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A nonlinear, Bayesian optimization scheme is presented for reconstructing fluorescent yield and lifetime,
the absorption coefficient, and the diffusion coefficient in turbid media, such as biological tissue. The
method utilizes measurements at both the excitation and the emission wavelengths to reconstruct all
unknown parameters. The effectiveness of the reconstruction algorithm is demonstrated by simulation
and by application to experimental data from a tissue phantom containing the fluorescent agent Indo-
cyanine Green. © 2003 Optical Society of America
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1. Introduction

Optical diffusion tomography �ODT� is emerging as a
powerful tissue imaging modality.1,2 In ODT, im-
ages are comprised of the spatially dependent absorp-
tion and scattering properties of the tissue.
Boundary measurements from several sources and
detectors are used to recover the unknown parame-
ters from a scattering model described by a partial
differential equation. Contrast between the proper-
ties of diseased and healthy tissue might then be used
in clinical diagnosis. In principle, sinusoidally mod-
ulated, continuous-wave �cw�, or pulsed excitation
light is launched into the biological tissue, where it
undergoes multiple scattering and absorption before
exiting. One can use the measured intensity and
phase �or delay� information to reconstruct three-
dimensional �3-D� maps of the absorption and scat-
tering properties by optimizing a fit to diffusion
model computations. As a result of the nonlinear
dependence of the diffusion equation photon flux on
the unknown parameters and the inherently 3-D na-
ture of photon scattering, this inverse problem is
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computationally intensive and must be solved itera-
tively.

A relatively modest intrinsic contrast between the
optical parameters of diseased and healthy breast
tissue has been reported in some studies.3,4 Use of
exogenous fluorescent agents has the potential to im-
prove the contrast and thus to facilitate early diag-
nosis. In recent years, use of fluorescent indicators
as exogenous contrast agents for in vivo imaging of
tumors with near-infrared or visible light has shown
great promise, attracting considerable inter-
est.5–14 In experimental studies with animal sub-
jects,5–7,9,10,13,14 fluorescence has been successfully
used to visualize cancerous tissue in vivo near the
skin surface. In addition, Ntziachristos et al.12 have
used ODT after Indocyanine Green �ICG� injection to
image the absorption of a malignant breast tumor in
a human subject. The injected fluorophore may
preferentially accumulate in diseased tissue because
of increased blood flow from tumor neovasculariza-
tion.9 Alternatively, the agent may have different
decay properties in diseased tissue, which could be
useful to localize tumors independently of fluoro-
phore concentration.7 In addition, contrast between
tumors and surrounding tissue may be substantially
improved by use of diagnostic agents that selectively
target receptors specific to cancer cells.8,10,13,14

In frequency-domain fluorescence ODT, sinusoi-
dally modulated light at the fluorophore’s excitation
wavelength is launched into the tissue. The excited
fluorophore, when it decays to the ground state, emits
light at a longer �emission� wavelength, and this
emission is measured by an array of detection de-
vices. These emission data are then used to perform
a volumetric reconstruction of the yield �a measure of
the fluorescence efficiency� and the lifetime �the flu-
1 June 2003 � Vol. 42, No. 16 � APPLIED OPTICS 3081



orescent decay parameter�. However, the multiple
scattering in tissue complicates the reconstruc-
tion.15,16 The emission intensity of the fluorophore
is proportional to the optical intensity at the excita-
tion wavelength at that position, which depends in
turn on the optical parameters of the scattering do-
main at the excitation wavelength. Therefore a rig-
orous reconstruction of fluorescence property maps
should also include reconstructions of absorption and
scattering parameters at the excitation and emission
wavelengths. In addition, reconstruction of the un-
known absorption and scattering coefficients by use
of ODT can function as an adjunct image to the flu-
orescence image in screening for tumors.

Fluorescence imaging simulations with 3-D �Ref.
17� and two-dimensional18–20 geometries have recon-
structed fluorescence yield and lifetime parameters.
These simulations have generally assumed that the
absorption and scattering parameters are known in
advance, except for Roy and Sevick-Muraca17 who
also reconstructed the excitation wavelength absorp-
tion. In an early experimental result, Chang et al.21

used a transport theory model to reconstruct fluores-
cent yield in a heterogeneous tissue phantom con-
taining Rhodamine 6G. Their study used cw data
recorded in a two-dimensional plane geometry. Re-
cently, Ntziachristos and Weissleder22 used a nor-
malized Born approximation to reconstruct 3-D
fluorescent heterogeneities containing the near-
infrared cyanine dye Cy5.5 embedded in a tissue
phantom. Under the assumption of known back-
ground optical properties and absorbers limited to a
perturbative regime, their technique can circumvent
the need for recording background measurements be-
fore contrast agent administration.

The development of nonlinear inversion methods
for ODT is necessary because of the fundamentally
limited accuracy of methods that linearize the for-
ward model.23 Previously, we have presented a non-
linear Bayesian approach24–26 and shown that it
produces high-quality images compared with previ-
ous methods such as the distorted Born iterative
method.27 The method formulates the inversion as
the optimization of an objective function that incor-
porates a model of the detection system and a priori
knowledge about the image properties. We found
that a neighborhood regularization scheme used in a
Bayesian framework reduces artifacts characteristic
of previous approaches that impose a penalty on the
norm of the image updates.24 The inversion can be
made more computationally efficient by multigrid
techniques.25

Here we extend our previous approach to include
fluorescence yield and lifetime in the inverse prob-
lem. We present a new inversion algorithm and a
measurement scheme for reconstructing all the un-
known fluorescence, absorption, and diffusion param-
eters. Numerical simulations validate the scheme
and demonstrate its computational efficacy. We use
the method to image a spherical heterogeneity in a

tissue phantom by use of transmission data collected
by a cw imaging device. The heterogeneity contains
ICG, a fluorescent diagnostic agent approved by the
U.S. Food and Drug Administration for use in the
near-infrared range, where biomedical imaging with
light is most practical.

