
Chapter 4

Imaging the Absorption Coe�cient

Near infrared di�using light probes o�er new possibilities for medical imaging. Appli-

cations include non-invasive measurement of tissue oxygenation, and tumor detection

and characterization [45]. Although investigators have determined the bulk optical

properties based on a homogeneous model, direct imaging of the optical properties

of heterogeneous tissue is an important potential improvement that has only recently

been considered [46, 47]. It is expected that these images will lead to a more accu-

rate representation of the optical properties for tissue characterization and functional

imaging.

In this chapter we will assume that only the absorption coe�cient varies with

position. The other optical properties, such as the scattering coe�cient, are assumed

to be constant. To investigate the passage of photons through heterogeneous media

we �rst write down the heterogeneous di�usion equation, and then generate solutions

to this equation using two methods. The �rst involves a linear or Born expansion of

the light energy density changes, and the second is an exponential or Rytov expansion

of the light energy density changes.

We next discuss methods for inverting these solutions to obtain images of the

medium. Again, we have investigated two di�erent methods: the �rst is a matrix

inversion, singular value decomposition (SVD), and the second is an algebraic re-

construction technique (SIRT). We present experimental results which demonstrate

the feasibility of image reconstruction and characterization of the optical properties.

Finally, we suggest an algorithm which exploits a high resolution imaging modality
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such as MRI, x-ray tomography or ultra-sound to improve tissue characterization.

4.1 The Heterogeneous Di�usion Equation

The systems we are concerned with in this chapter have an absorption coe�cient,

�a(r) which may be divided into two components, the background, or homogeneous

component, �oa, and the spatially varying part ��a(r);

�a(r) = �oa + ��a(r): (4.1)

When we substitute equation 4.1 into the di�usion equation or its related Helmholtz

equation:

�Dr2Uac(r) + (�i! + v�a)U(r) = �A�(rs); (4.2)

(r2 + k2)U(r) = A�(rs)=D: (4.3)

we arrive at the heterogeneous equation for the light energy density at r from a source

at rs, A�(rs);

h
r

2 + k2 +O(r)
i
U(r; rs) = A�(rs)=D; (4.4)

O(r) = v��a(r)=D: (4.5)

To solve this heterogeneous di�usion equation, we will explore both the Born and the

Rytov formulations. The following discussion is an adaptation of the discussion by

Kak et al. [48].

4.2 Born Approximation

In the Born expansion we divide the photon density from a source at rs measured at

a position r, into a linear superposition of its incident (homogeneous) and scattered

(heterogeneous) parts;

U(r; rs) = Uo(r; rs) + Usc(r; rs): (4.6)
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The heterogeneous di�usion equation (equation 4.4) becomes

h
r

2 + k2 +O(r)
i
[Uo(r; rs) + Usc(r; rs)] = �A�(rs)=D; (4.7)

If we subtract o� the homogeneous Helmholtz equation,

(r2 + k2)Uo(r; rs) = �A�(rs)=D (4.8)

then we are left with the following heterogeneous Helmholtz equation for Usc.

(r2 + k2
0
)Usc(r; rs) = �O(r) [Uo(r; rs) + Usc(r; rs)] (4.9)

We next convolve this di�erential equation with the appropriate Green function so-

lution to the Helmholtz equation, to arrive at the following integral solution for Usc;

Usc(rd; rs) = �

Z
G(r� rd)O(r) [Uo(r; rs) + Usc(r; rs)]d

3r; (4.10)

G(r� rd) = exp(ikjr� rdj)=4�jr� rdj: (4.11)

The integral is over the entire sample volume. We now make the Born approximation,

i.e. we assume that

Usc(r)� Uo(r); (4.12)

and we can write down an explicit solution for the scattered DPDW in a heterogeneous

medium,

Usc(rd; rs) = �

Z
G(r� rd)O(r)Uo(r; rs) d

3r (4.13)

with

U(rd; rs) = Uo(rd; rs) + Usc(rd; rs) (4.14)

We will refer to this solution (equation 4.13) as the Born solution. Figure 4.1 demon-

strates the components of the Born solution. One can think of this solution for Usc

as the number of photons which pass from the source (rs) to some position r, scat-

ter with an amplitude proportional to ��a, and then travel from the position r to a

detector at rd.
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Figure 4.1: Schematic of the Born solution to the heterogeneous di�usion equation.

4.3 Rytov Approximation

In the Rytov expansion we again divide the photon density into its incident (homo-

geneous) and scattered (heterogeneous) parts;

U(r; rs) = exp(�o(r; rs) + �sc(r; rs)); (4.15)

Uo(r; rs) = exp(�o(r; rs)): (4.16)

When we plug this into the di�usion equation we obtain,

(r2 + k2 +O(r)) exp(�o(r; rs) + �sc(r; rs)) = �A�(rs)=D; (4.17)

r
2�o(r; rs) +r

2�sc(r; rs) + (r�o(r; rs))
2 + (r�sc(r; rs))

2 + k2o +O(r)

+2r�o(r; rs) � r�sc(r; rs) = (exp(��o(r; rs)� �sc(r; rs)))A�(rs)=D: (4.18)

It is clear that at the source position, the scattered signal is negligible compared to

the delta function source signal, so we can write the right hand side of this equation

as exp(��o(r))A�(rs)=D. We then rewrite the homogeneous equation as,

(r2 + k2) exp(�o(r; rs)) = A�(rs)=D (4.19)

r
2�o(r; rs) + (r�o(r; rs))

2 + k2 = exp(��o(r; rs))A�(rs)=D: (4.20)
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When we subtract the homogeneous equation 4.20 from equation 4.18 we are left with

2r�o(r; rs)�sc(r; rs) +r
2�sc(r; rs) = �(r�sc(r; rs))2 �O(r): (4.21)

We then linearize this equation by noticing that

r
2(Uo(r; rs)�sc(r; rs)) = r � (rUo(r; rs)�sc(r; rs) + Uo(r; rs)r�sc(r; rs)) (4.22)

= r
2Uo(r; rs)�sc(r; rs) + 2rUo(r; rs) � r�sc(r; rs) + Uo(r; rs)r

2�sc(r; rs)

and using the fact that r2Uo(r) = �k2Uo(r) [49] we can rewrite equation 4.23 as

2rUo(r; rs) � r�sc(r; rs) + Uo(r; rs)r2�sc(r; rs) = (4.23)

r
2(Uo(r; rs)�sc(r; rs)) + k2Uo(r; rs)�sc(r; rs):

Finally, we can plug this result into equation 4.21 to obtain

(r2 + k2)Uo(r; rs)�sc(r; rs) = �Uo(r; rs)((r�sc(r; rs))
2 +O(r)): (4.24)

Just as we did with the Born approximation, we convert this di�erential equation

into an integral equation by convoluting with the Green function solution.

