the other hand, the model we describe for 	 does
some of the stabilization for us—if the slab is not too
thick, no additional � term is needed, which elimi-
nates the additional annoying difficulty of choosing a
regularization parameter.

• Definition of 	: Most methods consider 	 as a
vector of unknown values, and therefore the space
over which the problem is minimized is huge �Rn�.
With our formulation of 	, however, we greatly re-
duce the dimension of the search space.

3. Model for Perturbation of Optical Absorption

Our modeling approach is founded on the underlying
assumption that there is a single localized anomaly
somewhere in a tissue medium that itself is volu-
metrically heterogeneous with respect to the as-
sumed constant background used to construct the
Green’s function for our model. Now, if we knew a
priori the contrast of the anomaly for which we were
searching and any volumetric perturbations not as-
sociated with the anomaly, the problem would be-
come one of boundary localization. Likewise, if we
knew the boundary, we could optimize for the con-

trasts. In this paper we assume that neither is
known and develop a procedure for jointly estimating
low-order models for the anomaly shape and contrast
as well as more global, nonanomalous volumetric per-
turbations required to capture the inherent hetero-
geneity of nominal, nontumorous breast tissue.

First, we consider how to model absorption inho-
mogeneities in the background as well as in the
anomaly. Assume for a moment that we do know
the boundary of the anomaly. Then we can define
S�r� as the characteristic function:

S�r� � �1 r � anomaly
0 otherwise .

Next, we assume that the value of the perturbation at
a point in the background tissue can be expressed as
the linear combination of a small number, say Nb, of
known basis functions. We assume the same about
the value inside the anomaly, although the number
Na of basis functions and the type may be different.
This is the approach that we took in Ref. 14, except
we considered only a 2-D version of the problem. We
now define the value of the perturbation function at
the point r according to

	�r� � S�r�Ba�r�Ç
1 � Na

Na � 1
È
�

� �1 � S�r�� Bb�r�Ç
1 � Nb

Nb � 1
È
� .

Note that Ba�r� �likewise Bb�r�� is a row vector whose
entries are the values of the anomaly �background�
basis functions at r, and the components in � ��� are
the expansion coefficients. We note that, formally,
we should define 	 as the mollified version of the
previous equation so that it will be differentiable in
the desired parameters �see Subsections 3.B and 3.C�,
but at our current level of discretization, the algo-
rithm acts as though we are in fact dealing with the
differentiable, mollified version.

Upon discretization, the equation becomes

	 � SB1� � �I � S�B2�, (7)

where S now represents a diagonal n� n matrix with
1’s and 0’s on the diagonal, I denotes the identity
matrix of the same size, and

B1 � Rn�Na, B2 � Rn�Nb, � � RNa, � � RNb.

In other words, B1 is the discretization of Ba�r� over
all voxels ri in the region of interest whereas B2 is the
discretization of Bb�r�.

Thus, if S is known, there are a total of Na � Nb
unknowns that we need to define 	. In the remain-
der of this section, we discuss how to describe the
boundary of the anomaly �and therefore define S� in
terms of a small number of unknowns.

3132 APPLIED OPTICS � Vol. 42, No. 16 � 1 June 2003



A. Describing the Boundary

In Ref. 14 the DOT problem posed was 2-D. In two
dimensions, the problem of parameterizing a bound-
ary was handled by a B-spline basis. Specifically,
the boundary was a linear combination of a small
number of B-spline basis functions, and the so-called
control points ��x, y� coordinate pairs� were the only
unknowns. Generalizing this idea to three dimen-
sions is not straightforward so we look for a better
3-D alternative. We assume that our anomalies re-
semble either spheres or ellipsoids, which is not un-
reasonable in the context of breast imaging given the
limited spatial resolution possible from DOT data.
The benefit of using such shapes as spheres and el-
lipsoids is that they can be completely described in
terms of only a few unknowns.

We begin by characterizing an ellipsoid and con-
sider the sphere as a special case. To completely
characterize an ellipsoid, we need only the lengths of
the semiaxes, a centroid location, and a set of orthog-
onal basis vectors describing the orientation of the
axes. In mathematical notation, we need the follow-
ing:

• a length-3 vector, c, denoting the centroid of the
ellipsoid;

• a diagonal matrix D � DIAG�d� whose �abso-
lute� diagonal entries di are the lengths of the semi-
axes; and

• an orthonormal matrix U whose three columns
are the coordinates of the semiaxes. Alternately, we
can store three angles from which U can be defined.
We call this three-length vector �.

Thus a point r � �x, y, z�T is determined to be on or in
the ellipsoid if

�D�1UT�r � c��2
2 � 1. (8)

The matrix U is defined from the vector of angles � by

U � � cos��1� sin��1� 0
�sin��1� cos��1� 0

0 0 1
�� cos��2� 0 sin��2�

0 1 0
�sin��2� 0 cos��2�

�
� � cos��3� sin��3� 0

�sin��3� cos��3� 0
0 0 1

� . (9)

We note that there are multiple ways to define a
rotation matrix from three angles.19 The one we use
here is referred to as the x convention. We also tried
the pitch–yaw–roll convention and found that the
representation of U makes little difference in the per-
formance of the algorithm.

Therefore, given the characterization for an ellip-
soid as noted above, one can use inequality �8� to
determine if the center of a voxel lies on or in the
ellipsoid; if so, the corresponding diagonal entry in S
in Eq. �7� is assigned a 1; otherwise, it is set to zero.

The discussion simplifies if we decide to use
spheres. In this case, D will be a multiple of the
identity. So rather than keeping track of a three-

vector d, we keep track of a single number �the radi-
us�. That is, d will be a scalar. For spheres, U
remains the identity �since rotations need not be con-
sidered�, so we do not need to keep track of angles
either.

