DIFFUSE PHOTON PROBES OF STRUCTURAL AND DYNAMICAL

PROPERTIES OF TURBID MEDIA:

THEORY AND BIOMEDICAL APPLICATIONS

David A. Boas A DISSERTATION in PHYSICS

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

1996

Arjun G. Yodh

Supervisor of Dissertation

Robert Hollebeek

Graduate Group Chairperson

COPYRIGHT

David Alan Boas

1996

ABSTRACT DIFFUSE PHOTON PROBES OF STRUCTURAL AND DYNAMICAL PROPERTIES OF TURBID MEDIA: THEORY AND BIOMEDICAL APPLICATIONS

David A. Boas Arjun G. Yodh

Diffusing photons can be used to detect, localize, and characterize optical and dynamical spatial inhomogeneities embedded in turbid media. Measurements of the intensity of diffuse photons reveal information about the optical properties of a system. Speckle fluctuations carry information about the dynamical and optical properties. This dissertation shows that simple diffusion theories accurately model the intensity and speckle correlation signals that diffuse through turbid media with spatially varying properties and discusses possible biomedical applications.

We first look at the intensity of diffuse photons provided by a light source that is intensity modulated. This generates diffuse photon density waves (DPDW's) which exhibit classical wave behavior. We demonstrate experimentally and theoretically the refraction, diffraction, and scattering of DPDW's. Using accurate signal and noise models, we then present a detailed analysis which shows that DPDW's can be used to detect and locate objects larger than 3 mm and to characterize objects larger than 1 cm which are embedded inside turbid media with biologically relevant parameters. This diffuse photon probe should may find applications in medicine as a bed-side brain hematoma monitor, or for screening breast cancer, or other functional imaging applications.

We then consider the coherence properties of the diffuse photons as revealed by speckle intensity fluctuations and show that the temporal autocorrelation function of these fluctuations is accurately modeled by a correlation diffusion equation. Because the correlation diffusion equation is analogous to the photon diffusion equation, all concepts and ideas developed for DPDW's can be directly applied to the diffusion of correlation. We show experimentally and with Monte Carlo simulations that the diffusion of correlation can be viewed as a correlation wave that propagates spherically outwards from the source and scatters from macroscopic spatial variations in dynamical and/or optical properties. We also demonstrate the utility of inverse scattering algorithms for reconstructing images of the spatially varying dynamical properties of turbid media. The biomedical applicability of this diffuse probe is illustrated with examples of monitoring blood flow and probing the depth of burned tissue.

ACKNOWLEDGEMENTS

My time spent working on this dissertation has been filled with good times during which I learned and grew intellectually and personally. It is with great pleasure that I acknowledge the many people that made this experience possible and enjoyable.

Without my advisors Arjun Yodh and Britton Chance, I would have missed the exciting developments in biomedical diffuse optics that have taken place during the last four years and the unique combination of applying their physical and physiological insights. Arjun has exposed me to the power of brainstorming, that is the process of viewing a particular problem from every imaginable angle, drawing connections to related problems, and then weeding the abundance of ideas down to a few that warrant further pursuit. I hope that I have acquired this ability from Arjun as well as the critical thinking and excitement with which he approaches scientific projects. My interactions with Brit complemented well my interactions with Arjun. Second opinions (as well as the first) are a valuable commodity and Brit's are not to be taken lightly, which is why I treasure the opportunities to discuss new and continuing projects with him. Brit's uncanny ability to sort through numerous ideas, seemingly similar and orthogonal, and pursue a long term goal has kept me pointed in the right direction at times when forces were pulling me every which way. A treasure chest of new research projects is a curse without the ability to stay focussed on a well-defined track. I am also grateful to Brit for the many opportunities that he directed my way despite my sometimes hesitant approach. His faith in my abilities has gone a long way towards my intellectual growth. Let me not forget to acknowledge the many wonderful sailing and windsurfing trips with Olympic gold medalist Britton Chance. I am deeply indebted to Arjun and Brit for their guidance. I hope to utilize the skills and knowledge that they have passed to me and pursue a healthy scientific career.

I thank the faculty of the Department of Physics and Astronomy and the Department of Biochemistry and Biophysics for exposing me to their respective disciplines in and out of the class room. I single out Michael Cohen for his sharing with me the joys of becoming intimate with Bessel functions, and the rest of my dissertation committee, Tom Lubensky, Charlie Johnson, and Larry Gladney, for their time and interest in my dissertation research.