Uo(rd; rs)�sc(rd; rs) = �

Z
G(r � rd)Uo(r; rs)((r�sc(r; rs))

2 +O(r))d3r: (4.25)

We now make the Rytov approximation, (r�sc(r; rs))2 << O(r), and write the solu-

tion for the scattered phase as

�sc(rd; rs) = �
1

Uo(rd; rs)

Z
G(r� rd)(v��a(r)=D)Uo(r; rs)d

3r: (4.26)

�sc will be referred to as the Rytov solution.

4.4 Breakdown of the Born and Rytov Approximations

Although the structure of the Born and Rytov solutions look very similar, there are

some fundamental di�erences in their validity and use. We immediately see that

the Born approximation makes the assumption that the scattered wave is small, and
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Figure 4.2: A comparison of the Born and Rytov approximations. A 1.0 cm diameter
sphere is embedded in a medium with an absorption of 0.03 cm�1 and a reduced
scattering coe�cient of 10.0 cm�1. Although a cylindrical region was reconstructed,
an in�nite model was used for both the forward and inverse problems.

the scattered wave scales approximately linearly with the absorption. In biological

tissue we are interested in imaging absorption values which vary from about 0.02

cm�1 to 0.30 cm�1. In fact, this linear assumption will break down for absorption

di�erences greater than about 0.10 cm�1, well within our region of interest. The

Rytov approximation does not place a restriction on the magnitude of the scattered

wave change, but rather assumes that the scattered �eld is slowly varying. Figure

4.2 demonstrates the breakdown of each approximation in the context of an isolated

spherical heterogeneity. We see that the Rytov approximation is much more suitable

for most biological situations. These and other di�erences will be discussed in section

4.8 and chapter 6.

4.5 Inverting the Solutions to the Heterogeneous Di�usion Equation

Our goal is to use either the Born or Rytov equations to solve for the absorption as a

function of position within the medium. Thus we must invert the integral equations
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(4.13, 4.26). There are many methods available to �nd the best solution to the inverse

problem. But care must be taken since the integral equation is a Fredholm integral

of the �rst kind (FI) and is highly susceptible to high frequency noise. A FI is an

equation of the form

u(x) =
Z b

a
k(x; s)�(s)ds: (4.27)

The di�culty in solving a FI for � arises from the instability of the inverse operator.

Certain high frequency oscillatory noise in a solution may be screened out by the

integral operator, giving a result which is very close to the left hand side. For example,

if th correct solution to our problem is �(s), consider the residual of another solution

�(s) + ��(s) where

��(s) = exp(i!s) (4.28)

The residual, �u(x) that this alternate solution adds to the measurements is

�u(x) =
Z b

a
k(x; s)��(s)ds (4.29)

=
Z b

a
k(x; s) exp(iws)ds: (4.30)

If we integrate by parts,

�u(x) =
1

i!
k(x; s)��(s)

����
a

b

�
1

i!

Z b

a

@k(x; s)

@s
exp(iws)ds (4.31)

we see that the residual is of order 1=!. Thus high frequency solutions for � will

contribute little to the measurement, but can contribute signi�cantly to the the image.

There are regularization schemes, such as Tikhonov regularization, which reduce

the e�ect of high frequency noise on the reconstructed image. To invert the following

equation;

~u = ~A~x (4.32)

we would minimize the norm

jj~u� ~A~xjj: (4.33)
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Figure 4.3: A typical scanning geometry and volume digitization.

To use Tikhonov regularization, we minimize the equation

jj~u� ~A~xjj+ �jj~xjj (4.34)

where � is a free parameter which controls the level of regularization. Each time we

try a di�erent value of �. we create a new matrix to invert. Since inverting a matrix

is computationally intensive, choosing the best value for � can be a time consuming

process.

To invert our problem, we break up the region of interest into discrete volume

elements and likewise digitize the integral equation to create a series of linear equa-

tions. A typical digitized volume and scattering geometry is shown in �gure 4.3. We

next solve these equations using two di�erent techniques: (1) a regularized matrix

inversion using singular value decomposition (SVD) and analysis and (2) an algebraic

technique called simultaneous iterative technique (SIRT) with constraints.

In this work we have chosen to break the region into rectangular volume elements

(voxels), but other geometries have also been investigated [17]. When choosing the

voxel size, we must balance computation time with the desired resolution. Since our

resolution is generally limited to about 0.5 cm [22], we typically choose to use voxels

with approximately 0.2 cm edges. Once the space has been digitized into N voxels,

the integral equation is similarly digitized,
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Born:

Usc(rsi; rdi) =
PN

j=1G(rj � rdi)O(rj)Uo(rsi; rj)h3; (4.35)

Rytov:

�sc(rsi; rdi) = �
PN

j=1G(rj � rdi)O(rj)Uo(rsi; rj)h3=Uo(rsi; rdi): (4.36)

Here rsi (rdi) is the ith source (detector), and h3 is the volume of the voxel. The

e�ect of this digitization has been studied by Patterson and Pogue [50]. A series of

measurements of the amplitude and phase of the DPDW for di�erent source-detector

con�gurations yields a set of coupled, linear equations which relate the real and

imaginary parts of the measurements to the values of ��a in the various voxels within

the sample.

Born: 0
BBBBB@

Usc(rs1; rd1)

...

Usc(rsm; rdm)

1
CCCCCA =

0
BBBBB@

WB
11 : : : WB

1n

...
. . .

...

WB
m1

: : : WB
mn

1
CCCCCA

0
BBBBB@

��a(r1)

...

��a(rn)

1
CCCCCA

WB
ij = G(rdi; rj)Uo(rsi; rj)vh

3=D (4.37)

Rytov: 0
BBBBB@

�sc(rs1; rd1)

...

�sc(rsm; rdm)

1
CCCCCA =

0
BBBBB@

WR
11 : : : WR

1n

...
. . .

...

WR
m1 : : : WR

mn

1
CCCCCA

0
BBBBB@

��a(r1)

...

��a(rn)

1
CCCCCA

WR
ij = G(rdi; rj)Uo(rj ; rsi)vh3=(Uo(rdi; rsi)D (4.38)

WB and WR are referred to as the weights. The weights are a description of the

relative importance of each voxel to a particular measurement. Recall that the mea-

surements and weights are complex. Before we try to invert the problem, we rewrite

the matrix as a real matrix;



64 O'Leary, Imaging with Di�use Photon Density Waves

Born:

0
BBBBBBBBBBBBBBBBBBBB@

<[Usc(rs1; rd1)]

...

<[Usc(rsm; rdm)]

=[Usc(rs1; rd1)]

...

=[Usc(rsm; rdm)]

1
CCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBB@

<[WB
11] : : : <[WB

1n]

...
. . .

...