B. Reformulated Problem

Thus S is defined in terms of a small number of
unknowns that characterize the ellipsoid. Given the
preceding discussion and our model for 	, expression
�6� simplifies, in the case of ellipsoids, to

min
�,�,c,d,�

�W� y � h��, �, c, d, ����2
2. (10)

In the special case of spheres, the optimization prob-
lem further simplifies to

min
�,�,c,d

�W� y � h��, �, c, d���2
2, (11)

where d is scalar. Note that we reduced the search
space considerably: Instead of optimizing over Rn,
we are optimizing over the Na � Nb entries in � and
� and the nine entries in the vectors c, d, and � �four
entries in the spherical case�.

Now h is a nonlinear function of the parameters
because h is a nonlinear function of 	 �Eq. �5��, and 	
depends on � and � explicitly and d, c, and � implic-
itly through S �Eq. �7��. Hence expression �10� �like-
wise expression �11�� is a nonlinear least-squares
problem in our parameters. �See the remark in Sub-
section 3.A regarding the differentiability of 	 in d, c,
and �.�

C. Computational Issues

According to Eqs. �5� and �3�, to compute data gener-
ated by a given absorption perturbation, 	 requires
the solution of a large linear system �Eq. �3�� at each
source. However, for each source, the matrix in-
volved is the same. Furthermore, the matrix is
highly structured, making it possible to develop and
apply a preconditioned block iterative method to
solve over the sources simultaneously; this is dis-
cussed in more detail below.

We propose to solve the minimization problems �ex-
pressions �10� and �11�� using a Gauss–Newton type
of approach. For simplicity, we discuss only the el-
lipsoidal case here and note that the simplification in
the case of spheres is straightforward.

Define the function ε��, �, c, d, �� � W�h��, �, c, d,
�� � y�. Then an equivalent formulation of the prob-
lem is �dropping the dependence on the unknowns for
ease of notation�

min
�,�,c,d,�

1
2

εTε.

The Gauss–Newton algorithm is an iterative method
for determining the solution to nonlinear least-
squares problems. That is, given an initial guess,
say �0, of the solution vector ��� is given by � � ��T,
�T, cT, dT, �T�T�, the algorithm produces a sequence of
iterates �k that converge �under certain assump-
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tions20� to �. Each search direction s computed by
the Gauss–Newton approach to this problem is given
by the solution to the normal equations:

�JTJ�s � �JTε, (12)

where J denotes the Jacobian of ε with respect to the
unknowns, evaluated at the current estimates, and ε
is the current value of the residual. The updated
guess for the unknowns is given by �k�1 � �k � s.
We describe our algorithm as a Gauss–Newton type
rather than as a Gauss–Newton algorithm because
some of the entries in our Jacobian are computed
through use of finite-difference approximations, and
the columns of the Jacobian are only approximately
solved for by an iterative method.

Let p denote one of the parameters that describes 	.
From Eq. �5� we have

�εs

�p
� W

�hs

�p

� WG�2�� ��p DIAG��tot,s
�1� �	�

� WG�2��DIAG�	�
��tot,s

�1�

�p
� DIAG��tot,s

�1� �
�	

�p� . (13)

But from Eq. �3� it is easy to show that

�In � G�1�DIAG�	��
��tot,s

�1�

�p
� G�1�DIAG��tot,s

�1� �
�	

�p
. (14)

It follows that to compute the necessary derivatives
we must proceed as follows:

1. Given current 	, compute �tot,s
�1� from Eq. �3�.

2. For each parameter p do the following:
�a� compute �or estimate� �	��p,
�b� solve the matrix–vector Eq. �14�, and
�c� compute the products in Eq. �13� to find �εs�

�p.

Now note that step 2�a� involves the same matrix,
regardless of the source �and regardless of the param-
eter, for that matter�. Therefore we can solve for
them simultaneously if we solve the block equation

AX � B, X, B are n � k,

where A � �In � G�2�DIAG�	��; X is an n � k matrix
obtained when the vectors ��tot,s

�1� ��p are placed side
by side for each k source; and B has columns
G�1�DIAG��tot,s

�1� �, one column for each source s. Note
that we can likewise compute �tot,s

�1� for all sources s in
step 1 in a similar manner and that the matrices in
steps 1 and 2�a� are the same. The solutions are
generated with an iterative method. The iterative
method is an approximate solver. Iterations are ter-
minated when the relative residual norm �AX � B��
�B� is less than some user-defined tolerance; and in
this sense, the derivative evaluations are approxi-
mate for all the parameters. We use a precondi-
tioned block MINRES21 �minimal residual� algorithm

for each block system we solve. �Because MINRES
can be used only for a symmetric system, we first
symmetrized the equation by multiplying through by
the appropriate diagonal matrix. The precondi-
tioner is also a diagonal matrix.� As the computa-
tion of columns of the Jacobian is independent, the
columns can be computed in parallel if the algorithm
is to be run on a parallel computer.

Thus our approximation to J is as follows. The
first Na columns of J in row i correspond to deriva-
tives with respect to �, the next Nb to derivatives with
respect to �, and the remaining nine columns �or four
in the case of spheres� correspond to estimates of
derivatives in c, d, and �, respectively. Note that no
finite-difference approximation in step 2�a� is needed
to compute the derivatives with respect to � and �.

We found that, even when the Jacobian matrix was
reasonably well conditioned, the full Gauss–Newton
step �Eq. �12��was not appropriate for every iteration.
Therefore we employed a line search20,22 to scale the
length of the step. In other words, we updated �
according to �k�1 � �k � �ks, where �k was a positive
scalar selected at step k by the line-search subrou-
tine. The line-search routine requires the evalua-
tion of the function being minimized �namely, 1

2εTε�
and its gradient. Thus each step of the line search is
not cheap, requiring the same number of block linear
system solutions as are needed to form the Jacobian.
However, just as the columns of the Jacobian can be
evaluated in parallel, so can the gradient computa-
tions. The Gauss–Newton algorithm when imple-
mented with a line search is often called damped
Gauss–Newton.20

To generate our first search direction from Eq. �12�
we must generate a Jacobian and residual ε. This
means we must provide a starting guess to the algo-
rithm; that is, we must begin with an initial ellipsoid
�sphere� and initial values for � and �. Once the
initial ellipsoid is chosen, we must be careful in choos-
ing the starting guesses for � and �. These values
should not be completely arbitrary because they are
related to the initial ellipsoid or sphere. In our ap-
proach, we fixed the parameters defining the starting
ellipsoid or sphere and used the Gauss–Newton algo-
rithm with no line search �i.e., we are minimizing
expression �10� only with respect to � and �� to de-
termine the initial values for � and �. We continued
taking Gauss–Newton steps until the relative mean-
square error between successive approximations was
0.01; usually this required only two or three steps.