The support from Britton Chance's right hand, voice, feet, and artistic consultant, respectively Dot McGovern, Pat Daley, Henry Williams, and Mary Leonard, have made this dissertation possible through their efforts to keep our work funded and the lab atmosphere friendly. I appreciate their efforts as well as the efforts of Bill Penney, Alan Bonner, and Mike Carmen in the Biophysics Shop for their four years of teaching me the ins and outs of a machine shop.

Maureen O'Leary has been a friend and colleague during my five years in graduate school, starting with qualifying exam preparation, through the ups and downs of research, and the excitement and turmoil of writing a dissertation. I am happy to have had the opportunity to work through so many challenges with Maureen. I am also grateful to have had various interactions with post-docs and graduate students Hanli Liu, Peter Kaplan, Tony Dinsmore, Joe Culver, Bill Angerer, Kristin Jester, Jining Qi, and Ming Kao, Chunhua Xie, and Yunsong Yang in and out of the lab, including the many hiking expeditions with Ravi Sachidanandam.

Visiting scholar Larry Campbell made strong contributions to my understanding of photon correlation spectroscopy through our many detailed discussions on the subject. His tendency to question every confusing aspect of a problem is admirable and on many occasions led me to new levels of understanding. I hope that I have acquired some of his tenacity. Laura Zemany and Igor Meglinsky were especially helpful with the correlation measurements of flow in turbid media. I am indebted to Norm Nishioka, Kevin Schomaker, and Tom Deutsch of the Wellman Institute for the opportunity to apply correlation techniques to a clinical problem.

I am indebted to Mary Leonard for her help with many of the figures that appear in this dissertation, and to Arjun Yodh and Naomi Nagy for their comments on drafts of this dissertation.

I wish to thank my mother Karen for stimulating and encouraging my joy for problem solving which has lead me to where I am today. I thank my father Raymond for teaching me my first computer program in 1980, which enabled me to solve ever more complicated problems.

Naomi Nagy has provided a constant supply of support and encouragement and most importantly has helped me realize that seemingly impossible goals are easily achieved through confidence and a positive outlook. I owe my future to her.

Contents

1 Introduction

2	The	Migr	ation	of D	iffuse	Photon	Density	Waves	through	Higł	ıly	
	Scat	tering	Med	ia								5
	2.1	Diffus	ion Ap	proxi	nation	to the Tr	ansport Eq	luation				6
	2.2	Diffus	e Phot	on De	ensity V	Waves					. 1	10
	2.3	Intera	ction v	vith F	ree-Spa	ace Bound	laries				. 1	13
	2.4	Refrac	ction a	nd Di	ffractio	on of Diffu	ise Photon	Density	Waves .		. 1	17
		2.4.1	Refra	action	at plar	nar interfa	aces				. 1	18
		2.4.2	Refra	action	and di	ffraction	by spherica	l inhomo	ogeneities		. 4	20
	2.5	Scatte	ring of	Diffu	se Pho	ton Dens	ity Waves				. 4	24
		2.5.1	An A	nalyt	ic Solut	tion					. 4	25
		2.5.2	Expe	rimen	tal Ver	ification o	of the Anal	ytic Solu	tion		. 4	29
		2.5.3	Scatt	ering	from N	Iultiple O	bjects					33
		2.5.4	Semi	-Infini	te Med	lia						36
		2.5.5	Gene	ral He	eteroge	neous Me	dia					36
	2.6	Time-	Domai	n Mea	asurem	ents						39
	2.7	Photo	n Migi	ration	within	the P_3 A	pproximati	on			. 4	40
		2.7.1	P_3 T	heory							. 4	41
		2.7.2	Com	pariso	n of P_3	and Diff	usion Theo	ories			. 4	43
	2.8	Summ	ary.								. 4	46