2. Fluorescence Diffusion Tomography Problem

The transport of modulated light �at modulation an-
gular frequency �, i.e., exp� j�t� variation� in a fluo-
rescent, highly scattering medium with an external
source at the excitation wavelength is modeled by use
of the coupled diffusion equations15,16,28:

� � �Dx�r���x�r, ��� � ��ax
�r� � j��c��x�r, ��

� 	
�r � rsk
�, (1)

� � �Dm�r���m�r, ��� � ��am
�r� � j��c��m�r, ��

� 	�x�r, ����af
�r�

1 � j���r�

1 � ����r��2 , (2)

where the subscripts x and m, respectively, denote
excitation and emission wavelengths 
x and 
m;
��r, �� is the complex modulation envelope of the
photon flux; 
�r� is the Dirac function; and rsk

is the
location of the excitation point source. We also as-
sume single exponential decay in this model. The
optical parameters are the diffusion coefficients D�r�
and the absorption coefficients �a�r�. The fluores-
cence parameters are the lifetime ��r� and the fluo-
rescent yield ��af

�r�. The fluorescent yield
incorporates the fluorophore’s quantum efficiency �
�which depends on the type of fluorophore and the
chemical environment� and its absorption coefficient
�af

�which depends on the fluorophore concentration�.
Note the right-hand side of Eq. �2�, where the light
absorbed by fluorophores and subsequently emitted
at the emission wavelength is incorporated into an
effective source term. In the case of an external
point source at the emission wavelength, the flux is
governed by

� � �Dm�r���m�r, ��� � ��am
�r� � j��c��m�r, ��

� 	
�r � rsk
�. (3)

In the most general case, the unknown parameters
in Eqs. �1� and �2� are �ax

, �am
, Dx, Dm, �, and ��af

.
Reconstructions of the Dx and �ax

images can be ob-
tained by use of data from sources and detectors at
the excitation wavelength 
x. Similarly, Dm and �am

can be obtained by use of data from sources and de-
tectors at the emission wavelength 
m. Finally, hav-
ing found these parameters, use of sources at 
x and
detectors filtered at 
m will yield the fluorescence
parameters. Figure 1 depicts this measurement ap-
proach schematically.

After discretizing the domain into N voxels of equal
size, one can regard the unknown parameters as
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three image vectors, each corresponding to a mea-
surement set. Let ri denote the position of the ith
voxel centroid, i.e., the location of a node in a Carte-
sian finite-difference representation of Eqs. �1�–�3�.
We define the image vectors as

xx � �xxa

xxb
� � ��ax

�r1�· · ·�ax
�rN�, Dx�r1�· · ·Dx�rN��T,

xm � �xma

xmb
� � ��am

�r1�· · ·�am
�rN�, Dm�r1�· · ·Dm�rN��T,

xf � �xfa

xf b
� � ���r1�· · ·��rN�, ��r1�· · ·��rN��T, (4)

where the subscript f denotes the fluorescence image
and the superscript T denotes the transpose opera-
tion. Note that the three image vectors are each of
size 2N, consisting of two unknown parameter vec-
tors of size N. In addition, we reparameterize the
fluorescence unknowns ���af

, �� to ��, �� using

��r, �� � ��af
�r�

1
1 � ����r��2 , (5)

which, when substituted into Eq. �2�, yields

� � �Dm�r���m�r, ��� � ��am
�r� � j��c��m�r, ��

� 	�x�r, ����r, ���1 � j���r��. (6)

As explained in Appendix A, this new parameteriza-
tion is useful because, in a sequential optimization
scheme, it takes advantage of the inherent linearity
of the fluorescence inverse problem while allowing
regularization to be applied to � directly. The sets of
flux measurements corresponding to the above image
vectors are defined, respectively, as yx, ym, and yf.

3. Inversion

The estimation of each of the unknown images �xx,
xm, xf � from the corresponding observations �yx, ym,
yf � is an ill-posed, typically underdetermined, inverse
problem. As in previous studies,24–26,29 we address
this by formulating the inverse problem in a Bayes-
ian framework. This framework allows the incorpo-
ration of a priori information, and it encapsulates all
available information about the problem model into
an objective function to be optimized. Let x denote
one of the images of Eqs. �4� and let y denote its
corresponding observations. We use Bayes’ rule to

compute the maximum a posteriori �MAP� estimate,
given by

x̂MAP � arg max
x�0

� p�y�x� � p�x��, (7)

where p�y�x� is the data likelihood and p�x� is the
prior density for the image. The data likelihood can
be formed from a Gaussian model when we consider,
for example, the physical properties of a photocurrent
shot-noise-limited measurement system.24 This
gives

p�y�x� �
1

����P���	1 exp�	
�y � f�x���

2

� � , (8)

where P is the number of measurements; f is the
appropriate forward operator; � is a scalar parameter
that scales the noise variance; and, for an arbitrary
vector w, �w��

2 � wH�w �where H denotes Hermitian
transpose� and ���2��	1 is the covariance matrix.
In a small signal shot-noise model, the measure-
ments are independent and normally distributed
with a mean equal to the exact �noiseless� measure-
ment and a variance proportional to the exact mea-
surement at a modulation frequency of zero �dc�.
Following Ye et al.,24 we approximate the dc flux for
the ith datum as �yi�. The resulting covariance ma-
trix is given by

�

2
�	1 �

�

2
diag�� y1�, � y2�, . . . � yP��. (9)

For the prior density p�x�, we use the generalized
Gaussian Markov random field �GGMRF� model,
which enforces smoothness in the solution while
preserving sharp edge transitions.24,30 For each
node �representing a voxel� inside the image, we
form a 3-D neighborhood from the 26 adjacent nodes.
Let xT � �xa

T, xb
T�, as in Eqs. �4�. Assuming inde-

pendence of xa and xb, the density function is given
by

p�x� � p�xa� � p�xb� (10)

� � 1
�a

Nz� pa�
exp�	

1
pa�a

pa

� �
�i, j���a

bi	j�xi � xj �pa��
� � 1

�b
Nz� pb�

exp�	
1

pb�b
pb

� �
�i, j���b

bi	j�xi � xj �pb�� , (11)

where the subscripts a and b have the same meaning
as in Eqs. �4�, xi denotes the ith node of x, the set �
consists of all pairs of neighboring nodes, and bi	j is
the weighting coefficient corresponding to the ith and
jth nodes. The coefficients bi	j are assigned to be
inversely proportional to the node separation in a

Fig. 1. Proposed measurement scheme.
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cube-shaped node layout, with the requirement that
that ¥j bi	j � 1. The constants p and � control the

shape and scale of the distribution, and the factor
z�p� is a normalization term.