4. Numerical Results

All results were computed in MATLAB with the Insti-
tute for Electrical and Electronics Engineers stan-
dard for floating-point double-precision arithmetic
and were built as an extension of the Photon Migra-
tion Imaging Toolbox.23 As discussed in Section 2, a
slab geometry is considered as a model for current
breast imaging cases. There were 16 sources on the
top of the slab and 16 detectors on the top and 16 on
the bottom. Data were collected at dc only �that is,
zero frequency intensity modulation was used�, mak-

3134 APPLIED OPTICS � Vol. 42, No. 16 � 1 June 2003



ing the length of the data vector y equal to 512. The
slab was 6 cm thick with the sources and detectors
spanning 6 cm � 6 cm on each surface. The region
of interest in which the optical image was recon-
structed spanned 6 cm � 6 cm � 4 cm centered be-
tween the two planes of the slab. The size of each
voxel was either 2 mm � 2 mm � 2 mm or 2.5 mm �
2.5 mm � 2.6 mm as described below. The values of
the background optical properties that were used to
construct the Green’s function matrix were an ab-
sorption coefficient ��a value� of 0.05 cm�1 and a
reduced scattering coefficient ��s� of 10 cm�1.

We used centered differences to compute approxi-
mate first derivatives with respect to the descriptors
of S. The behavior of our algorithm was somewhat
dependent on the spacing we used to define these
centered differences. Of course the spacing defining
the differences cannot be too large, or the approxima-
tion to the derivatives becomes poor. For a fixed
grid, the spacing cannot be arbitrarily small, how-
ever, because of the way we discretely represent
spheres and ellipsoids on the grid: Too small a spac-
ing would mean that, if some parameters were per-
turbed, it would look as if they cause no change when
in fact they do. In our experiments, we used a spac-
ing of 1 mm �1.25 mm for the coarser grid� for deriv-
atives with respect to change in centroid and change
in axis lengths and ��4 spacing for the angular de-
rivatives. These values are one half of the grid spac-
ing and were determined to work well by trial and
error.

Both shot and electronic noise was added to the
data. The fractional standard deviation in the total
signal ranged from 10�4% to 200% with a mean stan-
dard deviation of 5%. The inverse of the square root
of the diagonal noise covariance matrix �W in expres-
sion �10�� was then computed and used to whiten the
data.

In the first set of experiments, we report results in
detail for a total of seven configurations of objects and
background structures using a 2 mm� 2 mm� 2 mm
grid. In the first six examples we are concerned
with illustrating the effects of mismatch in our
knowledge of the background variations in our ability
to recover a spherical inclusion �examples 1–3� and
an ellipsoidal anomaly �examples 4–6�. In each
case, Na � 1 �i.e., the value inside the anomaly was
constant�, and therefore � is a scalar. Given the
relatively small size of the anomaly and given the
resolution being used, we do not expect taking Na
bigger than 1 to be helpful.24 Because the primary
purpose of these examples is to illustrate and analyze
the effects of background model mismatch, the true
objects we seek to characterize are in fact spherical in
shape for the first set of examples and ellipsoidal for
the second. To model a lumpy background, in these
first six examples we constructed Bb using sinusoidal
functions of space. The specific functions used in
these examples were not chosen particularly to high-
light the utility of our approach but rather to repre-
sent results that are illustrative of the general
performance of this method.

In the experiments �examples 7–8�, we report re-
sults on the performance of the algorithm on a 2.5
mm � 2.5 mm � 2.6 mm grid �a� when we specify the
lumpy background by supplying the discrete B2 di-
rectly, rather than discretizing a continuous function
Bb�r�, and �b� when the anomaly is neither a sphere
nor an ellipsoid.

In all examples, � was a single coefficient with a
value of 0.15. Because of our model, specifying this
coefficient is the same as specifying the perturbation
value inside the anomaly as 0.15 cm�1. The values
of the expansion coefficients �i on the other hand do
not correspond directly to a background perturbation
value �unless Bb�r� � 1� and hence are unitless.
Hence we also report the average background pertur-
bation value in Tables 2 and 4 and the maximum and
minimum perturbation values in the text where ap-
propriate. Thus, if a reconstruction has an average
background perturbation of 0.005 cm�1, for example,
this means that the average value of the absolute
optical absorption in the background was �0.05 �
0.005� cm�1. Note that all images are images of the
absorption perturbation 	 or estimates thereof. The
absolute optical absorption at any given voxel would
be obtained if 0.05 cm�1 were added to the value at
the given voxel. �Had we chosen to use the PDE-
based formulation as the forward model but defined
absolute absorption, rather than absorption pertur-
bation, according to the right-hand side of Eq. �7�, we
could have presented a version of our algorithm to
solve for absolute absorption directly. Because we
were working with the IE formulation, however, the
absorption perturbation is a natural quantity to es-
timate.�

We note that the time it takes to complete an ex-
periment depends on many factors and parameters,
including the particular implementation of the linear
solver and the tolerances for linear and nonlinear
solvers and line search, grid size, and the number of
parameters used in the reconstruction. For exam-
ple, on a 1-GHz Linux processor with 4 Gbytes of
RAM, the run times on the larger examples 1–6
ranged from 5 h for spheres with PWC backgrounds
up to 24 h for ellipsoids with three basis functions to
define the background. The bulk of the computation
time is the linear solver, so as more efficient serial or
parallel implementations of the solver and faster pro-
cessors become available, the run times will improve.

