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Although diffuse optical tomography is a highly promising technique used to noninvasively image blood
volume and oxygenation, the reconstructed data are sensitive to systemic differences between the forward
model and the actual experimental conditions. In particular, small changes in optode location or in the
optode–tissue coupling coefficient significantly degrade the quality of the reconstruction images. Accu-
rate system calibration therefore is an essential part of any experimental protocol. We present a
technique for simultaneously calibrating optode positions and reconstructing images that significantly
improves image quality, as we demonstrate with simulations and phantom experiments. © 2003
Optical Society of America

OCIS codes: 170.5280, 170.6960.
1. Introduction

Diffuse optical tomography �DOT� is an emerging
technique for noninvasive medical imaging.1–3 By
use of optical fibers, light is directed into biological
tissue. As the light travels through the tissue it is
scattered many times and exits as a diffuse photon
fluence. The exiting photons are collected, and pho-
todetectors record the intensity. Working in the dif-
fusion approximation to the radiative transport
equation,4 the data can be interpreted to provide in-
formation about the optical scattering and absorption
of the region probed by the photons.5 If multiple
overlapping measurements are available, tomo-
graphic reconstruction techniques can be used to pro-
duce three-dimensional images within the region of
interest.6 In addition, by operation at multiple
wavelengths within the tissue, the optical absorption
coefficients can be related back to the local concen-
tration of oxyhemoglobin and deoxyhemoglobin �or,
equivalently, to the total hemoglobin concentration
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and oxygen saturation�. Knowledge of hemoglobin
concentration has been used for functional imaging
of human cerebral activity and as a tool to locate
breast cancer based on the associated tumor
vasculature.1–3,7–11

However, obtaining high-quality quantitative vol-
ume reconstructions of experimental data is one of
the most difficult problems in DOT. The DOT in-
verse problem is ill-posed and generally underdeter-
mined; therefore direct inversion of the data is not
possible, and regularized pseudoinverse techniques
must be used instead.12 Furthermore, small mis-
matches between the forward model �and the approx-
imations that necessarily go with it� and the actual
experimental conditions can easily produce artifacts
significantly larger than the signals of interest.

One way to compensate for systematic coupling
errors is to use difference imaging.7,13 Difference
imaging reconstructs changes in the system relative
to some reference measurement. In functional
brain imaging, for example, the quantity of interest is
changes in blood oxygenation as the subject performs
some task, and these measurements can be directly
compared with measurements taken while the sub-
ject is at rest.7 These measurements do not depend
on many potential sources of systematic error such as
the amplitude coupling coefficients and, empirically
at least, seem to be fairly robust against small optode
�source and detector� positional errors.

Difference imaging, however, cannot be used when
either absolute baseline optical properties are re-
quired �as opposed to absolute changes in the optical
properties� or when only a single frame of data is



available �i.e., there are not two sets of data to dif-
ference image�. These are important limitations;
knowledge of the local blood volume and oxygen sat-
uration �which is computed from the absolute base-
line optical properties� is important for stroke
monitoring and in diagnostic breast imaging. Fur-
thermore, for these applications, difference measure-
ments are not generally available. For these
imaging problems, therefore, accurate system cali-
bration is essential to reduce systematic errors, oth-
erwise the reconstructed image quality will be
dominated by imaging artifacts larger than the de-
sired signals. In a previous paper we developed an
algorithm for finding the source and detector ampli-
tude coupling coefficients from experimental data
and showed that the coupling coefficients and three-
dimensional images could be determined simulta-
neously.14 In this paper we extend that technique to
correct for both amplitude and positional errors while
simultaneously imaging from a single frame of exper-
imental data. This technique reduces model mis-
match and leads to significant improvements in
image quality.

2. Theory

A. Amplitude Calibration

Our algorithm for optode amplitude calibration was
published previously.14 Because of its conceptual
similarity to positional calibration, however, we take
the time here to briefly review the technique.