<[WB
m1] : : : <[WB

mn]

=[WB
11] : : : =[WB

1n]

...
. . .

...

=[WB
m1] : : : =[WB

mn]

1
CCCCCCCCCCCCCCCCCCCCA

0
BBBBB@

��a(r1)

...

��a(rn)

1
CCCCCA

WB
ij = G(rdi; rj)Uo(rsi; rj)vh3=D (4.39)

Rytov:

0
BBBBBBBBBBBBBBBBBBBB@

<[�sc(rs1; rd1)]

...

<[�sc(rsm; rdm)]

=[�sc(rs1; rd1)]

...

=[�sc(rsm; rdm)]

1
CCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBB@

<[WR
11] : : : <[WR

1n]

...
. . .

...

<[WR
m1] : : : <[WR

mn]

=[WR
11] : : : =[WR

1n]

...
. . .

...

=[WR
m1] : : : =[WR

mn]

1
CCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBB@

��a(r1)

...

��a(rn)

1
CCCCCCCCCCA

WR
ij = G(rdi; rj)Uo(rj ; rsi)vh3=(Uo(rdi; rsi)D (4.40)

4.6 Singular Value Decomposition

We used two di�erent methods to solve the inverse problem. The �rst is a direct

matrix inversion method called singular value decomposition (SVD). This discussion

of SVD has been adapted from Numerical Recipes [51].



Imaging Absorption 65

Singular value decomposition is a powerful technique for solving singular, or nearly

singular matrices. (See appendix A for a brief review of singular matrices.) It is based

on a theorem of linear algebra which states:

Any MxN matrix A, whose number of rows M, is greater than or equal to

its number of columns N, can be written as the product of an MxN column-

orthogonal matrix U, an NxN diagonal matrix W, with positive or zero ele-

ments, and the transpose of an NxN orthogonal matrix V.

i.e.

0
BBBBB@A

1
CCCCCA =

0
BBBBB@U

1
CCCCCA �

0
BBBBBBBBBB@

w1

w2

. . .

wN

1
CCCCCCCCCCA
�

0
BBBBB@ V T

1
CCCCCA

(M � N ) (M � N ) � ( N � N ) � (N � N ) (4.41)

The matricesU andV are orthogonal in the sense that their columns are orthonormal,

UT
�U = VT

�V = 1: (4.42)

and since V is square,

V �VT = 1: (4.43)

We will not go into the details of how this matrix decomposition is achieved, but

rather refer to reader to Forsythe et al. [52] for a complete description. If A is a

square matrix, then U is a NxN matrix, and U�1 = UT . In this case, the inverse of

A is

A = U � diag(wj) �V
T; (4.44)

A�1 = (VT)�1 � diag(wj)
�1
�U�1; (4.45)

A�1 = V � diag(1=wj) �U
T: (4.46)
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Figure 4.4: Linear algebra de�nitions for SVD

If the matrix A is non-singular, then calculation of the inverse is straightforward.

However, if A is singular, or nearly singular, then the inverse is not well de�ned.

However SVD can still give a solution. To understand the meaning of the SVD

solution in this case, we must review some linear algebra de�nitions. Recall we are

trying to solve the following matrix equation,

A � x = b: (4.47)

A is a linear mapping from the vector space x to the vector space b as shown in

�gure 4.4. The subspace of b which can be reached by x is called the range. If A is

singular, then there is some part of x that maps to zero, i.e.

A � x = 0 (4.48)

This subspace of x is called the null space.

If the matrix A is non-singular, then there is no null space, and we will obtain

a unique solution for A�1. If the matrix is singular the solution is not unique, but

rather some combination of a general solution with linear combinations of the null

space. Mathematically, each singularity corresponds to an eigenvalue (wj) equal to

zero. This creates a problem in the inverse when we try to compute 1/wj . We can
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however, generate the solution with the smallest absorption by setting 1/wj equal to

zero when wj equals zero. This is equivalent to throwing out all null space solutions.

This altering of the eigenvalues is called singular value analysis (SVA). One of the

powerful advantages of SVD is that the columns of V with zero eigenvalues form

a basis set for the null space. Thus we can easily check the solutions that we are

discarding for physical relevance.

The condition number of a matrix is the ratio of the smallest eigenvalue to the

largest. The closer to unity the condition number, the more robust the inversion. A

condition number of 10�6 for oating point precision of 10�12 for double precision

will result in eigenvalues which are dominated by round o� error. So SVA is also

needed when the range of the eigenvalues is larger that the numerical precision of the

computer. In the photon di�usion problem the condition number of the matrix is

typically 10�12. In this case we could zero the inverse of the small eigenvalues to gen-

erate the solution. We have found the that reconstructed images are improved when

we use a simple smoothing algorithm [53] instead of eliminating the small eigenvalues;

wj ! wj + �=wj (4.49)
1

wj

!
1

wj + �=wj

(4.50)

Figure 4.5 demonstrates how the eigenvalues are e�ected by such an algorithm. �

is an arbitrary free parameter. If � is much larger than the square of the maximum

eigenvalue, then the eigenvalues are dramatically reduced, and we obtain a solution

composed of only a few of the largest eigenfunctions. If � is small compared to

the square of the smallest eigenvalue, then there is e�ectively no smoothing, and we

obtain a solution dominated by noise. Although the norm of the solution is reduced

as we increase the smoothing, this is not the same as Tikhonov regularization where

we minimize the norm of the residual plus the norm of the solution. The advantage

of using the smoothing method over Tikhonov regularization is that we only have to

perform the time consuming matrix decomposition once.

We can now write down an explicit solution for the absorption as a function of
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Figure 4.5: A singular or numerically singular matrix will have eigenvalues wj which
are zero or below the numerical precision of the calculation. In this case, we apply an
eigenvalue smoothing procedure to minimize the e�ect of the small eigenvalues. The
left panel shows how the eigenvalues are altered when wj ! wj + �=wj for a series of
di�erent values of �. The right panel shows how the inverse eigenvalue is a�ected.

position;

( ��a ) = [(V ) � ( diag( 1

wj+�=wj
) ) � (UT )] � ( data ) (4.51)

As we increase �, the image becomes less noisy and the image appears smoother.

Since the smoothing algorithm always decreases the inverse of wj , the reconstructed

absorption will also decrease as the smoothing factor is increased.

There are many other regularization algorithms. In particular, Arridge et al. [19]

have tested discussed Tikhonov regulation and SVA within the framework of di�usion

imaging.

We have presented SVD for a square matrix. In our case, we often have many

more voxels of unknown absorption than we do measurements. This means that we

have more unknowns than equations. In this situation, we simply pad the matrix A

with rows of zeros, and likewise pad the measurement vector with zeros. We can then

invert the square matrix. The solution that we obtain will have a zero eigenvalue

for each row of padding, and the solution we get is approximately the minimum
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absorption solution as discussed above.