A. Inverting for Spherical Anomalies

The primary purpose of this set of examples is to
explore the effects of unknown and perhaps mis-
matched background heterogeneities on our ability to
localize and characterize spherical anomalies. By
mismatched we mean that the functions in Bb used to
generate the background absorption structure are
different from those used during the inversion pro-
cess. The experimental conditions are summarized
in Table 1 where we indicate the background basis
functions used to generate the data, those used in the
inversion procedure, and the relevant figures in the
text in which the performance is illustrated.
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Summary results for our method are provided in
Table 2. Here we indicate the accuracy to which we
can estimate the size, location, and contrast of a
spherical anomaly located at �x0, y0, z0� � ��0.60,
1.00, 3.40� cm with a radius of 0.80 cm and a contrast
of 0.15 cm�1. The average value of the background
perturbation in each example is also given. The dif-
ference between the number of voxels �out of 20,181�
in the estimated sphere and the true sphere is also
provided. Each of the three examples is discussed in
greater detail in Subsections 4.A.1–4.A.4.

1. Example 1: Sphere, Piecewise Constant
Matched Model
In this example Nb � 1 for the true image �i.e., the
background is assumed constant�, and B2 is the vec-
tor of all ones. Therefore the true image is PWC.
In the reconstruction, the Nb and B2 used are the
same as for the true image, meaning that there is no
model mismatch between the true solution and the
computed solution �i.e., the reconstruction is also
PWC�.

We assumed that no good starting guess for the
location of the sphere was known. Therefore we
took the starting guess as the largest sphere that fit
inside the region of interest—a sphere of radius 2 cm

centered at the origin. Thus there was a 3914-voxel
difference between the starting guess and the true
anomaly.

The values computed by our algorithm are summa-
rized in the first two rows of Table 2. We can see
that when the model is well matched, we can recover
the spherical structure almost perfectly. The signif-
icance of the small, 11-voxel, difference between the
real sphere and the estimated one is illustrated in
Fig. 1, which compares 2-D cross-sectional sparsity
plots of the entries in S for the exact solution with
that of the reconstruction. That is, a mark indicates

Fig. 1. Sparsity plots, moving down from the top of the region of
interest �where height is 1 cm�, depict the location of true and
reconstructed anomalies for example 1. The plus marks indicate
the location of the true anomaly. The black dots indicate voxels
missed by the reconstructed anomaly as the reconstructed anom-
aly was slightly too small. The horizontal axis is increasing x
from left to right but the tick marks give the matrix column index.
The vertical axis is decreasing y from top to bottom, and the tick
marks indicate the matrix row index.

Table 1. Setup for Spherical Inversion Examples

Example
Number

Bb Used to
Generate Data

Bb Used for
Inversion Figures

1 1 1 1
sin�3x� � 1,

2A cos�8y�sin�2y� � 1, 1 2 and 3
sin�5z� � 1
sin�3x� � 1, sin�3x� � 1,

2B cos�8y�sin�2y� � 1, cos�8y�sin�2y� � 1, 2 and 4
sin�5z� � 1 sin�5z� � 1
sin�3x� � 1, sin��x� � 1,

3A cos�8y�sin�2y� � 1, sin��y� � 1, 2
sin�5z� � 1 sin��z� � 1
sin�3x� � 1, 1,

3B cos�8y�sin�2y� � 1, cos�x� � cos�y�, 2 and 5
sin�5z� � 1 cos�z�

Table 2. Spherical Reconstruction Results

Example
Number

Truth or
Estimate

Radius
�cm�

Contrast
�cm�1�

Average
Background

�cm�1�
Location

�cm, cm, cm�
Final Voxel

Error

1
Truth 0.80 0.15 5 � 10�3 ��0.60, 1.00, 3.40�

11
Estimate 0.76 0.17 5 � 10�3 ��0.60, 0.99, 3.34�

2A
Truth 0.80 0.15 4.96 � 10�3 ��0.60, 1.00, 3.40�

98
Estimate 0.86 0.10 4.70 � 10�3 ��0.46, 1.00, 3.46�

2B
Truth 0.80 0.15 4.96 � 10�3 ��0.60, 1.00, 3.40�

12
Estimate 0.86 0.17 4.96 � 10�3 ��0.60, 1.00, 3.39�

3A
Truth 0.80 0.15 4.96 � 10�3 ��0.60, 1.00, 3.40�

NA
Estimate NAa NA NA NA

3B
Truth 0.80 0.15 4.96 � 10�3 ��0.60, 1.00, 3.40�

115
Estimate 0.83 0.08 5.04 � 10�3 ��0.39, 1.07, 3.35�

aNA, not applicable.
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a 1 in the corresponding position in S, and no color
indicates a 0. Clearly, our algorithm has done an
excellent job of both characterizing and localizing the
anomaly. We stress that this performance is fairly
consistent over different noise realizations and can
improve—in some experiments, there was only a
5-voxel difference between the true and the computed
anomalies.

2. Example 2A: Sphere, Model Mismatch
Here we took Nb � 3. The function Bb�r�, where r
denotes an �x, y, z� triple, is defined as

Bb�r� � �sin�3x� � 1, cos�8y�sin�2y� � 1,

sin�5z� � 1�,

and we determined the corresponding matrix B2 by
evaluating Bb at all points ri inside the region of
interest. The true values of the coefficients �i are
2.0 � 10�3, 2.0 � 10�3, and 1.00 � 10�3. The anom-
aly itself was the same as in example 1. We note
that the background perturbation was found to have
a maximum value of 9.97� 10�3 cm�1, a minimum of
1.74 � 10�5 cm�1, and an average value of 4.96 �
10�3 cm�1 �see Fig. 2�.

As discussed above, one goal of this research was to
establish the effect of lumps in the background tissue
on reconstruction. Hence here we reconstruct using
Nb � 1 and take B2 in the reconstruction is a single
vector of all ones �corresponding to Bb�r� � 1�. The
starting guess for the sphere is the same as in exam-
ple 1. As we can see from Table 2, in spite of the
mismatch in the model, there is only a small degra-

dation in performance. The 98-voxel mismatch that
can be attributed to the fact that the radius is slightly
overestimated and the x, z centers are slightly off
target, as can be seen in the spy plots in Fig. 3.
Finally, we observe that the value of � in the recon-
struction was 4.7 � 10�3, which is close to the aver-
age value of the true background perturbation,
whereas the relative error between the true and the
computed � was 28%.