First, to every source i � 1 . . . Ns, we assign an
unknown scale factor Si���. This represents the un-
calibrated laser power, fiber coupling losses, fiber at-
tenuation, skin blemishes, superficial blood vessels,
and any other source amplitude coupling terms.
The scale factors will also vary with wavelength �.
Similarly, to every detector j � 1 . . . Nd, we assign
unknown scale factors Dj���, which will also vary
with wavelength. Each experimental measurement
therefore consists of some ideal measurement value
�theory multiplied by two unknown scale factors S and
D:

�i
meas � Sj�i���l�i��Dk�i���l�i���i

theory, (1)

where Sj�i� is the amplitude coefficient of the source j
used to make measurement i, Dk�i� is the detector
coefficient of the detector k used to make measure-
ment i, �l�i� is the wavelength l at which the mea-
surement was performed, and �i

theory is the ideal
�S � D � 1� measurement. For homogeneous sys-
tems �e.g., tissue phantoms�, �i

theory is also the quan-
tity predicted by the forward model.15–18 Taking the
logarithm of both sides of Eq. �1�, which is closely
related to working in the Rytov approximation in-
stead of the Born approximation, we solve for the
unknown scale factors log �Sj��l�� and log�Dk��l�� in a
least-squared sense by minimizing the difference be-
tween the predicted scaled measurements �i

theory

and the experimental data �i
meas. This is equiva-

lent to our minimizing the functional

F�S, D� � �
1

Nm 1
	i

2 �log��i
meas��i

theory� � log�Sj�i��

� log�Dk�i�� �2, (2)

where Nm is the total number of measurements, 	i
2 is

the variance of each measurement, and the variation
is with respect to the unknowns log Sj and log Dk.
The wavelength dependence of Sj and Dk in Eq. �2�
was dropped for clarity. Coefficients Sj and Dk are
then calculated from their respective logarithms.

The minimization of Eq. �2� with respect to log Sj
and log Dk leads to a constant matrix �JS�JD� that is
rank deficient because the source and detector coef-
ficients always occur as products; doubling all the
source coefficients and halving the detector coeffi-
cients leaves the overall scale factors unchanged. It
is therefore necessary to fix the value of any one
coefficient at some arbitrary value �e.g., D1 � 1.0 for
all �l�.14 Although this sets the general amplitude
scale of both the source and the detector terms, be-
cause they occur in pairs �source times detector�, the
overall amplitude scale is unconstrained and can
take on whatever amplitude is needed to match the
experimental data.

To make this more concrete, consider an idealized
system where the correct scale factor for both sources
and detectors is 10.0. The overall amplitude factor
seen at the imager is therefore 100.0 �sources times
detectors�. If we fix one of the sources at 1.0, this
will set the scale of all the source coefficients to be 1.0.
The detector coefficients, however, remain uncon-
strained and will take a value of 100.0 to maintain
the overall amplitude scale. Thus, although neither
the sources nor the detectors have their correct value,
their product �which is the one quantity of interest to
us� does have the correct value of 100.0.

When the number of measurements Nm is much
greater than the number of coupling coefficients �the
number of sources plus the number of detectors�, am-
plitude calibration leads to significantly improved im-
age quality.14

B. Positional Calibration

We now extend the technique of Subsection 2.A to the
correction of positional errors. Given an appropri-
ate forward model,15–19 we can compute the incident
fluence

�i
theory � �theory�rs, j�i�, rd,k�i��,

where rs, j�i� is the nominal position of the source j
used to make the ith measurement and rd,k�i� is the
nominal position of the detector k used to make the
ith measurement. The actual optode positions can
be displaced from their nominal positions by some set
of vector offsets �r. This displacement leads to a
mismatch between the forward model used to com-
pute the fluence and the measured incident fluence
that, if left uncorrected, will distort the image recon-
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struction. To calibrate the optode positions, we it-
eratively update the position vector used by the
forward model so as to minimize the weighted mean-
square difference between the predicted and the mea-
sured fluences. This is equivalent to our minimizing
the functional F:

F�S, D, rs, rd� � �
i�1

Nm 1
	i

2 �log��i
meas��i

theory� � log�Sj�i��

� log�Dk�i�� �2, (3)

where the �i
theory are explicit functions of the position

vectors rs and rd. In contrast to Eq. �2�, Eq. �3� is
nonlinear in the rs and the rd, and so an appropriate
nonlinear optimization scheme must be employed.
This approach is easily extended to allow one to si-
multaneously update the amplitude coefficients, the
positional correction, and the variation in the optical
properties of the medium.

For simplicity, we first consider just positional er-
ror minimization. Let the minimum of Eq. �3� be at
some set of positions Rj � rj 
 �rj where Rj can be a
component of either the source or the detector posi-
tion vector as needed and �rj is initially unknown.
If we could solve for the �rj directly, we could jump
directly to the minimum in a single iteration. For
nonlinear equations, unfortunately, this is not gen-
erally possible, and we have to content ourselves with
a local estimate of the �ri that will serve as our
update step for this iteration.

Linearizing Eq. �3� �and ignoring the S and D
terms� leads to the update vector

�r � �� 1
	2 JR

TJR��1

JR
Ty, (4)

where the elements of the Jacobian matrix JR are
given by

Ji,n �
�

�rn
log �i

theory,

where rn is the nth element of the update vector

r � �rs,1, rs,2, . . . , rs,ns
, rd,1, rd,2, . . . , rd,nd

�,

and the elements of the column vector y are given by

yi � log��i
meas��i

theory�.

As before, the �i
theory are explicit functions of the

vectors rs and rd. If an analytical expression for
�theory is available then the Jacobian can be calcu-
lated analytically, otherwise the derivatives needed
to generate JR can be computed numerically by a
finite-difference approximation for the derivative.
To keep our computer code as general as possible, we
computed all the derivatives used in this paper nu-
merically using Euler’s method.20 Euler’s method
requires two function evaluations to compute the de-
rivative. Thus an upper bound on the computa-
tional effort is 2NJ function evaluations where NJ is
the number of matrix elements in J. If more than

one derivative is taken at the same point, however,
then one of the two function evaluations can be recy-
cled from the previous calculation. Thus the actual
computational effort required will usually be some-
what less.

Because the inverse in Eq. �4� can be singular,
especially near a minima where the derivatives go to
zero, it is generally necessary to compute the regu-
larized inverse of JR

TJR when one is updating the
position vector �r instead of the true matrix inverse:

�JR
TJR��1 � �JR

TJR � I��1JR
T,

where I is the identity matrix and  is the regular-
ization parameter; 0 �  � �. At each iteration, the
Jacobian JR is computed by use of the current optode
positions. The update �r is then computed with Eq.
�4�, and the position of each optode is updated:
ri
1 � ri 
 �ri. The process repeats until the optode
positions have sufficiently converged.

C. Calibrated Reconstructions

In the full inverse problem we would consider the
minimization of a functional

F��a, �s�, S, D, rs, rd� � �
1

Nm 1
	i

2 �log��i
meas��i

theory�

� log�Sj�i�� � log�Dk�i�� �2,
(5)

where �i
theory is now also a function of �a and �s�:

�i
theory � �i

theory�rs, j�i�, rd,k�i�; �a; �s��.