4.7 Algebraic Reconstruction Techniques

The second method we used to solve the linear system of equations is an algebraic

reconstruction technique called SIRT - simultaneous iterative reconstruction tech-

nique. SIRT is a slight modi�cation to an algebraic reconstruction technique (ART).

In this section we will describe ART, and then SIRT. This discussion is based on the

discussion in Kak et al. [48].

The ART algorithm is best demonstrated pictorially using a simple example. Sup-

pose we have a system with two linear equations and two unknowns,

~A � ~x = ~b (4.52)

A11x1 +A12x2 = b1 (4.53)

A21x1 +A22x2 = b2: (4.54)

Here b1 and b2 are measurements, x1 and x2 are unknowns, and the A's are calcu-

lable. The solution space is a 2 dimensional space, i.e. a plane spanned by x1 and

x2. The measurements are lines in that plane with slopes �A11=A12, �A21=A22 and

intercepts b1=A12; b2=A22 as shown in �gure 4.6a. The solution we are searching for is

the intersection of these two lines. To �nd the intersection using ART, we �rst start

from any point in space. (Typically we choose the origin as the initial guess.) We

then move from the origin to the closest point on line �rst line as shown in �gure 4.6.

The mathematical equation for the move is

~xnew = ~x�
~x � ~A� bj
~A � ~A

~A (4.55)

Here ~A = (Aj1; Aj2:::AjN) and ~x = (x1; x2) is the the initial guess. We next make a

similar move from the �rst line to the second line. These two moves constitute one

iteration. This process, called the Kaczmarz method, is repeated until convergence

is achieved. Tanube [54] has shown that the algorithm will always converge on the

correct solution if a unique solution exists.
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Figure 4.6: A graphical description of the algebraic reconstruction technique. In the
left panel, the solid lines show the equations to be solved. In the right panel the thick
arrows show the path that the algorithm takes as it moves from the initial guess, the
origin, towards the correct solution. One iteration is shown.

Now suppose we add noise to the data. For the system of two equations and two

unknowns, ART converges on the noisy solution as shown in �gure 4.7a. If there

are more equations than unknowns as shown in �gure 4.7b, then no unique solution

exists and the �nal solution oscillates in the neighborhood of the correct solution. If

there are fewer equations than unknowns, then the process converges to a space (in

this case a line) which contains the correct solution.

We have employed a slight modi�cation to ART, called the simultaneous iterative

reconstruction technique (SIRT). In SIRT we choose a starting point, and move from

that starting point to the �rst line to �nd a new solution. We then move from

the starting point to the second line. The two solutions are then averaged. SIRT

is believed to produce better images than ART, at the expense of slightly slower

convergence [48].

One of the major advantages of using the algebraic techniques instead of the

matrix inversion is that the algebraic techniques allow the use of hard constraints.

For example, we know that the reconstructed absorption should always be greater

than zero. Thus at the end of each SIRT iteration, we zero any voxel which has a
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initial guessinitial guessinitial guess

Figure 4.7: (A) ART with two noisy equations and two unknowns. (B) ART with
more equations that unknowns (C) ART with fewer equations than unknowns.

negative absorption. Unless otherwise noted, we use this positivity constraint in all

of our SIRT reconstructions.

When ART or SIRT is applied to photon di�usion imaging, we are searching

for a solution in a N dimensional space, where N is the number of voxels. We are

typically working in the case where the data is noisy, and we have fewer equations

that unknowns. In our reconstructions we choose the smallest absorption solution

by beginning our search at the origin. However in the cases where we have some a

priori information, we can speed up the convergence, and arrive at a better solution

by using this information to construct a good initial guess. Just as in SVD we had

to choose a good smoothing parameter, in ART or SIRT, we have to decide when

to stop the iterations. Ideally, the iterations should be stopped when the theoretical

prediction coincides with the measured data within the experimental error. However,

our situation is slightly more complicated than this.

In all of our simulations we have found that as we continue to iterate, the image of a

sphere gets gradually smaller and more absorbing. Boas et al. [22] have demonstrated

that even in a best case scenario, the di�erence between a small, highly absorbing
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Figure 4.8: Left: The reconstructed images of an object at the center. Images are
shown for 5,10,15 and 20 thousand SIRT iterations. Right: The reconstructed ab-
sorption (maximum value) as a function of iteration.

object and a larger, less absorbing object is practically immeasurable for objects

with a diameter of less than 1 cm [22]. The authors demonstrated that there is a

family of degenerate solutions which all conserve the quantity ��av where v in the

volume of the sphere. Thus, in the SIRT reconstructions, the consecutive iterations

move the reconstruction through this family of solutions. Because we always start

from the same initial guess (a homogeneous system) the reconstruction always moves

through the family of solutions in the same way. Figure 4.8 demonstrates a series

of reconstructions for di�erent numbers of iterations. Note that as the number of

iterations increases, the absorption of the object increases, and the size decreases.

We have left the iteration number as a free parameter in our reconstructions.

4.8 Data Analysis

At this point, we must consider the measured data. In the Born approximation, we

measure a voltage proportional to the total di�use photon density at a particular

position,

V oltage = C(Uo + Usc); (4.56)

In order to use the inverse solution (which was for a source of unit amplitude) we

must eliminate the constant, C, and the homogeneous DPDW, Uo. C is a complex
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number which includes such factors as the signal ampli�cation, the e�ciency of the

light detection and the initial amplitude and phase of the source. In our experiments

we measure the amplitude and phase of C by making measurements in a homogeneous

in�nite medium.

After calculating C, we have to subtract o� the homogeneous part of the sig-

nal. This may be done using an analytic solution if the background properties are

known. Alternatively, researchers have measured the signal with and without the

presence on an inhomogeneity to eliminate the background. However, since both of

these measurements are impractical in a clinical situation, we have instead chosen to

make a reference measurement which does not rely on �nding a homogeneous portion

of the sample. In such a scheme we make two measurements with the same source

and detector separations as shown in �gure 4.9. We then subtract the two measure-

ments, eliminating the homogeneous signal, and are left with only the di�erence of

the heterogeneous signals.

V oltage 1� V oltage 2 = C(Uo + U1

sc) �C(Uo + U2

sc) (4.57)

= C(U1

sc � U2

sc:) (4.58)

Of course using pairs of measurements changes the form of the weights;

WB
ij = [G(rj � rdi1)Uo(rsi1; rj)�G(rj � rdi2)Uo(rsi2; rj)] vh

3=D: (4.59)

For the Rytov approximation, the situation is slightly simpler. In this case we

measure

V oltage = CUo exp(�sc) (4.60)

Again, we could measure or calculate C and Uo. However, if we use the reference

scheme discussed above, and this time divide the two measurements,

ln

 
V oltage 1

V oltage 2

!
= ln

 
CUo exp(�sc1)

CUo exp(�sc2)

!
= �sc1 � �sc2; (4.61)
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Figure 4.9: Sample geometries for the referencemeasurements. See text for discussion.

we have eliminated the need to calibrate the machine to �nd C. The weights for this

measurement pair are

WR
ij =

 
G(rj � rdi1)Uo(rsi1; rj)

Uo(rsi1; rdi1)
�
G(rj � rdi2)Uo(rsi2; rj)

Uo(rsi2; rdi2)

!
vh3=D: (4.62)

Although we have eliminated the need to explicitly remove the background signal,

we still need to know the background optical properties to calculate the weights.