3. Example 2B: Sphere, Matched Model
We expected an improvement if in fact the same back-
ground bases were used in the reconstruction as was
used to generate the true image in the preceding
example. So here we repeated example 2A, except
that the Bb�r� used in the reconstruction was the
same as that for the true figure. The estimated pa-
rameter values shown in Table 2 lead to a final esti-
mate of S having only a 12-voxel mismatch. Thus,
by correctly modeling the background perturbations,
we can obtain a significant improvement in localiza-
tion and in the estimated value of �. Figure 4 shows
slices in depth of the reconstruction.

4. Examples 3A and 3B: Sphere, Multiple Model
Mismatches
In this test we took Nb � 3 to generate the true image
and to generate the reconstruction. However, Bb�r�
for the true image is the same as those in the previous

Fig. 2. True image of 	 slices moving down from surface of the
region of interest, examples 2A and 2B. The colormap is trun-
cated to show the background variation �units are in inverse cen-
timeters�, so the anomaly with a value of 0.15 cm�1 appears as a
bright white spot.

Fig. 3. Sparsity plots depict the reconstruction error in shape for
example 2A. The black plus marks indicate points that were
inside the reconstructed anomaly that were not inside the true
anomaly. The black dots indicate points that were inside the true
anomaly that were not inside the reconstruction. The horizontal
axis is increasing x from left to right but the tick marks give the
matrix column index. The vertical axis is decreasing y from top to
bottom, and the tick marks indicate the matrix row index.
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two examples whereas Bb�r� for the reconstruction is
incorrectly assumed to be

Bb�r� � �sin��x� � 1, sin��y� � 1, sin��z� � 1�,

and we experimented with different values of the
parameters �, �, and �. For small values of the pa-
rameters �e.g., �4�, the reconstructions were worth-
less �no better or worse than the starting guess�.
This is understandable because no matter what the
expansion coefficients, the high-frequency bumps in
the true background cannot be captured with this
basis.

Next we tried Bb�r� � �1, cos�x� � cos�y�, cos�z�� in
the reconstruction. Again, high-frequency bumps
cannot be captured in this basis, but because we al-
lowed for constant variation, we expect the algorithm
to behave similar to example 2A in that the back-
ground perturbation should converge to roughly the
average value of the true background. This is in fact
the phenomenon we observed. The reconstructed
values for the anomaly are provided in Table 2. The
background expansion coefficients were estimated to
be �̂ � �4.84 � 10�4, �3.90 � 10�6, �4.87 � 10�4�.
Observe that the maximum, minimum, and mean
values for the reconstructed background perturba-
tion were 5.34 � 10�3, 4.57 � 10�3, and 5.04 � 10�3

cm�1, respectively. Hence the reconstructed back-
ground was almost constant at approximately the
average value of the background perturbation.
Sparsity plots in Fig. 5 comparing the true sphere
with the reconstructed sphere put the 115-voxel mis-
match in perspective. In a comparison with exam-
ple 2A, we are led to believe that a PWC background

assumption can be superior to use of incorrect basis
functions if nothing is known about the background
perturbation a priori; this deserves further study.

B. Inverting for Ellipsoidal Anomalies

In this subsection we examine the background model
mismatch issue for the more complex problem of es-
timating the structure of an ellipsoidal absorption
anomaly. The background structures used for the
experiments are summarized in Table 3, and the in-
version results are provided in Table 4.

In Table 4, note that the periodic nature of entries
in the rotation matrix U in Eq. �9� implies that dif-

Fig. 4. Reconstruction with matched background basis functions
in example 2B; slices are shown moving away from the top surface.
The colormap truncation is the same as was used to display the
true image �units are in inverse centimeters�, so the reconstructed
anomaly with a value of 0.168 cm�1 appears as a bright white spot.

Fig. 5. Sparsity plots depict the difference between the location of
true and reconstructed anomalies for example 3. The black dots
indicate which voxels are in the true anomaly that are missed by
the reconstruction whereas the plus marks indicate voxels in the
reconstruction that are not in the anomaly. Clearly the recon-
struction has the anomaly shifted slightly to the right in x. The
horizontal axis is increasing x from left to right but the tick marks
give the matrix column index. The vertical axis is decreasing y
from top to bottom, and the tick marks indicate the matrix row
index.

Table 3. Setup for Ellipsoid Experiments

Example
Number

Bb�r� Used to
Generate Data

Bb�r� Used for
Inversion Figures

4 1 1 6

5A
sin�7x� � 1,

1 7 and 8sin�4y� � 1,
sin�3z� � 1

5B
sin�7x� � 1, sin�7x� � 1,

7 and 9sin�4y� � 1, sin�4y� � 1,
sin�3z� � 1 sin�3z� � 1

6
sin�7x� � 1, sin�7x� � 1,
sin�4y� � 1, sin�8y� � 1,
sin�3z� � 1 sin�10z� � 1
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ferent angles can affect essentially the same rotation
�i.e., the �i are not unique�, so we report them in Table
4 only for completeness. Furthermore, note that dif-
ferent orderings of axis lengths combined with cer-
tain rotation matrices can generate the same
ellipsoid, so it is the values of the axis lengths, and
not their ordering in the triple, that are important.
Therefore, to better gage the quality of the ellipsoidal
reconstruction, one should look at the voxel mismatch
numbers.

1. Example 4: Ellipsoid, Piecewise Constant
Matched Model
In this example Nb � 1 for the true image �i.e., the
background is assumed constant�, and B2 is the vec-
tor of all ones. The true value for �was taken as 5�
10�3 giving a background perturbation of 5 � 10�3

cm�1. In the reconstruction, Nb and B2 are the
same, meaning that there is no model mismatch be-
tween the true solution and the computed solution.