Linearization leads to the set of equations

y � �J�a
�J�s�

�JS�JD�JR��x, (6)

where �x � ���a, ��s�, � log S, � log D, �rs, �rd� and
the matrices J�a

and J�s
� are the Jacobian matrices

for variations in the optical properties �a and �s�, as
described in previous publications.21 Equation �6�
can be solved for �x by iterative methods as shown
above, which updates all five of the Jacobian terms
J�a

, J�s
�, JS, JD, and JR after each iteration. Note

that the mixture of physical dimensions in the differ-
ent J can lead to numerical stability issues that
change with choice of units, so it is useful to rescale
the matrices to dimensionless quantities.14

3. Results

A. Simulation

To demonstrate the improvements in image recon-
struction quality, we applied positional calibration to
both simulated and experimental data. For the sim-
ulated data, we modeled a homogeneous medium us-
ing the analytical slab solution of the diffusion
equation as our forward model.16

For our first simulation, we used a 3 by 3 array of
sources and a 3 by 3 array of detectors located on the
opposite surface of a 6-cm slab. The optical proper-
ties used were �s� � 10 cm�1 and �a � 0.10 cm�1 as
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were the accurately known source and detector am-
plitude coefficients. As an initial guess, we dis-
placed the source positions randomly from their
correct positions with a standard deviation of 2.0 cm
and placed all nine detectors at the center of the
actual detector array. Figure 1 shows the trajecto-
ries of the individual sources and detectors as the
algorithm iteratively corrects positional errors.
With calibration, the average positional error was
reduced from 2.8 to just 0.0032 cm. To improve vi-
sual clarity of the traces, we did not take the full
update step each iteration; instead we used

rn
1 � 0.4�r � rn,

where rn is the estimate of the positional correction
after n iterations and �r is the update computed from
Eq. �4�. These results appear to be robust; in the
absence of noise, we obtained convergence to the cor-
rect source and detector locations for every set of
random initial guess we tried.

Note that, because of the translational and rota-
tional symmetry intrinsic to the slab geometry we
used, we needed to fix two optodes at their correct
location. When these two locations are not fixed, the
positions converge to the correct relative orientation
but with a random translational and rotational offset
�because of the translational and rotational invari-
ance of the forward model�. Fixing only one optode
at its correct location breaks the translational sym-
metry but not the rotational symmetry. Fixing ei-
ther of the two optodes at an incorrect location
naturally distorts the entire layout. This step is
necessary only with homogeneous data �simulated or
experimental�; heterogeneities within the medium
break the symmetry. Fixing the location of one op-

tode, however, does seem to improve the convergence
slightly even in the case of heterogeneous media.

For our second simulation, we modeled a more re-
alistic imaging problem. For optical properties, we
used �s� � 8 cm�1 and �a � 0.05 cm�1. The source–
detector geometry we used is shown in Fig. 2. We
used a total of 13 sources alternating with 12 detec-
tors, each on a square lattice. The sources define the
Z � 0 plane, and the detectors were at Z � 5 cm. We
reconstructed a volume 8 cm � 8 cm � 5 divided into
voxels 0.5 cm on a side. We perturbed the source
and detector amplitude coefficients randomly with a
standard deviation of 10% about their nominal value
of 1.0. We displaced the source and detector posi-
tions a random distance in the X,Y plane where the
displacements along both X and Y axes were Gauss-
ian random numbers with standard deviations of 1
mm. Finally, we added a spherical perturbation
with radius of 0.9 cm and an absorption 50% above
background ��a

sphere � 0.075 cm�1� to the imaging
volume. Forward data were computed for the dis-
placed positions, and �30 dB of Gaussian random
noise was added to the simulated data �i.e., a signal-
to-noise ratio �SNR� of approximately 1000:1�.

The SNR was calculated relative to the total flu-
ence �the experimentally accessible parameter�. A
typical perturbation in DOT introduces changes of
the order of 1% of the incident field �a signal level of
approximately �20 dB�, so a 30-dB SNR relative to
the total fluence is closer to a 10-dB SNR relative to
the perturbation, and it is the perturbation that mat-
ters for imaging. Thus a 30-dB SNR is a reasonable
choice for our simulation.