As in previous research,25 we incorporate � into the
inverse problem as an unknown for each image. We
found that this tends to improve the robustness and
speed of convergence. As a result, we perform a joint
maximum a posteriori estimation of both x and � for
each image:

x̂x � arg max
xx�0,�x

� p�xx�yx, �x��, (12)

x̂m � arg max
xm�0,�m

� p�xm�ym, �m��, (13)

x̂f � arg max
xf�0,�f

� p�xf �yf, �f, x̂x, x̂m��. (14)

The estimations of xx and xm are performed indepen-
dently of each other, with Eqs. �1� and �3� used as the
respective forward models. Subsequently, these es-
timates are incorporated into the coupled diffusion
equations �Eqs. �1� and �2�� to estimate xf.

Let x and � correspond to one of the images in Eqs.
�12�–�14�. Ye et al.25 showed that the above recon-
structions are equivalent to one maximizing the log
posterior probability l�x�, which can be derived with
Eqs. �7�, �8�, and �11�:

l�x� � 	P ln �y � f�x���
2 �

1
pa�a

pa �
�i, j���a

bi	j

� �xi � xj �pa �
1

pb�b
pb �

�i, j���b

bi	j�xi � xj �pb. (15)

Optimizing l�x� can be implemented by alternating
closed-form updates of �̂ with updates of x̂25:

�̂ �
1
P

�y � f�x̂���
2 , (16)

x̂ � arg max
x�0

�ln p�y�x, �̂� � ln p�x��̂��, (17)

where � implies an update iteration rather than a
full optimization. The x̂ updates represent more
computationally expensive steps toward optimizing

Eq. �7� than the �̂ updates. For each image, we form
an objective function from Eqs. �8� and �11�:

The variables have the same meaning as in Eqs. �8�
and �11�, and their subscripts have the same meaning
as in Eqs. �4�. Note that forward operator ff is a
function of xf and the estimates x̂x and x̂m. In prin-
ciple, one could jointly optimize Eqs. �18�–�20� over
xx, xm, and xf, but for computational simplicity, we
first optimize Eqs. �18� and �19� and subsequently
incorporate the estimates into Eq. �20�. With the
objective functions defined by Eqs. �18�–�20� estab-
lished, an optimization algorithm to minimize these
costs is needed, which is described in Section 4.

4. Iterative Coordinate Descent Optimization

The optimizations of Eqs. �18�–�20� are performed by
use of the iterative coordinate descent �ICD� algo-
rithm,24,26,31 a sequential single-site update scheme
similar to the Gauss–Seidel method used in other
problems. One ICD scan consists of the formation of
a local quadratic approximation to the cost function,
followed by an update of each image element individ-
ually to minimize the approximate objective function.
On each subsequent scan, the Fréchet derivative of
the nonlinear forward operator is recomputed, and a
new quadratic approximation is made.

Once again, let x denote one of the three images to
be optimized. During the scan, the individual voxels
of x are sequentially updated in random order. At
the beginning of the scan, f�x� is first expressed by
use of a Taylor expansion as

�y � f�x���
2 � �y � f�x̂� � F��x̂��x��

2 , (21)

where �x � x 	 x̂, and F��x̂� represents the Fréchet
derivative of f�x� with respect to x at x � x̂. Using
Eq. �21�, we formulate the approximate cost function:

c�x, �̂� �
1
�̂

�z � F��x̂�x��
2 �

1
pa�a

pa �
�i, j���a

bi	j

� �xi � xj �pa �
1

pb�b
pb �

�i, j���b

bi	j�xi � xj �pb,

(22)

c�xx, �̂x� �
1
�̂x

�yx � fx�xx���x

2 �
1

pxa�xa
pxa �

�i, j���xa

bi	j�xxai
� xxaj

�pxa �
1

pxb�xb
pxb �

�i, j���xb

bi	j�xxbi
� xxbj

�pxb, (18)

c�xm, �̂m� �
1

�̂m
�ym � fm�xm���m

2 �
1

pma�ma
pma �

�i, j���ma

bi	j�xmai
� xmaj

�pma �
1

pmb�mb
pmb �

�i, j���mb

bi	j�xmbi
� xmbj

�pmb,

(19)

c�xf, x̂x, x̂m, �̂f� �
1
�̂f

�yf � ff�xf, x̂x, x̂m���f

2 �
1

pfa�fa
pfa �

�i, j���fa

bi	j�xfai
	 xfaj

�pfa�
1

pf b�f b
pf b �

�i, j���f b

bi	j�xf bi
	 xf bj

�pf b.

(20)

3084 APPLIED OPTICS � Vol. 42, No. 16 � 1 June 2003



where

z � y � f�x̂� � F��x̂�x̂. (23)

With the other image elements fixed, the ICD update
for x̂i is given by

x̂i � arg min
xi �0

	1
�̂

�y � f�x̂� � �F��x̂��*�i�� xi � x̂i���
2

�
1

p�p �
j��i

bi	j�xi � x̂j �p
 , (24)

where �F��x̂��*�i� is the ith column of the Fréchet de-
rivative matrix and �i is the set of nodes neighboring
node i, and p and � are chosen appropriately from �pa,
pb� and ��a, �b�. This one-dimensional minimization
is solved by use of a simple half-interval search.24

The Fréchet derivative matrices used for each image
are given in Appendix A. In Appendix B we sum-
marize the ICD optimization algorithm in
pseudocode form.

Previously, we found that multiresolution tech-
niques can reduce the computational burden and im-
prove robustness of convergence for the ODT
problem.25 Hence, for large computational domains,
it may be beneficial to perform several ICD scans at
a reduced resolution followed by interpolation as an
initialization step for the full-resolution problem.

5. Simulations

Figure 2 shows cross-sectional images of a 17.3 cm �
17.3 cm � 6 cm tissue phantom having background
values �ax,m

� 0.01 cm	1, Dx,m � 0.047 cm, � � 0 ns,
and ��af

� 0 cm	1. A slightly off-center spherical
heterogeneity with a diameter of roughly 3 cm is
present, with �ax

� 0.05 cm	1, �am
� 0.01 cm	1, Dx

and Dm � 0.30 cm, � � 0.55 ns, and ��af
� 0.02 cm	1.