The values obtained by the reconstruction are
shown in the first row of Table 4, and the estimate of
� was 5.00 � 10�3. There was a difference of 26
voxels between the true and the reconstructed ellip-
soid. The sparsity plots, which visually depict the S
matrices in each case, are shown in Fig. 6. From the
plot it is obvious that the axis rotation is accurately
captured.

2. Example 5A: Ellipsoid, Model Mismatch 1
Now we specify a lumpy background for the true
image using Nb � 3 and Bb�r� � �sin��x� � 1, sin��y�
� 1, sin��z� � 1�T, with �� 7, � � 4, and � � 3. This
gives a maximum background perturbation value of
1.20 � 10�2 cm�1, a minimum perturbation value of
3.07 � 10�5 cm�1, and an average of 5.98 � 10�3

cm�1. Cross-sectional slices in depth for the true
image can be seen in Fig. 7.

The reconstructed values for the ellipsoid param-
eters are provided in Table 4. The estimate of �
was 4.95 � 10�3. As in the sphere example, we
observe that the background value that is calcu-
lated by the algorithm is closest to the mean value
of the background perturbation, and the x coordi-
nate for the center is reasonable, but otherwise the
estimate is fairly far off. The algorithm has trou-

ble locating the true center initially �namely, the z
coordinate� because of the nature of the background
perturbation. Once a bad estimate of the center
was obtained by the algorithm, it never seemed to
recover and got stuck in a local minimum early on.
This type of phenomenon is related to the location
and spread of the peaks in the background pertur-
bation �see Subsection 4.E and example 6 below�;
when the peaks are wide and of high enough value,
they obscure the true size and location of the anom-
aly. There was a 3450-voxel mismatch �compared
with a 8817-voxel mismatch for the starting guess�;
see Fig. 8.

Fig. 6. Sparsity plots depict the location of true and reconstructed
anomalies for example 4. The black dots indicate the true anom-
aly, and the centers of the black circles show areas of the recon-
structed anomaly that lie outside the true anomaly �in other words,
the reconstruction is represented by the dots plus the circles�.
The horizontal axis is increasing x from left to right but the tick
marks give the matrix column index. The vertical axis is decreas-
ing y from top to bottom, and the tick marks indicate the matrix
row index.

Table 4. Ellipsoid Resultsa

Example
Number

Truth or
Estimate

Axis Length
�cm, cm, cm�

Location
�cm, cm, cm�

Angle
�rad, rad, rad�

�
�cm�1�

Average
Background

�cm�1�
Voxel
Error

4
Truth �1.10, 0.50, 0.80� �0.70, �0.90, 2.40� �0.79, 0.79, 0.00� 0.15 5 � 10�3

26
Estimate �0.83, 1.11, 0.54� �0.69, �0.90, 2.42� ��8.64, 0.81, 1.58� 0.12 5.00 � 10�3

5A
Truth �1.10, 0.50, 0.80� �0.70, �0.90, 2.40� �0.79, 0.79, 0.00� 0.15 5.98 � 10�3

3450
Estimate �1.99, 2.21, 1.60� �0.68, �0.79, 3.02� ��15.4, 0.44, 2.01� 0.014 4.95 � 10�3

5B
Truth �1.10, 0.50, 0.80� �0.70, �0.90, 2.40� �0.79, 0.79, 0.00� 0.15 5.98 � 10�3

21
Estimate �0.82, 1.10, 0.53� �0.69, �0.91, 2.41� �0.53, �1.49, 0.78� 0.13 5.97 � 10�3

6
Truth �1.10, 0.50, 0.80� �0.70, �0.90, 2.40� �0.79, 0.79, 0.00� 0.15 5.98 � 10�3

701
Estimate �1.75, 1.54, 0.66� �0.77, �0.78, 2.47� ��12.0, �0.21, 0.35� 0.036 5.18 � 10�3

aSee comments at the beginning of Subsection 4.B for further information on how to judge results in this table.
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3. Example 5B: Ellipsoid, Matched Model
Finally, we use the true image in example 5A, but we
reconstruct with the correct basis. The reconstruc-
tion is vastly different from example 5A and fairly
close to perfect. A comparison of Figs. 9 and 7 shows
that, despite the large difference in the estimates of

the rotation angles, when used to construct U, these
values do in fact lead to the correct axis orientation.

4. Example 6: Ellipsoid, Model Mismatch 2
We performed almost the same experiment as in ex-
ample 5A except that in Bb the values of � and � were
changed to 8 and 10, respectively. This gave a max-
imum background perturbation value of 1.20 � 10�2

cm�1, a minimum of 4.39 � 10�5 cm�1, and an aver-
age of 5.85 � 10�3 cm�1. The reconstructed � value
was only 3.57 � 10�2—not quite as small as esti-
mated in example 5A, but still approximately one
fourth the magnitude it should be. The recon-
structed background perturbation �i.e., the value of �
in this case� is 5.18 � 10�3 cm�1 and is close to the
average background value again. The center esti-
mate was somewhat off although still better than
example 5A. The lengths of the axes were too large
at d1 � 1.75, d2 � 1.54, and d3 � 0.66. There is a
701-voxel mismatch versus 3450 in example 5A.
Comparing the results in example 5A with these re-
sults, we conclude that, if an incorrect basis is used in
the reconstruction, the texture of the true back-
ground perturbation can have a significant impact on
reconstruction quality.

C. Example 7: Sphere in Lumpy Background

In these experiments, we explore further the effect of
a lumpy background on the reconstruction process,
but where the lumpy background does not correspond
to a functional expression Bb�r�. Instead, we deal
only with the discrete formulation of the problem;
that is, we specify the background through a single
digital image. We take B2 to have a single column,
but to obtain the values in that column, we apply a

Fig. 7. True image of 	 used in examples 5A and 5B �units are in
inverse centimeters�. The colormap is truncated to show back-
ground detail, so the anomaly with value 0.15 cm�1 appears in
bright white.

Fig. 8. Cross-sectional display of locations of reconstructed ellip-
soid �dots and plus marks� versus true ellipsoid �plus marks� for
example 5A. The oversized reconstruction is the result of our not
appropriately accounting for a lumpy background.