For reconstruction, we used the nominal source
and detector amplitudes and positions as the initial
guess. Because we were modeling a cw detector
�amplitude data only�, we reconstructed only the ab-
sorption perturbations. We performed all recon-
structions using the Rytov approximation6,22 and the
linear reconstruction approach described in Subsec-
tion 2.B. The regularization parameter  � 10�3

max�diag�JR
TJR�� �chosen by trial and error to give

good results� was used for all the reconstructions of
this data set. The scale factor max�diag�JR

TJR��
was computed before the first iteration and was not

Fig. 1. Trajectories of the individual optode positions during cal-
ibration. �a� and �b� show the source and detector trajectories,
respectively, where the starting positions are marked by the circles
and the final positions are marked by stars. �c� and �d� show the
actual optode source and detector positions, respectively.

Fig. 2. Two views of the source–detector geometry used to gen-
erate our simulation results. �a� Simulation geometry; �b� geom-
etry top view. Sources �stars� are in the Z � 0 plane; detectors
�circles� are in the Z � 5-cm plane.
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changed thereafter. The algorithm was iterated un-
til

��n�1� � ��n�
��n�1�

� 0.01,

at which point the algorithm was deemed to have
converged. Here ��n� is the norm of the residual at
the nth iteration.

Figure 3 shows reconstructed images for four dif-
ferent reconstruction schemes. Each column is a
slice through the reconstruction at a different depth

Fig. 3. Reconstructions of simulated data, with and without calibration. Each column is the reconstruction at a fixed depth �from left
to right: Z � 0.25 cm, Z � 2.75 cm, and Z � 4.75 cm�. The top row is a reconstruction of the data with no attempt made to correct for
amplitude or positional errors. The second row was corrected for amplitude errors only; the third row was corrected for positional errors
only. The fourth row was simultaneously corrected for both positional and amplitude errors. The bottom row is the actual inhomoge-
neity. Note the difference in scales between the top and bottom images.
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�from left to right: Z � 0.25 cm, Z � 2.75 cm, and
Z � 4.75 cm�. The top row shows a direct linear
reconstruction of the data. No attempt was made to
correct for amplitude or positional errors. As might
be expected given the large amplitude and positional
errors, the image quality is quite poor especially near
the optodes. The second row shows a linear recon-
struction of the image with only amplitude correction.
The image quality is slightly better than the uncor-
rected image, but the image is still dominated by
reconstruction artifacts. The third row is the image
reconstruction with only positional correction. The
artifacts are much smaller �note the reduced scale�,
but they are still as large or larger than the actual
signal. We reconstructed the fourth row using si-
multaneous amplitude and positional correction.
The artifacts in the optode planes were largely elim-
inated, and the inhomogeneity is clearly visible in the
middle frame. The final row is the original inhomo-
geneity. Figure 4 shows the same data as the mid-
dle �Z � 2.75 cm� column of Fig. 3, but is plotted with
a uniform gray scale. This shows that the noise re-
duction that is due to positional calibration is signif-
icant not only in the plane of the optodes, but also in
the center of the volume.

Figure 5 is a plot of the measured fluence as a
function of source–detector separation for the simu-
lation described above. If we had noise-free mea-
surements at the correct source–detector separations
and a homogeneous medium, the data would fall ex-
ponentially with increasing separation. When we
use the nominal detector positions to compute the
separations �Fig. 5�a��, the amplitude-corrected data
show considerable variation in intensity at a given
separation. When we use the corrected optode posi-
tions with amplitude correction �Fig. 5�b��, although
there is still noise in the measurements, the graph is

much closer to the ideal straight-line solution.
Some of the remaining variation can also be attrib-
uted to the presence of the spherical inhomogeneity.