Contents

3	Pra	ctical	Limits to the Detection, Localization, and Characterization	1
	of (Optical	Inhomogeneities with Diffuse Photon Density Waves	49
	3.1	The N	Iodels	50
		3.1.1	Analytic Solution for the Signal	52
		3.1.2	Noise Models	54
	3.2	Descr	iption of Simulations	57
	3.3	Detec	tion and Localization	59
		3.3.1	Detection of Absorbing Objects	60
		3.3.2	Detection of Scattering Objects	64
	3.4	Chara	acterization	64
		3.4.1	Characterization of Absorbing Objects	67
		3.4.2	Characterization of Scattering Objects	71
	3.5	Optin	nizing the Experimental Design	74
		3.5.1	Optimizing Measurement Geometry	75
		3.5.2	Optimal Modulation Frequency	78
		3.5.3	Utilizing Spectral Information	80
		3.5.4	Measurements at Multiple Optical Wavelengths	84
	3.6	Summ	nary	86
4	Cor	relatio	on Diffusion	91
	4.1	Introd	luction	91
	4.2	Theor	y	92
		4.2.1	Single Scattering	93
		4.2.2	Multiple Scattering - Diffusing Wave Spectroscopy	97
		4.2.3	Correlation Transport and Correlation Diffusion \ldots	102
		4.2.4	Ergodicity	106
	4.3	Exper	imental Results	113
		4.3.1	Validity of Diffusion Equation for Media with Spatially Varying	
			Brownian Motion	113
		4.3.2	Imaging Media with Spatially Varying Brownian Motion	120

Х		Bo	pas, Diffuse Photon Probes of Turbid Media: Theory and Applica	ntions
		4.3.3	Validity of Diffusion Equation for Media with Spatially Varying	
			Flow Properties	125
	4.4	Monte	e Carlo Simulations	129
		4.4.1	Homogeneous Media with Brownian Motion	130
		4.4.2	Media with Spatially Varying Brownian Motion	133
		4.4.3	Media with Random Flow	137
	4.5	Summ	ary	140
5	Bio	medica	al Applications for Correlation Diffusion	143
	5.1	Blood	Flow Monitoring	143
	5.2	Burn	Diagnosis	152
		5.2.1	Experiments on Phantoms	153
		5.2.2	Clinical Work	163
6	Exp	erime	ntal Methods	171
	6.1	Measu	ring Diffuse Photon Density Waves	171
		6.1.1	Experimental	172
		6.1.2	Monte Carlo	177
	6.2	Photo	n Correlation Spectroscopy Techniques	179
		6.2.1	Experimental	180
		6.2.2	Monte Carlo	185
	6.3	Makin	g Resin Phantoms	187
		6.3.1	Recipe for Resin Phantoms	189
		6.3.2	Molds	190
		6.3.3	Machining	191
		6.3.4	Warnings	192
7	Sun	nmary		195
A	P_N	Approx	ximation Method	199
	A.1	Photo	n Transport Equation	199

Contents

. 203
. 204
. 208
215
217
217 . 218
. 218

List of Tables

2.1	Fits of the Analytic Scattering Theory to Experimental Measurements	31
2.2	Results of Fitting for the Optical Properties	34
5.1	Tissue Burn Depths	164
6.1	Configuration of Parallel Port	176

List of Figures

2.1	Photon Transport	7
2.2	Experimental Observation of Diffuse Photon Density Waves	14
2.3	Extrapolated Zero Boundary Condition	15
2.4	Method of Images for Semi-Infinite Media	16
2.5	Refraction of Diffuse Photon Density Waves by a Planar Interface $\ . \ .$	19
2.6	Diffraction of Diffuse Photon Density Waves by Spherical Absorbers .	21
2.7	Diffraction Model and Ray Optics Model	22
2.8	Experimental Observation of Refraction and Diffraction by Spherical	
	Scatterers	23
2.9	Diagram of Diffuse Photon Density Waves Scattering from Spherical	
	Objects	27
2.10	Diffuse Photon Density Wave Sensitivity Curves	28
2.11	Validation of the Analytic Scattering Theory	30
2.12	Fitting the Analytic Scattering Theory to Experimental Measurements	32
2.13	Fitting for the Optical Properties	33
2.14	Summary of Fits for Optical Properties	35
2.15	Pulse-Train and Power Spectrum	40
2.16	Comparison of Diffusion Theory and P_3 Theory for Optical Character-	
	ization Versus Absorption Coefficient	45
2.17	Comparison of Diffusion Theory and P_3 Theory for Optical Character-	
	ization Versus Modulation Frequency	47