Figure 2�g� shows the location and size of the fluoro-
phore as the ��af

� 0.01-cm	1 isosurface. As shown
in Fig. 3, the bottom face of the domain contains 16
sources �modulated at 70 MHz� arranged in a 4 � 4
grid pattern. On the top face, 16 detectors are
placed in an identical grid. Using multigrid finite
differences32 to solve the diffusion equations, we gen-
erated synthetic measurements. Additive noise was
introduced by use of the approximate shot-noise
model of Eqs. �8� and �9�, giving an average signal-
to-noise ratio of 34 dB and a maximum signal-to-
noise ratio of 41 dB. In the forward solution, an
extrapolated zero-flux boundary condition33 was used
to model the free-space absorbing boundaries.

For each of the xx, xm, and xf inversions, 20 ICD
iterations at a resolution of 17 � 17 � 9 nodes, fol-
lowed by 20 ICD iterations at a resolution of 33 �
33 � 17 nodes, were performed. For the nonlinear
xx and xm problems, multigrid finite differences were
used to solve the forward model prior to each ICD
image update. During the inversions, the log poste-
rior probability was evaluated as the convergence
criterion. For each image, convergence �with subse-
quent iterations changing the images very little� was
obtained in approximately 10 min of computation on

an AMD Athlon 1333-MHz workstation. Although
automatic estimation of the GGMRF hyperparam-
eters p and � is in principle possible with a
maximum-likelihood estimation technique,34 we fol-
low Ye et al.24 and use parameter values that empir-
ically give good results. For each reconstruction, the

Fig. 2. True phantom, with cross sections of the widest part of the
heterogeneity: �a� �ax

is in cm	1, �b� Dx is in cm, �c� �am
is in cm	1,

�d� Dm is in cm, �e� � is in ns, �f � ��af
is in cm	1, �g� ��af

� 0.01 cm	1

isosurface.

Fig. 3. Grid used for both sources and detectors in the simulation,
with the relative location of the sphere depicted.
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estimates were initialized with homogeneous images
equal to the correct background values, as the ICD
method’s convergence is slow for low-spatial-
frequency image components.31 We have shown
previously that multigrid inversion methods in con-
junction with ICD updates alleviate this difficul-
ty,25,35,36 but, again, we do not address them in this
investigation.

Reconstructions �̂ax,m
, D̂x,m, �̂, and ��̂af

are shown
in Fig. 4. We used p � 2.0 in all the reconstructions
and � values of 0.015 cm	1, 0.02 cm, 0.5 ns, and 0.002
cm	1 in computing �̂a, D̂, �̂, and �̂, respectively. The
reconstructions are qualitatively and quantitatively
accurate.

We conjecture that changes in the lifetime param-
eter � can be useful to distinguish between diseased
and healthy tissue environments. Hence it is useful
to determine if such changes are within the accuracy
of the reconstruction algorithm. The simulation
was repeated for four fluorophores, each with a dif-
ferent value of �: 0.1375, 0.275, 0.55, and 1.10 ns.
The procedure outlined above was performed for each
image. To determine a single lifetime value for each
reconstructed image, we used a weighted average:

�̂avg �
�
i�0

N	1

�̂�ri��̂�ri�

�
i�0

N	1

�̂�ri�

. (25)

The weighted average is reasonable, as the recon-
struction �̂�r� could be significant in spurious regions
where ��̂af

� 0. It is also similar to the weighting
that occurs in the source term of Eq. �6�, which rep-
resents the effect of � on the data. Figure 5 shows a
plot of �̂avg as a function of the true value. The result
suggests that the method can track even small
changes in diagnostic lifetime imaging applications.

We also investigated the propagation of error from
the x̂x and x̂m images into the x̂f result. We created
a series of incorrect images for x̂x and x̂m, and we
used the incorrect guesses in reconstructing xf. The
incorrect x̂x and x̂m images were homogeneous. We
tested the effect of varying �ax

, Dx, �am
, and Dm, and

we computed an error metric to quantify the change.
For the ��̂af

results, the error metric was the normal-
ized root-mean-squared error �NRMSE�, defined as

NRMSE � ��i�0

N	1

���̂af
�ri� � ��af

�ri��2

�
i�0

N	1

���af
�ri��2 �

1�2

. (26)

For the �̂ results, the NRMSE is less appropriate, as
�̂ may be nonzero in areas where ��̂af

� 0. Hence,
the error metric for �̂ was the fractional error, ��̂avg 	
�true���true. The plots in Figs. 6�a�–6�d� show the
NRMSE for ��̂af

as a function of background �ax
, Dx,

�am
, and Dm, respectively. The plots in Figs. 7�a�–

7�d� show the fractional error for �̂avg, also as a func-
tion of background �ax

, Dx, �am
, and Dm, respectively.

Whenever one parameter was varied, the others were
all set to the correct image’s background value. In
all plots, the plus symbols depict the error metric
values resulting from the erroneous images, and the
cross symbols shows the error metric value resulting
when the reconstructions x̂x and x̂m were computed
in advance. For ��̂af

, the NRMSE is above 0.5 in all

Fig. 4. Reconstructed phantom: �a� �̂ax
is in cm	1, �b� D̂x is in

cm, �c� �̂am
is in cm	1, �d� D̂m is in cm, �e� �̂ is in ns, �f � ��̂af

is in
cm	1, �g� ��̂af

� 0.01 cm	1 isosurface.

Fig. 5. Plot of estimate �̂avg versus the true value of �. The trend
is almost linear, as desired.
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cases, even when the full reconstruction was done.
The increased NRMSE was likely due to blurring of
the sharp edges as a result of our using the GGMRF
prior model30 with p � 2. Ignoring the heterogene-
ities, but using the correct background values, notice-
ably increased the NRMSE. However, the NRMSE
changed relatively little over a range of incorrect
background values for all the parameters �ax

, Dx, �am
,

and Dm. The reconstructed ��̂af
images also looked

qualitatively similar. This suggests that the recon-
structed yield was fairly robust to errors in x̂x and x̂m.
However, �̂ was highly sensitive to use of the incorrect
images.