Speci�cally, Uo and G are functions of the background optical properties. If we

incorrectly guess the background properties, then we introduce and error in G and

Uo. For example, if we incorrectly guess the background absorption,

G(r) ! G(r) +
@G(r)

@�a
��a + :::!

 
1 +

ijrj

2kD
��a

!
G(r) (4.63)

Uo(r) ! Uo(r) +
@Uo(r)

@�a
��a + :::!

 
1 +

ijrj

2kD
��a

!
Uo(r) (4.64)

These errors show up in the weights for both the single source and double source

weight functions, i.e. for a single source

Usc(rd; rs) =
Z
d3r(1 + (rd � r) + (r� rs) +O(��2a)| {z }

error

)G(rd � r)Uo(r; rs)h
3=D;

(r) =
ijrj��a
2kD

(4.65)

and for the source pair,

Usc(rd; rs1)� Usc(rd; rs2) = (4.66)
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Z
d3r

2
64(1 + (rd � r) + (r� rs1) +O(��2a)| {z }

error

)G(rd � r)Uo(r; rs1)

�(1 + (rd � r) + (r� rs2) +O(��2a)| {z }
error

)G(rd � r)Uo(r; rs2)

3
75h3=D

We can see that the same systematic error is introduced in each equation for incorrect

estimates of �a. If we now look at the calculation of Usc from the measured data, we

see the di�erence between the one source and two source measurements. When we

measure the amplitude and phase, we measure the total wave,

Utotal = Uo + Usc ! Usc = Utotal � Uo: (4.67)

In the one source Born approximation we must subtract o� the calculated value of

Uo. Since we use a guess for the background properties to calculate Uo, we introduce

some error here, i.e.

Usc(rs; rd) = Utotal(rs; rd)� (1 + (rs; rd))Uo(rs; rd): (4.68)

But when we use the two source referencing method, since jrd � rs1j = jrd � rs2j this

error is eliminated,

Usc(rs1; rd)� Usc(rs2; rd) = [Utotal(rs1; rd)� (1 � (rd; rs1))(Uo(rs1; rd)] (4.69)

� [Utotal(rs2; rd)� (1 � (rd; rs2))Uo(rs2; rd)]

= Utotal(rs1; rd)� Utotal(rs2; rd) (4.70)

There is no systematic error introduced in the measurement of Usc when using the

referencing scheme. Note that the if there is random measurement noise, then the

subtraction of the two source measurements will e�ectively double the random noise.

Only the error in the processed data is reduced by the referencing scheme, the

error in the weights is not reduced. Nevertheless, we have found that the proce-

dure gives superior reconstruction as shown in �gure 4.10. In these simulations, the

background medium has an absorption coe�cient of �a = 0:03 cm�1 and a reduced
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scattering coe�cient of �0s = 10:0 cm�1. A 1 cm diameter sphere with the same

reduced scattering coe�cient as the background and an absorption coe�cient of 0:05

cm�1 is embedded in the medium. The source (or sources) are scanned around the

edges of a 7 cm square, and 26 measurements of amplitude and phase are simulated at

a source modulation frequency of 500 MHz. We use the analytic solution for a sphere

[10] to simulate the data. No noise was added to the data. We obtained data for two

di�erent con�gurations, �rst, a single source directly across from a single detector,

and second, a source pair separated by 1 cm, directly across from a single detector.

Before we began reconstructing the image, we took a guess at the background

absorption, (we assume that we know the correct reduced scattering coe�cient). For

the single source measurements, we use this guess to calculate the weights. We

also use the guess to analytically subtract o� the background signal from the total

measurement. When the guess for the background was too low, (top left images in

�gure 4.10) a noisy image with a large positive absorption region in the center, and

negative absorption region at the edges. When the background absorption is guessed

correctly, we obtain a good image (center left image in �gure 4.10), and when the

background absorption guess is too high, we obtain the opposite image we saw when

we under estimated the background absorption (lower left images in �gure 4.10).

When we use the source pair, and underestimate the background absorption, this

error cancels in the measured data, and the error is propagated only through the

weights. In this situation, we can still see the outline of the solution in each case (see

�gure 4.11, right column). Although the error in the weights has e�ected the image

quality, but it has not totally degraded the image.

When a positivity constraint is placed on the absorption solution (i.e. we set all

voxels with negative absorption equal to zero in the reconstruction algorithm), the

quality of the two source reconstructions is improved. The single source reconstruction

only works when have the correct guess for the background (see �gure 4.11).

If the geometry of the system does not allow these symmetric measurements,

this algorithm for background subtraction cannot be used. Instead, the background
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Figure 4.10: Reconstructions of absorption when the background absorption is mis-
estimated. The left column of reconstruction use a single source and detector, the
right uses the two source referencing method. 1000 SIRT iterations were performed
with no constraints on the reconstructed absorption.
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Figure 4.11: Reconstructions of absorption when the background absorption is mis-
estimated. The left column of reconstruction use a single source and detector, the
right uses the two source referencing method. 1000 SIRT iterations were performed
with a positivity constraint on the reconstructed absorption.
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must be subtracted using a theoretical model. Alternatively, investigators attempt to

make measurements before and after the addition of the heterogeneity. This allows

an explicit measurement of the background signal.

4.9 Experimental and Computational Results

The following experiments were performed in an e�ectively in�nite medium using

the equipment described in Chapter 3. Since at this point, we were only using the

Born approximation, the initial amplitude and phase of the sources were measured

for calibration purposes. A perfectly absorbing sphere was submerged, and moved in

a manner to simulate the source pair scanning along the sides of 6:0 cm square as

shown in �gure 4.12. In each measurement the detector remained opposite the source

pair, at a separation of greater than 35 transport mean free paths. 120 measurements

of amplitude and phase were made around the square. The volume of the imaged

region was 5 � 5 � 1 cm3.

Figure 4.12 demonstrates the reconstruction of a single perfectly absorbing spher-

ical object (1.2 cm in diameter) from experimental data. The background media has

�a = 0.023 cm�1 and �0s = 6.0 cm�1. In this reconstruction, 1000 SIRT iterations

were performed. As we start the reconstruction, the image shows a large object with

a low absorption. The position is correct. Had we continued to iterate, the object

would rapidly become smaller and more absorbing. We have chosen to stop iterating

when the percent error between the forward model and the measured data is less than

1%.