B. Experiment

To demonstrate our procedure using actual experi-
mental data, we first inverted a set of homogeneous
data collected on a phantom using our cw breast im-
ager. For our breast imager, the fiber ends are at-
tached to one of two fiber plates �one for sources, one
for detectors�. The fiber plates are designed to be
inserted into a modified set of mammography com-
pression plates �see Fig. 6�. After the optical data
are collected, the fiber plates are removed, and a
digital x-ray image is taken without moving the pa-
tient. This x ray can be used later to provide co-
registered structural information to supplement the
optical data. As part of our clinical protocol, a set of
standardized phantom measurements is made for ev-
ery patient as a measure of image performance and to
aid in data calibration. The first experimental data
set that we reconstruct below �see Fig. 8� is one of

Fig. 4. Data from the middle �Z � 2.75 cm� column of Fig. 3,
plotted with uniform gray scales. The correct background absorp-
tion is �a � 0.050 cm�1, and the absorption inside the sphere is
�a

sphere � 0.075 cm�1. Even in the middle of the volume, posi-
tional calibration improves the reconstructed data.

Fig. 5. Plots of detected fluence as a function of source–detector
separation. �a� Simulated data plotted at the nominal source–
detector positions. �b� The same data plotted at the source–
detector positions after amplitude and positional error correction.
For perfectly calibrated data, the points would sit on a single
straight line.

Fig. 6. Compression plates with fibers of our clinical breast im-
aging system. The plastic plates are standard mammography
plates modified to hold our optical fiber arrays. The sources are
on the bottom plate and fill roughly the middle third of the plate
�only the ends of the fibers are clearly visible�. Detector fibers can
be seen coming out of the top plate. The imager electronics are to
the right, outside the photo.
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these homogeneous phantom measurements. To
simplify the interpretation of our results, however,
data from only the 690-nm lasers were used in this
paper.

The cw breast imager has 16 avalanche photodiode
detectors and 18 LED sources, nine at 690 nm and
nine at 830 nm. The sources are modulated at audio
frequencies �4–8 kHz�, and, because of all the indi-
vidual sources, the signal at each detector is demod-
ulated during postprocessing to yield the signal at
each detector.

The source–detector geometry of our imager is

shown in Fig. 7. The target was a homogeneous
Intralipid tissue phantom with the nominal optical
properties �s� � 10 cm�1 and �a � 0.044 cm�1. The
thickness of the phantom was 3.7 cm, equal to that of
the patient imaged just prior to collection of the phan-
tom data. Although the fibers are fixed in metal
plates, the gluing of the fibers produces small optode
displacements. Also, angular deviations from nor-
mal incidence are almost indistinguishable from hor-
izontal displacements when the line sources are
replaced by point sources inside the tissue volume in
the forward model. Finally, the patient and phan-
tom thicknesses are known only to �1 mm.

Figure 8 shows our reconstructed images of the
first set of phantom data. As before, each column is
a slice through the volume at a fixed depth. The top
row is a reconstruction from uncorrected data. The
second row was corrected for positional but not am-
plitude errors. The third row was iteratively cor-
rected for amplitude errors but not positional errors
�which are clearly visible in both the source and the
detector planes�. The fourth row was iteratively cor-
rected for both amplitude and positional errors, and
the reconstructed images are significantly more uni-
form than the uncorrected or partially corrected im-

Fig. 7. Geometry of our clinical breast imaging system. �a� Sim-
ulation geometry, �b� geometry, top view. Sources �stars� are in
the Z � 0 plane; detectors �circles� are located above. The thick-
ness of the phantom was 3.7 cm.

Fig. 8. Reconstructions of clinical phantom data, with and without error corrections. Each column is the reconstruction at a fixed depth
�from left to right: Z � 0.25 cm, Z � 1.75 cm, and Z � 3.75 cm�. The top row is a reconstruction of the data with no attempt made to
correct for amplitude or positional errors. The second row was corrected for amplitude errors only; the third row was corrected for
positional errors only. The fourth row was simultaneously corrected for both positional and amplitude errors. Note the difference in
scales between the different rows.
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ages. We performed all reconstructions in the Rytov
approximation using the linear reconstruction ap-
proach described in Subsection 2.B. The regulariza-
tion parameter  � 10�2 max�diag�JR

TJR�� �chosen
by trial and error to give good performance� was used
for all reconstructions in Fig. 8. The scale factor
max�diag�JR

TJR�� was computed before the first iter-
ation and was not changed thereafter. As with the
simulated data, the algorithm was iterated until

��n�1� � ��n�
��n�1�

� 0.01,

at which point the algorithm was deemed to have
converged.