6. Experimental Results

To further evaluate the proposed reconstruction
method, we performed fluorescence measurements.
We recorded the data using a cw imaging device and
a versatile phantom box �shown in Fig. 8�, both de-
scribed in detail elsewhere.37 In the absence of

phase information, we did not consider �, and we
assumed D to be constant and known based on phys-
ical considerations. The instrument has laser diode
sources available at both 690 and 830 nm, and it has
avalanche photodiode detectors. Although 690-nm
excitation is not ideal for ICG, a published excitation
spectrum38 indicates that the detected 830-nm emis-
sion intensity, with 690-nm excitation, is approxi-
mately 30% of the maximum value �obtained with
780-nm excitation�, making it acceptable for this
demonstration. The box had internal dimensions of
16 cm � 16 cm � 3.8 cm, where the last dimension is
the vertical thickness. As shown in Fig. 9, nine
source fibers were connected to the bottom plate �at
z � 	1.9 cm�, and 14 detector fibers were connected
to the top plate �at z � 1.9 cm�. A hollow, surface-
frosted-glass sphere with an outer diameter of 2 cm
and a thickness of approximately 2 mm was mounted
with its center near z � 0.7 cm, as depicted in Fig. 10.
This sphere was mounted on a small plastic stand on
the bottom of the box. It was also connected to a
closed circulation channel by thin, translucent rubber
tubes leading outside the box, allowing the fluoro-
phore solution to be titrated into the sphere from an
external reservoir over the course of the experiment.
The titration allowed comparable data to be taken
both without and with the fluorophore present for
analysis and calibration purposes.

Fig. 6. NRMSE for ��̂af
that is due to changes in assumed con-

stant background values for �a� �ax
in cm	1, �b� Dx in cm, �c� �am

in
cm	1, �d� Dm in cm. The � markers show results from assuming
erroneous, constant images, whereas the � markers show the
results from computing x̂x and x̂m in advance.

Fig. 7. Fractional error for �̂avg that is due to changes in assumed
constant background values for �a� �ax

in cm	1, �b� Dx in cm, �c� �am

in cm	1, �d� Dm in cm. The � and � markers have the same
meaning as in Fig. 6.

Fig. 8. Schematic of the phantom box showing the fibers, the
spherical heterogeneity, and the removable lid.

Fig. 9. Source and detector layout for the experiment. The
darker circles represent the detector positions used in fluorescence
measurements. The relative location of the sphere is also shown.
�a� Bottom plate �sources�. �b� Top plate �detectors�.
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The box was filled with a suspension of 0.4% In-
tralipid. Assuming 690-nm excitation and 830-nm
emission, this results in background values of ap-
proximately Dx � 0.071 cm, Dm � 0.082 cm, �ax

�
0.0052 cm	1, and �am

� 0.03 cm	1.39,40 The sphere
was initially filled with the same suspension, creat-
ing an essentially homogeneous domain �apart from
the glass sphere, rubber tubes, and plastic stand�.
Before administration of the ICG, we recorded two
sets of measurements, yx

�base� and ym
�base�, using

sources at 690 and 830 nm, respectively. We refer to
the measurements recorded before ICG administra-
tion as baseline measurements. Subsequently, ICG
was introduced into the sphere at a concentration of
1.0 �mol�l. For the purposes of reconstructing �ax

,
we recorded the measurements, which we define as
yx

�uncal�, using 690-nm sources with no optical band-
pass filters installed over the detectors. We neglect
the fluorescence signal in these measurements, as

published quantum efficiency values16,41 imply that
its effect on the data is 2 or 3 orders of magnitude
below the effects that are due to absorption. Follow-
ing a similar procedure, 830-nm data, which we call
ym

�uncal�, were recorded �with no filters� to reconstruct
�am

. Upon completion of these measurements,
830-nm bandpass filters with 12 nm FWHM �New-
port 10LF10-830� were installed in front of the detec-
tors to perform the fluorescence measurements.
Because of a limited number of filters, only 9 of the 14
detectors were used to record the filtered fluorescence
measurements �as shown in Fig. 9�.

The installation of the filters required disconnec-
tion of the detector fibers from the detection devices.
In principle, the disconnection and subsequent recon-
nection of the fibers could invalidate the previous
baseline calibrations by potentially changing the de-
tectors’ coupling efficiencies. Such effects might ad-
versely affect the yx and ym measurements. Hence a
new baseline calibration procedure was performed.
This need for multiple calibrations is a limitation in
the design of the experiment that could be alleviated
by use of a different detection scheme. For example,
the instrument used by Ntziachristos and
Weissleder,22 in which a CCD camera imaged a de-
tection fiber array, required the installation of only a
single fluorescence filter without perturbing the de-
tection fibers. Incorporating the unknown calibra-
tion parameters into the inverse problem29,42 may
also alleviate this difficulty.

To perform the new calibration, the ICG–Intralipid
mixture was pumped out of the sphere and replaced
with new Intralipid without ICG. Baseline mea-
surements yf

�base� with 690-nm sources and 830-nm
detection were made. Subsequently, a new ICG–
Intralipid mixture identical in concentration to the
previous one was titrated into the sphere. With the
ICG now present, we recorded fluorescence measure-
ments yf

�uncal� using 690-nm source excitation and
830-nm detection.

Before applying the reconstruction algorithm for xx
and xm, we performed calibrations using the baseline
data. Synthetic data yx

�comp� �for 690-nm sources�
and ym

�comp� �for 830-nm sources� were computed for a
homogeneous phantom with Dx � 0.071 cm, Dm �
0.082 cm, �ax

� 0.0052 cm	1, and �am
� 0.03 cm	1 on

a 33 � 33 � 17 grid. We performed the calibrations
by normalizing the following to the computed data:

yxi
� yxi

�uncal�
yxi

�comp�

yxi

�base� , (27)

ymi
� ymi

�uncal�
ymi

�comp�

ymi

�base� , (28)

where the subscript i represents the ith component of
the data vector. This baseline calibration procedure
estimates the unknown scaling and coupling efficien-
cies in the measurements. For the much dimmer
fluorescence measurements, the baseline data yf

�base�

contained significant background signal. Calibra-

Fig. 10. True fluorophore location. z � �a� 	1.82, �b� 	1.30, �c�
	0.78, �d� 	0.26, �e� 0.26, �f � 0.78, �g� 1.30, �h� 1.82 cm.
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tions were performed to account for the unknown
coupling efficiencies and to remove these background
components from the fluorescence data:

yfi � � yfi
�uncal� � yfi

�base��
yxi

�comp�

yxi

�base� , (29)

where we used the 690-nm calibration factors. The
resulting fluorescence data contain an unknown scale
factor that is due to the filter attenuation of the
830-nm fluorescence light.