Fig. 9. Reconstructed perturbation �in units of inverse centime-
ters� for example 5B. The reconstructed contrast is 0.13 cm�1.
The colormap truncation is the same as that used in Fig. 7.
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3-D high-pass filter to a 3-D white-noise array and
unstack the array to obtain a vector. There are two
parameters that allow the background to change:
one parameter, sc, sets the maximum value of the
background and the other, w, is a negative number in
��15,0� that controls the width of the lumps by con-
trolling the filtering effect of the high-pass filter.
For example, when w � �1, the lumps are small,
whereas when w is increasingly large and negative,
the lumps become smaller �compare Figs. 10 and 11,
for example�. The algorithm for computing the
background is given in Appendix A. The true value
of � was 0.15 and the true value of � was 1. The
anomaly was a sphere of radius 1 and a center located
at �0.5, 1.1, 3.7�. The idea was to reconstruct with a
sphere and a PWC model for the absorption pertur-
bation in the background and anomaly. In Table 5
we can see that both the maximum value of the back-
ground perturbation as well as the width of the lumps
do influence the reconstruction. Further experi-
ments, not reported here for the sake of brevity, with
increasingly large negative w parameters also sup-
port the trend observed in Table 5. In short, as the
lumps widen, the maximum value has to become
smaller to be able to get a reasonable reconstruction.
Figures 10 and 11 show cross sections of the true
solution when the background was created with sc �
0.005, w � �1 and sc � 0.005, w � �2, respectively.
�Note that the colormap was truncated so that the
background can be seen better—the value of the
bright white anomaly is actually 0.15 cm�1.�

The last row in Table 5 and Fig. 12 show that it is
still possible to obtain good localization and charac-
terization of the anomaly if the correct background
basis vector is used, even when the PWC reconstruc-
tion fails. Hence future research should consider
how to estimate the background basis functions �see
also further remarks in Section 5�.

D. Example 8: Nonellipsoidal Structure

With this example we begin to explore the effect of
applying our ellipsoidal model and algorithm when
the true anomaly is neither a sphere nor an ellipsoid.
We used a PWC model both to generate the true
image and in the reconstruction �i.e., Bb�r� � 1 for
both the true absorption perturbation and the recon-
structed absorption perturbation�.

For the first experiment, the true anomaly was the
concave, nonellipsoidal shape shown in black in
the image in Fig. 13. The perturbation value inside
the anomaly was 0.15 cm�1 and outside it was 0.005.
In the reconstructions, we assume S is defined by an
ellipsoid. The ellipsoidal shape that is recon-
structed by our algorithm is shown with plus marks
in Fig. 13. There is a 98-voxel mismatch. The re-
constructed perturbation value is correct outside the
anomaly �0.005 cm�1�. Inside the anomaly the per-
turbation value is low at 0.08 cm�1 �this represents a
44% error�, but it is clearly much larger than the
background perturbation. The overall localization
is good.

For the second experiment, the shape was the
submarine-shaped object in black shown in Fig. 14,
and the perturbation value inside the anomaly was
again 0.15 cm�1. As in the first experiment, in the
reconstruction phase we use an ellipsoid to define S.

Fig. 10. Cross-sectional slices moving down from the surface for
the true solution in Subsection 4.C with sc � 0.005 and w � �1.
The colormap is truncated to show background detail, so the per-
turbation value in the anomaly, 0.15 cm�1, appears in bright
white.

Table 5. Results for Reconstruction with PWC Basis for Various Lumpy Backgroundsa

Background
Values

� �0.15�
Bb Generated

Lumps � �1�
Center

�0.5, 1.1, 3.7� Radius �1�
Voxel

Mismatchsc w

0.01 �1 0.008 PWC 0.002 ��1.25, 1.70, 4.01� 2.64 2892
0.005 �1 0.06 PWC 9.8 � 10�4 �0.48, 1.12, 3.59� 1.15 133
0.005 �2 0.003 PWC 9.6 � 10�4 �0.28, 1.62, 4.7� 3.05 3255
0.001 �2 0.09 PWC 2.02 � 10�4 �0.50, 1.08, 3.61� 1.08 61
0.005 �2 0.16 Lumps 1.00 �0.50, 1.10, 3.69� 0.99 7

aThe last row gives values for reconstruction with the correct basis. When interpreting the last column, keep in mind that the voxel
mismatch between the starting guess and the true solution is 1856.
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The reconstruction is shown with plus marks in Fig.
14. There is a 94-voxel mismatch between the true
shape and the reconstruction. The reconstructed
perturbation value inside the anomaly is still some-
what low at 0.10 cm�1 �this represents a 33% error�,
but the reconstructed value in the background is cor-
rect �0.005 cm�1� and the localization is good.

Both results suggest that the ellipsoidal algorithm performs almost as well as can be expected given the
model mismatch and that it could be used as a start-
ing point for a related imaging scheme with more
flexible parametrically described shapes.

E. Summary of Numerical Results

Although not detailed explicitly here in the interest of
space, a number of other experiments were per-
formed. In general, we noticed the following types of
behavior, given that such an arbitrary starting guess
was used in all cases:

1. If the anomaly was centered far from the origin
��0,0,3��, or if the thickness of the medium was much
larger than 6 cm, the algorithm did not perform well.
It could often estimate the centroid, but was not ef-
fective at shrinking the axis lengths. This is to be
expected because the problem effectively becomes
more severely underdetermined in that case, and the
coverage from the sensors in these regions of space
are sparser. A possible help for this would be to use
additional data from different modulation frequen-
cies, which we did not consider in the present study.
Another possibility is to use an additional regulariza-
tion term that encourages shrinkage relative to the
estimated value inside the anomaly, but then one
needs to worry about the choice of regularization pa-
rameter. Finally, as money and physics allow, im-
provements will be gained by an increase in the

Fig. 11. Cross-sectional slices moving down from the surface for
the true solution in Subsection 4.C for sc � 0.005 and w � �2.