3.1	Experimental System for Investigating the Limits to Detection, Local-	
	ization, and Characterization	51
3.2	Sources of Noise in the Amplitude and Phase of Diffuse Photon Density	
	Waves	56
3.3	Detection of Absorbing Objects	61
3.4	Smallest Detectable Absorbing Objects	63
3.5	Detection of Scattering Objects	65
3.6	Smallest Detectable Scattering Objects	66
3.7	Simultaneous Characterization of the Object Diameter and Absorption	
	Coefficient	69
3.8	Contributions of the Different Multimoments of the Scattered Diffuse	
	Photon Density Wave	71
3.9	Simultaneous Characterization of Object Diameter and Scattering Coef-	
	ficient	73
3.10	Optimizing the Source-Detector Geometry for Object Characterization	76
3.11	Moments Analysis of Optimizing Source-Detector Geometry	77
3.12	Optimal Modulation Frequency for Characterizing Absorbing Objects	81
3.13	Optimal Modulation Frequency for Characterizing Scattering Objects	82
3.14	Utilizing Multiple Modulation Frequencies for Characterizing Absorb-	
	ing and Scattering Objects	83
3.15	Chi-Squared Valleys	85
3.16	Universal Curve for Optical Characterization	89
4.1	Speckles	93
4.2	Single Scattering Setup	95
4.3	Multiple Scattering Setup	99
4.4	Pulsed Diffusing-Wave Spectroscopy	100
4.5	Ensemble Averaged Correlation Function from a Non-ergodic System	111
4.6	Experimental Setup for Heterogeneous Brownian Motion	115
4.7	Correlation Scattering from a Spherical Inhomogeneity - Raw Data	116

xiv

4.8	Correlation Scattering from a Spherical Inhomogeneity	118
4.9	Correlation Scattering for Different Optical Properties	119
4.10	Correlation Scattering for Different Brownian Diffusion Coefficients .	121
4.11	Tomographic Image of Brownian Motion	123
4.12	Experimental Setup of Flow through a Cylindrical Vein $\ldots \ldots \ldots$	126
4.13	Correlation Measurements of Flow in a Cylindrical Vein	127
4.14	Monte Carlo Simulations of Correlation Diffusion: Homogeneous Media	131
4.15	Breakdown of the Correlation Diffusion equation: Homogeneous Media	132
4.16	Monte Carlo Spherical Object Setup	134
4.17	Monte Carlo Results for Spatially Varying Brownian Motion	135
4.18	Total Momentum Transfer Distribution	136
4.19	Monte Carlo Results for Spatially Varying Brownian Motion and Ab-	
	sorption	138
4.20	Monte Carlo Results for Spatially Varying Brownian Motion and Scat-	
	tering	139
4.21	Random Flow	141
5.1	Absorption Spectra of Oxy- and Deoxy- Hemoglobin and Water	145
$5.1 \\ 5.2$	Absorption Spectra of Oxy- and Deoxy- Hemoglobin and Water Setup for Cuff Ischemia Experiments	$145\\149$
5.2	Setup for Cuff Ischemia Experiments	149
$5.2 \\ 5.3$	Setup for Cuff Ischemia Experiments	149 150
$5.2 \\ 5.3 \\ 5.4$	Setup for Cuff Ischemia Experiments	149 150 151
5.2 5.3 5.4 5.5	Setup for Cuff Ischemia ExperimentsCorrelation Function Measured with Different Cuff PressuresMeasured Flow Correlated with Blood Deoxygenation and VolumeSchematic of Burn Phantom	149 150 151 153
5.2 5.3 5.4 5.5 5.6	Setup for Cuff Ischemia Experiments	 149 150 151 153 154
5.2 5.3 5.4 5.5 5.6 5.7	Setup for Cuff Ischemia Experiments $\dots \dots \dots$	 149 150 151 153 154 155
5.2 5.3 5.4 5.5 5.6 5.7 5.8	Setup for Cuff Ischemia Experiments $\dots \dots \dots$	 149 150 151 153 154 155 157
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Setup for Cuff Ischemia Experiments $\dots \dots \dots$	 149 150 151 153 154 155 157 158
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Setup for Cuff Ischemia Experiments $\dots \dots \dots$	 149 150 151 153 154 155 157 158 159

5.14	Correlation Functions for 48 Hour Old Burns	167
5.15	Comparison of Different Burns	168
6.1	Experimental System for Measuring Diffuse Photon Density Waves	173
6.2	Stepper Motor Driven Translation Stage	174
6.3	Circuit Diagram for Stepper Motor Controller	175
6.4	Monte Carlo Flow Chart	178
6.5	Experimental Setup for Photon Correlation Spectroscopy $\ldots \ldots \ldots$	181
6.6	Set-up for Ensemble Averaging	184