The reconstructions �̂ax
and �̂am

are shown in Figs.
11 and 12, respectively. For each inversion, a vol-
ume representing the whole box was discretized into
33 � 33 � 17 voxels. The �̂ax

computation used � �
0.015 cm	1 and p � 2, and the �̂am

computation used
� � 0.03 cm	1 and p � 2. For both images, the ICD
algorithm was run for 20 iterations on a 927-MHz
Pentium III workstation, taking approximately 10
min. The resulting �̂ax

and �̂am
images show a het-

erogeneity with accurate shape, although with arti-
facts present in the region close to the top plate. In

both images, the sphere’s vertical positions are sim-
ilar, but below the true location by approximately 4 or
5 mm. The similarity of the two reconstructions,
despite the fact that they are based on independent
data sets, suggests that this error is due to a system-
atic effect in the reconstruction method. This may
be a result of calibration errors, as the assumption of
a diffuse, homogeneous medium in the baseline cali-
brations neglected the presence of the low-scattering
glass sphere, the plastic stand used to hold the
sphere, and the thin rubber tubes used to pump in the
ICG solution. Small errors in the assumed Dx and
Dm values might also contribute to artifacts in the
reconstructions. In addition, placing the sphere
close to the detectors may have resulted in modeling
errors under the diffusion approximation. In �̂ax

,
the reconstructed ICG absorption is slightly smaller
than the predicted value of 0.039 cm	1, which one
would expect from the results of Sevick-Muraca et
al.,16 after correcting for use of 690-nm, rather than
780-nm, excitation with the above-mentioned 30%
factor.38 The �̂am

image has higher contrast than

Fig. 11. Reconstructions of �ax
in cm	1. Values of z for �a�–�h�

are the same as in Fig. 10.
Fig. 12. Reconstructions of �am

in cm	1. Values of z for �a�–�h�
are the same as in Fig. 10.
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the �̂ax
image, in contrast to a published absorption

spectrum for ICG of 6.5 �mol�l, which shows higher
absorption at 690 nm than at 830 nm. It is possible
that ICG’s instability in aqueous solution causes
some variability in its optical spectrum; Landsman et
al.43 observed a shift in the absorption peak toward
longer wavelengths with decreasing concentration.
In addition, the effect of an Intralipid suspension on
ICG’s absorption spectrum has not been investigated
in detail, to our knowledge.

Figure 13 shows the fluorescent yield reconstruc-
tion ��̂af

. As a result of the unknown scale factor in
the fluorescence data, the image is in arbitrary units.
Making use of �̂ax

and �̂am
, we ran the ICD algorithm,

using p � 2.0 and � � 5.0 arbitrary units, for 20
iterations �approximately 3 min�. The iterations
were computationally inexpensive because of the lin-
earity of the fluorescence inverse problem. In con-
trast to the absorption reconstructions, the
reconstructed fluorophore’s center is slightly higher
than that of the true fluorophore. Although no
quantitative information is available, the size and
shape are approximately correct.

7. Conclusion

We have presented a computationally efficient Bayes-
ian inversion strategy for reconstructing fluores-
cence, absorption, and scattering properties and
demonstrated the method in a simulation study and
in a tissue phantom experiment to image fluores-
cence from ICG in a spherical heterogeneity. The
results show potential for use of ODT with fluores-
cence as a tool for localizing fluorescent contrast
agents in clinical diagnostic applications.

It is worth noting that our experimental calibration
procedure simplifies the problem substantially be-
cause it chooses a background absorption value in
advance and observes changes with respect to base-
line measurements. We have found that this proce-
dure reconstructs similar-looking absorbers over a
wide range of background values. Ongoing research
with nonlinear multigrid reconstruction algo-
rithms,25 automatic source�detector calibration,29

and more accurate transport models44 may improve
reconstruction accuracy with less favorable calibra-
tions.

Fluorescence imaging may offer some clinical ad-
vantages over absorption imaging. One advantage
is the possibility of using lifetime as a diagnostic tool.
For the yield imaging problem, the error propagation
study suggests that qualitative results may be ob-
tainable without one having to perform the full xx
and xm inversions. Although the reconstructed life-
time was highly sensitive to incorrect background
properties, the reconstructed yield was not. Hence,
as Ntziachristos and Weissleder22 have observed,
simplified first-order models are more easily applied
to the fluorescent yield imaging problem than to the
full absorption imaging problem. This enables a
simpler experimental approach that requires no
baseline data. For qualitative localization of tu-
mors, this could prove to be a decisive advantage of
fluorescence imaging over absorption imaging.

Appendix A: Fréchet Derivatives

Here we describe the computation of the Fréchet de-
rivatives of the forward operators used in this study.
Let g�rsrc, robs; x� be the diffusion equation Green’s
function for the problem domain computed with the
image vector x and a numerical forward solver, with
rsrc as the source location and robs as the observation
point. In addition, suppose that for a particular im-
age x there are K sources and M detectors and a total
of P � KM measurements. Let rsk

represent the
position of the kth source and let rdm�

represent
the position of the �m��th detector. �Here we use the
letter m to denote detector number, as in our previous
publications,24–26,29 but with a prime mark to avoid
confusion with the fluorescence emission subscript.�
It follows that the computed data vector f�x� is given by

f�x� � � g�rs1
, rd1

; x� g�rs1
, rd2

; x� · · · g�rs1
, rdM

; x�

g�rs2
, rd1

; x� · · · g�rsK
, rdM

; x��T. (A1)

For image vectors x of size 2N, the Fréchet derivative
is the P � 2N complex matrix given by

Fig. 13. Reconstructions of ��af
in arbitrary units. Values of z

for �a�–�h� are the same as in Fig. 10.
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For the absorption and scattering coefficients, the
discrete representations of the Fréchet derivative
matrix elements have been derived and reported pre-
viously27,45 as

�g�rsk
, rdm�

; x�

��a�ri�
� 	g�rdm�

, ri; x� g�rsk
, ri; x�V, (A3)