To con�rm that we are sensitive to the optical properties of the medium, a series

of experiments were undertaken in which spheres of varying absorption were imaged

separately using matrix inversion (SVD). The spheres were made of casting resin

with titanium oxide (TiO2) for scatterers and a near infrared absorbing dye for ab-

sorption [55]. The reconstructed images are shown in �gure 4.13. The reconstructed

��a(r) for this series of experimental data is also shown in �gure 4.13. Note that

the reconstructed absorption (solid circles) qualitatively follows the actual object ab-
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Figure 4.12: (A) The experimental setup. (B) The reconstruction of a single spherical
object (1.2 cm in diameter) from experimental data. The background media has �oa =
0.023 cm�1 and �o

0

s = 6.0 cm�1. The reconstruction was generated using 1000 SIRT
iterations. The black corresponds to an absorption of 0.25 cm�1 and the light gray
corresponds to an absorption of 0.023 cm�1

sorption, but saturates at large absorption where Born approximation is expected to

break down. The theoretical data created from the exact solution (solid line) show

the same trend. In calculation of the forward model, we assumed that the index of

refraction was homogeneous. In fact the index of refraction of the resin is 1.56 and

the index of refraction of water is 1.33. This index mismatch will increase the recon-

structed value of �a, and begins to explain the discrepancy between the true �a and

the reconstructed value.

4.10 Updating the Weight Functions

We have seen that the inverse problem saturates for highly absorbing objects. This

saturation is due to a breakdown of the Born and Rytov approximations. We can

reduce this saturation e�ect by correcting our forward model. For example, in the

Born expansion we had the equation,

Usc(rd; rs) = �

Z
O(r)G(r� rd)(Uo(r; rs) + Usc(r; rs)); (4.71)

and we made the approximation

Uo(r; rs) >> Usc(r; rs): (4.72)



Imaging Absorption 81

Figure 4.13: Top: In this experiment, resin spheres (1.2 cm diameter) made with
a mixture of scatterer and a known concentration of ink were imaged using matrix
inversion (SVD). Bottom: The reconstructed absorption from both the experimental
data (circles) and the simulated data (line) are plotted vs the actual absorption. See
text for further discussion. Error bars are derived from estimated the calibration
errors which we believe to be most signi�cant.
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Recall that Usc is the part of the DPDW which has been scattered from the het-

erogeneity. If we approximate Usc instead of dropping it, we can improve our re-

constructions. We need a heterogeneous model to approximate Usc. Such models

include Monte-Carlo simulations, �nite di�erence calculations, and analytic solutions

for speci�c geometries.

To demonstrate the procedure for improving the weights, we �rst look at the

integral equation. Instead of approximating

Usc(rd; rs) = �

Z
O(r)G(r � rd)(Uo(r; rs) + Usc(r; rs))d

3r; (4.73)

as

Usc(rd; rs) = �

Z
O(r)G(r � rd)Uo(r; rs)d

3r; (4.74)

we use and iterative procedure,

Un+1
sc (rd; rs) = �

Z
O(r)G(r � rd)(Uo(r; rs) + Un

sc(r; rs))d
3r: (4.75)

This procedure updates the weights in the matrix equation. We start by making a

guess that there is only the homogeneous background absorption (0th order). In this

case there is not heterogeneity and U0

sc = 0. The weights in the Born approximation

are

WB
ij / G(rj � rdi)Uo(rj; rsj): (4.76)

We then use the measured data to reconstruct the object. We use the results of this

0th order reconstruction, and use a heterogeneous forward model to calculate Uo+U1

sc.

Next we use U1

sc as an approximation to generate a new set of weights, i.e.,

WB
ij / G(rj � rdi)(Uo(rj; rsj) + U1

sc(rj; rsj)): (4.77)

We will show the results of this weight updating routing in section 4.12 using an

analytic solution for a spherical inhomogeneity.

We have updated the weights using a heterogeneous model for photon propaga-

tion. One could use the Born or Rytov formulations for the scattered wave in the
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heterogeneous forward model. This is certainly possible, but there is a small subtlety.

To calculate the scattered wave at a particular voxel k, from a source i, one must

calculate the sum (in the Born approximation),

Usc(rk; rsi) =
X
j

Uo(rj; rsi)G(rk � rj)h
3=D: (4.78)

G(rk � rj) =
exp(jrk � rj j)

4�jrk � rjj
(4.79)

We cannot calculate this when j = k. This is the so called 'self-interaction term'.

Jacques et al. [56] have calculated the value of the self interaction term and incor-

porated into a forward model called the 'system of virtual sources' (SVS). The SVS

model has been incorporated into the PMI code (see chapter E) and will be released

in a future version.

We have assumed throughout this discussion that we were using a good value

for the background properties of absorption and scattering. If the system is totally

unknown, one would like to update the background values to improve the image.

4.11 Resolving Multiple Objects

Figure 4.14 demonstrates that we are able to resolve multiple absorbing objects. The

left panels (a-b) show the reconstruction of two 1.0 cm diameter perfectly absorbing

spheres from experimental data. The top (a) is the reconstruction using singular

value decomposition and analysis, and the bottom (b) panel is a reconstruction using

3000 iterations of SIRT.

We have also investigated the e�ect of modulation frequency on resolution of mul-

tiple objects using simulated data derived from the analytic solution to the di�usion

equation for a sphere embedded in an otherwise homogeneous medium [10]. Panels

(c-f) are images of two perfectly absorbing spheres from simulated data using a dif-

ferent sphere con�guration. In panels (c-d) (background �a = 0.1 cm�1, inside the

spheres �a = 0.4 cm�1), we see an increase in image quality as the modulation fre-

quency is increased from 50 MHz (c) to 1 GHz (d). However, when the background
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absorption is high (background �a = 1.0 cm�1, inside the spheres �a = 4.0 cm�1), the

image quality does not noticeably improve as the modulation frequency is increased

from 50 MHz (e) to 1 GHz (f). This may be understood qualitatively by noting that

the wavenumber of a DPDW,

k =
q
(�v�a + i!)=D; (4.80)

is nearly independent of ! when v�a >> !. This result suggests that sources at

low modulation frequencies and sources with high frequency components will yield

roughly equivalent images in media characterized by a high average absorption such

as the brain. On the other hand, when imaging within bodies with low average

absorption, such as the breast, high modulation frequency images will give better

resolution.