As can be seen with the simulated data, the arti-
facts in the optode planes are particularly reduced by
simultaneous amplitude and positional calibration.
Because the phantom is homogeneous, a perfect re-
construction would be a uniform volume with a con-
stant absorption coefficient. Although not as
dramatic as the simulated data, probably because of
the lower SNR, the corrected images nevertheless

have significantly less noise than the uncorrected
data.

Finally, to demonstrate that our algorithm works
with nonuniform experimental systems data, we re-
constructed a second set of experimental data. In
this case, we imaged a 2-cm glass sphere into the
middle of an Intralipid phantom. By pumping fluid
with different optical properties �relative to the In-
tralipid background� through the sphere, we could
reproduce a variety of experimental conditions. For
this particular data set, the background optical prop-
erties were �s� � 8.0 cm and �a � 0.019 cm, and the
sphere contained a mixture of pigs blood and In-
tralipid with approximately the same scattering but
greater absorption than the background.

Figure 9 shows reconstructions of the second phan-
tom. The geometry for this phantom is a mirror
image of the previous phantom �Fig. 7�. The thick-
ness of the phantom was 5.1 cm. As before, the top
row of Fig. 9 is the reconstruction with uncorrected
data. The middle row is a reconstruction with only
amplitude calibration. The artifacts in the source
plane �Z � 0� and detector planes have been signifi-
cantly reduced, which suggests that our amplitudes

Fig. 9. Reconstructions of inhomogeneous laboratory phantom data, with and without error corrections. The inhomogeneity was a
fluid-filled 2-cm glass sphere centered at approximately x � 8.25 cm, y � 9.75 cm, and z � 4.75 cm. Each column is a slice through the
reconstruction at a fixed depth �from left to right: Z � 0.25 cm, Z � 2.25 cm, and Z � 4.75 cm�. The top row is a reconstruction of the
data with no attempt made to correct for amplitude or positional errors. The middle row was corrected for amplitude errors only.
Artifacts in the source amplitude �Z � 0 plane� were greatly reduced, but the errors in the detectors �Z � 5 plane� remain. The bottom
row was simultaneously corrected for both positional and amplitude errors. The artifacts in the source plane and the detector plane are
significantly reduced, leaving a much cleaner reconstruction of the perturbation.
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were especially uneven. The bottom row is a recon-
struction with both amplitude and positional calibra-
tion and shows even better �but still not perfect�
artifact reduction in both the source and the detector
planes. The regularization parameter  � 1 � 10�2

max�diag�JR
TJR�� �chosen by trial and error to give

good performance� was used for all the reconstruc-
tions in Fig. 9. The scale factor max�diag�JR

TJR��
was computed before the first iteration and was not
changed thereafter. These results are typical; sim-
ilar results were obtained for the other data sets
�with different optical properties� that we collected as
part of this experiment.

4. Conclusion

Although we derived the general theory in this paper,
the extension of this technique to include certain
types of constraint is also straightforward. For ex-
ample, if no offset in the Z direction is possible �i.e.,
the displacements are constrained to lay in the X, Y
plane�, then the rows that represent displacements in
Z can be deleted from the Jacobian. Uniform tilts,
rotations, and translations can also be implemented
by the addition of derivatives with respect to the
relevant global parameters to the Jacobian.

In conclusion, positional correction is an important
technique used to improve the accuracy of DOT data
inversions. For a given set of experimental data and
an appropriate forward model, positional correction
adjusts the location of the source and detector fibers
to minimize the mismatch between the model and the
experimental data. When we iteratively update the
positional correction, the amplitude correction, and
the optical perturbations �s� and �a, significantly im-
proved volume reconstructions are obtained.
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