�g�rsk
, rdm�

; x�

�D�ri�
� 	�g�rdm�

, ri; x� � �g�rsk
, ri; x�V,

(A4)

where � is used because of domain discretization
errors, V is the voxel volume, ri is the position of the
ith voxel, and reciprocity46 �which allows replace-
ment of g�rsrc, robs; x� with g�robs, rsrc; x�� was used to
reduce the computation. Here, � is the spatial gra-
dient operator, which, in our computations, is evalu-
ated numerically as a symmetric first difference.
The separability of relations �A3� and �A4� with re-
spect to source index and detector index enables ad-
ditional savings in computation and in storage.29

Rather than creating the entire KM � 2N matrix, it
suffices to initially compute and store two Green’s
function matrices of sizes K � N and M � N, respec-
tively:

G�s� � �g�rs1
, r1; x� · · · g�rs1

, rN; x�
···

· · ·
···

g�rsK
, r1; x� · · · g�rsK

, rN; x�
� , (A5)

G�d� � � g�rd1
, r1; x� · · · g�rd1

, rN; x�
···

· · ·
···

g�rdM
, r1; x� · · · g�rdM

, rN; x�
� . (A6)

During the ICD scan, when the ith voxel of x is to be
modified, the ith column of F��x� can be formed from
Eqs. �A5� and �A6�.

For the fluorescence problem, more specific nota-
tion is needed. Let gx�rsrc, robs; xx� denote the 
x
Green’s function obtained when we solve Eq. �1� and
let gm�rsrc, robs; xm� denote the 
m Green’s function

obtained when we solve Eq. �3�. We denote the
Green’s function matrices accordingly:

Gx
�s� � �gx�rs1

, r1; xx� · · · gx�rs1
, rN; xx�

···
· · ·

···
gx�rsK

, r1; xx� · · · gx�rsK
, rN; xx�

� , (A7)

Gx
�d� � � gx�rd1

, r1; xx� · · · gx�rd1
, rN; xx�

···
· · ·

···
gx�rdM

, r1; xx� · · · gx�rdM
, rN; xx�

� , (A8)

Gm
�s� � �gm�rs1

, r1; xm� · · · gm�rs1
, rN; xm�

···
· · ·

···
gm�rsK

, r1; xm� · · · gm�rsK
, rN; xm�

� , (A9)

Gm
�d� � � gm�rd1

, r1; xm� · · · gm�rd1
, rN; xm�

···
· · ·

···
gm�rdM

, r1; xm� · · · gm�rdM
, rN; xm�

� .

(A10)

Consider one reparameterization on the right-hand
side of Eq. �2�:

��af
�r�

1 � j���r�

1 � ����r��2 � �R�r� � j�I�r�. (A11)

It follows immediately that the inverse problem for
�R and �I is linear. Let gf �rsrc, robs; xx, xm� denote
the fluorescence observed at robs emitted in response
to excitation at rsrc. The Fréchet derivatives for �I
and �R are given by

�gf �rsk
, rdm�

; xx, xm�

��R�ri�
� gm�rdm�

, ri; xm�

� gx�rsk
, ri; xx�V, (A12)

�gf �rsk
, rdm�

; xx, xm�

��I�ri�
� 	jgm�rdm�

, ri; xm�

� gx�rsk
, ri; xx�V. (A13)

F��x� � �
�g�rs1

, rd1
; x�

� x1

�g�rs1
, rd1

; x�

� x2

· · ·
�g�rs1

, rd1
; x�

� x2N	1

�g�rs1
, rd1

; x�

� x2N

�g�rs1
, rd2

; x�

� x1

�g�rs1
, rd2

; x�

� x2

· · ·
�g�rs1

, rd2
; x�

� x2N	1

�g�rs1
, rd2

; x�

� x2N
···

···
· · ·

···
···

�g�rs1
, rdM

; x�

� x1

�g�rs1
, rdM

; x�

� x2

· · ·
�g�rs1

, rdM
; x�

� x2N	1

�g�rs1
, rdM

; x�

� x2N

�g�rs2
, rd1

; x�

� x1

�g�rs2
, rd1

; x�

� x2

· · ·
�g�rs2

, rd1
; x�

� x2N	1

�g�rs2
, rd1

; x�

� x2N
···

···
· · ·

···
···

�g�rsK
, rdM

; x�

� x1

�g�rsK
, rdM

; x�

� x2

· · ·
�g�rsK

, rdM
; x�

� x2N	1

�g�rsK
, rdM

; x�

� x2N

� . (A2)
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It is possible to solve the fluorescence inverse problem
with this parameterization and then convert the re-
sult into the physical parameters ��af

and �. How-
ever, the computation of � requires a division of �I by
�R, an operation that could result in large noise ar-
tifacts in regions where �R is small. To circumvent
this problem, we use the � and � parameterization of
Eq. �6�, permitting us to apply regularization directly
to �. In our sequential update scheme, � is assumed
constant while updates of � are performed, and vice
versa. As a result, we use the following Fréchet de-
rivative expressions:

�gf �rsk
, rdm�

; xx, xm�

���ri�
� gm�rdm�

, ri; xm� gx�rsk
, ri; xx�

� �1 � j��̂�ri��V, (A14)

�gf �rsk
, rdm�

; xx, xm�

���ri�
� 	j��̂�ri� gm�rdm�

, ri; xm�

� gx�rsk
, ri; xx�V. (A15)

After the reconstructions of x̂x and x̂m are obtained,
Gx�rs, r; xx� and Gm�rd, r; xm� have already been
stored, and the Green’s functions of relations �A14�
and �A15� need not be recomputed. As the estimates
�̂ and �̂ are updated, they are incorporated into the
derivative expressions.