4.12 DPDW Imaging Combined With Other Imaging Modalities

An important contribution of the optical method is its ability to quantify the concen-

trations of physiologically important pigments, such as oxygenated and de-oxygenated

hemoglobin, by providing absolute spatial quanti�cation of scattering and absorption

coe�cients in the near infra-red region. Anatomical details derived from a conven-

tional medical image, as in the case of X-ray tomography or MRI, can be taken into

account in order to improve the quantitative accuracy of the optical image. The feasi-

bility of simultaneously combining optical with other imaging modalities promises to

increase the diagnostic certainty of the acquired images. Other researchers have used

a priori structural information to improve the formulation of the forward problem

[57, 58]. In this section we describe an algorithm which uses structural information

to reduce the number of unknowns in the inverse problem, from the number of voxels

in the image, to the number of tissue types. This reduces both the complexity of the

inverse problem and the number of measurements necessary for an accurate recon-

struction. We present simulations which con�rm the e�ciency of the algorithm, and

experimental measurements on a tissue phantom which demonstrate the feasibility of
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Figure 4.14: The left panels (a-b) show the reconstruction of two 1.0 cm diameter
perfectly absorbing spheres from experimental data. The top (a) is the reconstruc-
tion using singular value decomposition and analysis, and the bottom (b) panel is a
reconstruction using 3000 iterations of SIRT. Panels (c-f) are images of two perfectly
spheres from simulated data using a di�erent sphere con�guration. In panels (c-d)
(background �a = 0.1 cm�1, inside the spheres �a = 0.4 cm�1), we see an increase in
image quality as the modulation frequency is increased from 50 MHz (c) to 1 GHz
(d). However, when the background absorption is high (background �a = 1.0 cm�1,
inside the spheres �a = 4.0 cm�1) the image quality does not noticeably improve as
the modulation frequency is increased from 50 MHz (e) to 1 GHz (f).
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Figure 4.15: A simple breast model. This over-simpli�ed model is used for describing
the matrix reduction algorithm.

the method to be applied in a real system.

Let us consider an absorbing inhomogeneity embedded in a region broken into n

voxels. For simplicity we assume n=9 as depicted in �gure 4.15.

Thus we have one unknown value of ��a in each of the nine voxels. We make one

measurement of the amplitude and phase of the di�use photon density wave, from

which we can calculate the real and imaginary part of the scattered phase (�sc) using

the Rytov solution. The scattered phase will obey the following matrix equation:

0
B@<[�sc(rs; rd)]
=[�sc(rs; rd)]

1
CA =

0
B@<[W11] : : : <[W19]

=[W11] : : : =[W19]

1
CA �

0
BBBBB@

��1a

...

��9a

1
CCCCCA (4.81)

Here ��ia is the absorption in the ith voxel. If the structural information is known

and we assume that each component in the structure has uniform optical properties,

then the problem dramatically simpli�es. We need only to solve for the absorption

coe�cients of each type of inhomogeneity. For example, if the sample is composed

of fat (background), vein and tumor, then we only have two actual unknowns, (since
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the perturbation to the background, fat, is zero). We may then rewrite:

0
B@<[�sc(rs; rd)]
=[�sc(rs; rd)]

1
CA =

0
B@<[W11]

... <[W19]

=[W11]
... =[W19]

1
CA �

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

��fat1a = 0

��fat2a = 0

��fat3a = 0

��fat4a = 0

��fat5a = 0

��fat6a = 0

��vein7a

��tumor8
a

��tumor9
a

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(4.82)

as 0
B@<[�sc(rs; rd)]
=[�sc(rs; rd)]

1
CA =

0
B@<[W17] <[

P
9

j=8W1j]

=[W17] =[
P

9

j=8W19]

1
CA �

0
B@ ��veina

��tumor
a

1
CA (4.83)

In this way we have reduced the number of linear equations to be solved, from nine to

two. This algorithm is easily extended for multiple measurements. It is interesting to

note that the sum of the weights in the above matrix represent our sensitivity of each

measurement to each tissue type. These sums can be used to design the experimental

setup and maximize sensitivity to the tissue type of interest.

Simulations were performed using PMI software [12]. A matrix inversion technique

(SVD) was employed to solve for the absorption coe�cient of inhomogeneities in a

background medium. Because the problem has been dramatically simpli�ed, there

was no need for any regularization or singular value analysis. 1% amplitude and 0.5

degree phase noise was added to all simulated data. In all of the following simulations

the optical properties of the background were ��a = 0.03 cm�1 and �0s = 10.0 cm�1

and the source-detector separation was 6 cm.
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We �rst tested this algorithm on a series of simple one object systems. The 1 cm

diameter spheres had the same scattering properties as the surrounding medium, but

the absorption varied from 0.035 to 0.355 cm�1. The area of interest, a 6 cm x 6

cm x 1 cm region, was divided into 120 x 120 x 20 = 288,000 voxels. Using a single

source-detector pair and making measurements of amplitude and phase at 4 di�erent

source modulation frequencies (50, 200, 350, 500 Mhz), we had a 8 x 288,000 matrix

to invert. But using the a priori structural information we were able to compress the

8 x 288,000 matrix down to a 8 x 1 matrix. In this reconstruction the computation

time was totally dominated by the time it takes to calculate the weights, and the

matrix inversion time was negligible. In �gure 4.16 the reconstructed value of the

object absorption is plotted versus the true value for each sphere simulation (labeled

1st iteration). Note that the reconstructed values agree well at low absorption, but

show saturation e�ects at higher absorption.

As we mentioned earlier, these saturation e�ects are a result of the breakdown of

the Rytov approximation. Basically, we have used a homogeneous model to calculate

the weight functions. To improve the reconstructions, we must take into account that

there is a heterogeneity present. When we updated the weight functions using the

1st iteration results, as suggested by Pogue et al. [20], we were able to overcome the

saturation e�ects. The imaging process now consists of several steps;

1. Create the weights using a homogeneous model.

2. Calculate the inverse using SVD.

3. Use this solution to calculate the weights using a heterogeneous model.

4. Calculate the inverse using SVD.

We have used the exact solution for a sphere to calculate the heterogeneous

weights. The results of this iterative process are also shown in 4.16, labeled 2nd

iteration.

The next simulation used six objects in the medium (background) as shown in

Fig. 3. Objects a,b,c,d had �a =0.036 cm
�1, object e had �a =0.042 cm-1 and object

f had �a =0.050 cm�1. A single source and detector were scanned along the sides of
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Figure 4.16: 1st and 2nd iteration of reconstructed absorption versus the true value,
for a single spherical inhomogeneity.
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Figure 4.17: Simulation with six absorbing inhomogeneities. Since the size and posi-
tion of the spheres are known, the 'reconstructed' image will look just like the original
image.

the square. Measurements were simulated at three modulation frequencies (0, 250,

500 Mhz) and 14 source-detector positions. When given the position of the objects

the algorithm reconstructs accurately the absorption coe�cients as shown in Table

4.1.