Fig. 12. Cross-sectional slices moving down from the surface for
the reconstructed solution in Subsection 4.C for sc � 0.005 and w�
�2 obtained with the correct B2 in the reconstruction. The re-
constructed � value is 0.16, and the colormap truncation is the
same as used in Fig. 11.

Fig. 13. Example 8A. Cross-sectional plots moving down from
the surface comparing the shape and location of the true object
with the reconstructed shape. The true anomaly is marked with
black dots, and the reconstruction is overlaid by plus marks. The
horizontal axis is increasing x from left to right but the tick marks
give the matrix column index. The vertical axis is decreasing y
from top to bottom, and the tick marks indicate the matrix row
index.
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number of sources and detectors at the cost of in-
creased computation time.

2. If the background perturbation was noncon-
stant but a PWC assumption was used in the recon-
struction, the types of lump in the background
perturbation affected the reconstruction. More spe-
cifically, the wider the peaks of the lumps, the
smaller the peak values needed to be to obtain an
accurate reconstruction.

3. Reconstructing with a PWC background can
be better than use of an incorrect inhomogeneous
background; use of the correct inhomogenous back-
ground can work even when the PWC background
fails.

4. Further research needs to be done to determine
how much inaccuracy can be tolerated in the solu-
tions returned by the iterative solver.

5. Spheres can be used as a first step to approxi-
mate ellipsoids. When the spherical algorithm is
run, it does a relatively good job of identifying the
correct center of the ellipsoid, but the resulting
sphere tends to have a radius that is smaller than the
longest semiaxis. Then if that sphere is used as a
starting guess to the ellipsoidal algorithm, the algo-
rithm can get stuck in a local minimum, so care must
be taken when the spherical result is used to initial-
ize the ellipsoidal algorithm. One possible remedy
is to initialize the ellipsoidal algorithm with a sphere
or an ellipsoid having a larger-than-estimated radius
but by use of the computed center.

6. The results show that localization had to be
good to obtain a reasonable estimate of the value
inside the anomaly.

7. Useful information on localization could be ob-
tained even if the anomaly was not spherical or el-
lipsoidal.

8. Finally, we note that, as we refine the grid, the
approximations to the derivatives should correspond-
ingly be improved, and therefore we expect the per-
formance of our algorithm to improve.

5. Conclusion and Future Research

We have described an algorithm, based on a low-
order parametric model, for jointly localizing and
characterizing the absorption perturbation in breast
tissue. Numerical results show the robustness of
the algorithm under certain restrictions that may
hold true in practice.

The background basis vectors used in our experi-
ments were discretizations of continuous functions
and were selected to show the strengths and limita-
tions of our approach—they were not necessarily re-
lated to physical properties of breast tissue.
However, a key benefit of our approach when viewed
in the discrete setting is that other choices of realistic
basis vectors are possible. For example, suppose
that another imaging modality were able to localize
some inhomogeneities in the tissue �blood vessels or
fat, for example�. A segmented image localizing that
type of inhomogeneity can serve as a column in the B2
matrix. This is one area of current interest to us.

Future research includes the extension of our
method to more than one anomaly. We claim that, if
an initial estimate from some other imaging scheme
suggests the presence of, say, k anomalies, it is pos-
sible to extend our model and algorithm to find all
such k anomalies. For example, if it is known that
two anomalies exist, the number of unknowns we
would be solving for increases to also include the
value inside the second anomaly and its descriptors.
The question remains whether it is possible to find k
anomalies without such initial information.

Our approach can be extended to jointly solve for
perturbation in both absorption and scattering coef-
ficients if one specifies a similar model for the scat-
tering coefficient using possibly different basis
functions but the same S. More research is required
to discern the value of this use or addition of data at
other modulation frequencies as well as to identify
the limits of resolution of our algorithm as the num-
ber of sources or detectors is increased. Finally, the
application of this method to real sensor data is an
area of some interest to us in the near future.

Appendix A

Let nx, ny, nz denote the number of grid points in the
x, y, z dimensions, and for simplicity, assume they are
even numbers. Let  denote a 3-D array of dimen-
sions ny, nx, nz whose entries came from a random
normal distribution with a zero mean and a standard
deviation of 1. We want to construct a filter matrix
F in the frequency domain so that  ̃ � F produces

Fig. 14. Example 8B. Cross-sectional plots moving down from the
surface comparing the shape and location of the true object with
the reconstructed shape. The true anomaly is indicated with
black dots, and the reconstruction is overlaid with plus marks.
The horizontal axis is increasing x from left to right but the tick
marks give the matrix column index. The vertical axis is decreas-
ing y from top to bottom, and the tick marks indicate the matrix
row index.
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the backgrounds of the type found in example 7.
Mathematically, if � denotes the 3-D fast-Fourier-
transform operation in matrix form and �* denotes
the inverse 3-D fast-Fourier-transform operation,
then the filter F can be represented as F� � �!1 R !2
R !3��* where R denotes a Kronecker product.

The algorithm below computes the diagonal entries
of the matrices !i, i � 1, 2, 3, and stores them in the
vector hi. The value of w � ��15, 0� determines the
entries in !i �i.e., the lumpiness in the background�.
The diagonal matrices are computed in such a way so
that the matrix F is assured to have real entries.25

In the following, assume the function lgf �0, w, k�
returns a row vector of k logarithmically evenly
spaced points from 10w up to 100, where we know that
w � ��15, 0�. The function flip��� returns the row
vector � in reverse order:

n1 �
ny
2

� 1, n2 �
nx
2

� 1, n3 �
nz
2

� 1.

• For i � 1, 2, 3
�hi � lgf �0, w, ni�
�hi � "hi, flip�hi�2:ni�1��#
�appends elements 2 to ni � 1 of the vector hi,

in reverse order, to itself �
• End

Now that we have the !i, we compute  ̂ � F .
Next let f denote the set indices in the 3-D array that
correspond only to background, not anomaly. We
set c � "�sc��max� ̂� f ��# and then  ̃ � c ̂. Finally,
we obtain the entries of B2 by unstacking the 3-D
array  ̃ accordingly.
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Center for Subsurface Sensing and Imaging Systems,
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9986821�.
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