Appendix B: Pseudocode for the Inversion Algorithm

main �
1. Initialize x̂x, x̂m, and x̂f with background es-

timates.
2. Repeat until converged: �

�a� �̂x 4 �1�Px� �yx 	 fx�x̂x���x

2

�b� For k � 1:K �
Compute gx�rsk

, r; x̂x� by solving Eq. �1� with
source at rsk

�
�c� For m� � 1:M �

Compute gx�rdm�
, r; x̂x� by solving Eq. �1�

with source at rdm�

�
�d� Form Gx

�s� and Gx
�d� with Eqs. �A7� and �A8�

�e� x̂x 4 ICD_update�x̂x, �̂x, Gx
�s�, Gx

�d��
�

3. Repeat until converged: �
�a� �̂m 4 1�Pm �ym 	 fm�x̂m���m

2

�b� For k � 1:K �
Compute gm�rsk

, r; x̂m� by solving Eq. �3�
with source at rsk

�
�c� For m� � 1:M �

Compute gm�rdm�
, r; x̂m� by solving Eq. �3�

with source at rdm�

�
�d� Form Gm

�s� and Gm
�d� with Eqs. �A9� and �A10�

�e� x̂m 4 ICD_update�x̂m, �̂m, Gm
�s�, Gm

�d��
�

4. Repeat until converged: �
�a� �̂f 4 �1�Pf� �yf 	 ff �x̂f, x̂x, x̂m���f

2

�b� x̂f 4 ICD_update�x̂f, �̂f, Gx
�s�, Gm

�d���
�

�

x̂ 4 ICD_update�x̂, �̂, G�s�, G�d�; x� �
1. For i � 1, . . . , N �in random order�, �

�a� Compute �F��x̂��*�i�, as described in Ap-
pendix A

�b� Update xi, as described by Ye et al.24:

x̂i 4 arg min
xi �0

	1
�̂

�y � f�x̂� � �F��x̂��*�i�� xi � x̂i���
2

�
1

pa�a
pa �

j��i

bi	j�xi � x̂i �pa

�

2. For i � N � 1, . . . , 2N �in random order�, �

�a� Compute �F��x̂��*�i�, as described in
Appendix A

�b� Update xi, as described by Ye et al.24:

x̂i 4 arg min
xi �0

	1
�̂

�y � f�x̂� � �F��x̂��*�i�� xi � x̂i���
2

�
1

pb�b
pb �

j��i

bi	j�xi � x̂i �pb

�

3. Return x̂.
�
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5. A. Pèlegrin, S. Folli, F. Buchegger, J. Mach, G. Wagnières, and
H. van den Bergh, “Antibody-fluorescein conjugates for photo-
immunodiagnosis of human colon carcinoma in nude mice,”
Cancer 67, 2529–2537 �1991�.

6. B. Ballou, G. W. Fisher, T. R. Hakala, and D. L. Farkas,
“Tumor detection and visualization using cyanine
fluorochrome-labeled antibodies,” Biotechnol. Prog. 13, 649–
658 �1997�.

3092 APPLIED OPTICS � Vol. 42, No. 16 � 1 June 2003



7. R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, and G. Valentini,
“Fluorescence lifetime imaging of experimental tumors in he-
matoporphyrin derivative-sensitized mice,” Photochem. Pho-
tobiol. 66, 229–236 �1997�.

8. J. A. Reddy and P. S. Low, “Folate-mediated targeting of ther-
apeutic and imaging agents to cancers,” Crit. Rev. Ther. Drug
Carrier Syst. 15, 587–627 �1998�.

9. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J.
Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca,
“Imaging of spontaneous canine mammary tumors using flu-
orescent contrast agents,” Photochem. Photobiol. 70, 87–94
�1999�.

10. U. Mahmood, C. Tung, J. A. Bogdanov, and R. Weissleder,
“Near-infrared optical imaging of protease activity for tumor
detection,” Radiology 213, 866–870 �1999�.

11. K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance,
and W. Semmler, “Hydrophilic cyanine dyes as contrast agents
for near-infrared tumor imaging: synthesis, photophysical
properties and spectroscopic in vivo characterization,” Photo-
chem. Photobiol. 72, 392–398 �2000�.

12. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Con-
current MRI and diffuse optical tomography of breast after
indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA
97, 2767–2772 �2000�.

13. A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W.
Semmler, B. Wiedenmann, and C. Grotzinger, “Receptor-
targeted optical imaging of tumors with near-infrared fluores-
cent ligands,” Nat. Biotechnol. 19, 327–331 �2001�.

14. J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan,
“Novel fluorescent contrast agents for optical imaging of in vivo
tumors based on a receptor-targeted dye-peptide conjugate
platform,” J. Biomed. Opt. 6, 122–133 �2001�.

15. M. S. Patterson and B. W. Pogue, “Mathematical model for
time-resolved and frequency-domain fluorescence spectros-
copy in biological tissues,” Appl. Opt. 33, 1963–1974 �1994�.

16. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy,
and C. L. Hutchinson, “Fluorescence and absorption contrast
mechanisms for biomedical optical imaging using frequency-
domain techniques,” Photochem. Photobiol. 66, 55–64
�1997�.

17. R. Roy and E. M. Sevick-Muraca, “Three-dimensional uncon-
strained and constrained image-reconstruction techniques ap-
plied to fluorescence, frequency-domain photon migration,”
Appl. Opt. 40, 2206–2215 �2001�.

18. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh,
“Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21,
158–160 �1996�.

19. D. Paithankar, A. Chen, B. Pogue, M. Patterson, and E.
Sevick-Muraca, “Imaging of fluorescent yield and lifetime from
multiply scattered light reemitted from random media,” Appl.
Opt. 36, 2260–2272 �1997�.

20. H. Jiang, “Frequency-domain fluorescent diffusion tomogra-
phy: a finite-element-based algorithm and simulations,”
Appl. Opt. 37, 5337–5343 �1998�.

21. J. Chang, H. L. Graber, and R. L. Barbour, “Luminescence
optical tomography of dense scattering media,” J. Opt. Soc.
Am. A 14, 288–299 �1997�.

22. V. Ntziachristos and R. Weissleder, “Experimental three-
dimensional fluorescence reconstruction of diffuse media by
use of a normalized Born approximation,” Opt. Lett. 26, 893–
895 �2001�.

23. D. A. Boas, “A fundamental limitation of linearized algorithms
for diffuse optical tomography,” Opt. Express 1, 404–413
�1997�; http:��www.opticsexpress.org.

24. J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical
diffusion tomography by iterative-coordinate-descent optimi-
zation in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–
2412 �1999�.

25. J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane,
“Nonlinear multigrid algorithms for Bayesian optical diffu-
sion tomography,” IEEE Trans. Image Process. 10, 909–922
�2001�.

26. A. B. Milstein, S. Oh, J. S. Reynolds, K. J. Webb, C. A. Bouman,
and R. P. Millane, “Three-dimensional Bayesian optical diffu-
sion tomography with experimental data,” Opt. Lett. 27, 95–97
�2002�.

27. J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar, “Modified
distorted Born iterative method with an approximate Fréchet
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