Finally, a tissue phantom was built, with a geometry resembling a compressed

breast as shown in �gure 4.18. The phantom was made from clear polyester resin, in

which titanium oxide particles were suspended to create a highly scattering medium

(as described by Firbank et al. [55]). Quantities of the scatterer and India ink were

added to give an absorption coe�cient �a=0.028 cm�1 and a reduced scattering co-

e�cient 6.5 cm�1 (780 nm), values which are close to the values measured for the

human breast tissue [22]. The optical properties of the model were veri�ed by inde-
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Sphere Real �a (cm
�1) Recon. �a (cm

�1)

a, b, c, d 0.036 0.037

e 0.042 0.045

f 0.050 0.056

Table 4.1: Reconstruction results for multiple absorbing inhomogeneities.

pendent time-resolved spectroscopy (TRS) measurements (see appendix B for a brief

overview of the TRS device). A two source one detector con�guration was used as

depicted in Fig. 5b. The sources were multiplexed (DiCon Fiber Optics multichannel

�ber optic switch). In all measurements a 780 nm laser source was employed. In

order to create an inhomogeneity, a 12 mm diameter, 35 mm long cylinder was drilled

in the phantom. The volume was �lled sequentially with twelve di�erent solutes of

intralipid and india ink. The concentration of dye was altered in precalculated steps

to give absorption values in the range 0.02 - 0.2 cm�1. A TRS system based on the

time-correlated single photon counting was used for the measurements.

As we discussed in section 4.8, we must divide out the homogeneous signal to

solve for the scattered phase. In the previous computer simulations, we were able to

divide out the homogeneous signal using and analytic solution. However in the ex-

perimental system, we were not able to obtain such a measurement. To eliminate the

homogeneous signal, we used the referencing scheme discussed previously. Briey, this

scheme involves comparing two measurements with equal source-detector separations

to eliminate the background contribution. For each intralipid-dye solution a single

pair of measurements was acquired. The time resolved data were transformed into

the frequency domain using the FFT, and six frequencies, all below 500MHz, were

selected. The algorithm reduced a 6 x 144,000 matrix down to a 6 x 1 matrix. (Since

only one absorbing inhomogeneity was present to the phantom, the algorithm had to

solve only for one unknown value). Figure 4.18 shows the reconstructed absorption
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Figure 4.18: A tissue phantom simulating a human breast with one heterogeneity. D
denotes the detector and S the sources. (a) Side view, (b) top view. (c) The results
from the inversion. See text for more discussion.

values, after one iteration, in comparison with the theoretically calculated ones.

The algorithm we present here simpli�es the calculation load by reducing the

number of unknowns to the number of regions with di�erent optical properties. These

results clearly demonstrate that given the geometry we can accurately reconstruct the

absorption of the di�erent regions of the various models. In the case of MRI-guided

optical tomography of the human breast, boundary conditions and inhomogeneous

background regions are expected to a�ect the accuracy of the reconstruction. Still we

believe that such a method will eventually prove to be of clinical value.
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4.13 Finite Systems

In our lab, we have inverted an approximate solution to the in�nite, heterogeneous

di�usion equation. We realize that in clinical situations, we will not have an in�nite

system, but rather a system with irregular boundaries. Although we have not inves-

tigated �nite systems in this work, many investigators have studied how to handle

boundary conditions for homogeneous, �nite media [59]. In this section we examine

the general problem, and then consider the simple, yet clinically relevant geometry

of the semi-in�nite system.

The most general goal is to write down a solution for the photon density in a

homogeneous volume enclosed by a surface, S. We will use the same formalism as the

solution of the electrostatic boundary-value problem using Green functions. Using

Green's theorem, for a source distribution A(r),

U(r) =
Z
V
A(r0)G(r; r0)d3r0 +

1

4�

Z
S

"
G(r; r0)

@U

@n0
� U(r0)

@G

@n0

#
d2r0: (4.84)

In the heterogeneous absorption case A(r) = Uo(r; rs)v��a(r)=D.

Investigators have used Monte Carlo simulations and experimental results to show

that the true boundary conditions for the case of �nite media are well modeled by the

extrapolated zero boundary condition [60, 61, 62, 63]. The extrapolated zero bound-

ary condition asserts that the photon density is zero a distance of 0:704l� from the

actual (planar) boundary [64]. Thus, we re-draw the boundaries at the extrapolated

position, and use the condition that U = 0 on the extrapolated surface. Equation

4.84 becomes,

U(r) =
Z
V
A(r0)G(r; r0)d3r0 +

1

4�

Z
S
G(r; r0)

@U

@n0
da0: (4.85)

This general equation may be simpli�ed by choosing a Green function that satis�es

Dirichlet boundary conditions (i.e. G = 0 on the extrapolated surface). Then

U(r) =
Z
V
A(r0)G(r; r0)d3r0 (4.86)
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Figure 4.19: An extrapolated zero boundary is a good approximation for the photon
density boundary conditions in the semi-in�nite case. Here er see how a source on the
boundary is transformed using a true source position and an image source centered
about the extrapolated boundary.
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Arridge et al. [59] have worked out the Green function solutions for Dirichlet

boundary conditions for a variety of di�erent homogeneous �nite systems such as

semi-in�nite, slab, spherical and cylindrical geometries. It is also possible to use

other methods such as Monte-Carlo and Finite Element to derive the Green function

solutions.

For the semi-in�nite case, we can use the method of images to �nd the Green

function which obeys the Dirichlet boundary conditions (see �gure 4.19). In this case

G(r; r0) =
exp(ikjr� r0j)

4�jr� r0j
�
exp(ikjr� rij)

4�jr� rij
(4.87)

where r0 is the position of the source in the sample volume, and ri is the position of

the image source located on the other side of the extrapolated boundary. Using this

Green function we can now calculate the incident DPDW,

U(r; rs) =
B

D

exp(ikjr� rsj)

4�jr� rsj
�
B

D

exp(ikjr� rij)

4�jr� rij
(4.88)

= Uo(r; rs)� Uo(r; ri): (4.89)

where rs is the position of the source in the sample volume, and ri is the image of rs.

We now plug the incident DPDW solution and the Green Function solution for

the �nite system into the weights (equation 4.13,4.26). For example, in the Born

approximation, for a detector at rd, equation 4.13 becomes

Usc(rd; rs; ri) = �

Z
d3r G(rd � r)| {z }

semi�infinite

O(r) Uo(r; rs)| {z }
semi�infinite

(4.90)

= �

Z
d3r [G(rd; r)�G(rd; r

0)] (4.91)

�O(r) [Uo(r; rs)� Uo(r; ri)]

where r0 is the image voxel position.

Multiple image sources can be used to solve for the scattered wave in the case of

the slab, the cube and other planar geometries. For curved geometries one has to

take more care in de�ning the extrapolated surface.


