Measurements of scattering and absorption changes in muscle and brain

ENRICO GRATTON1, SERGIO FANTINI1, MARIA ANGELA FRANCESCHINI1, GABRIELE GRATTON2 AND MONICA FABIANI2

1Laboratory for Fluorescence Dynamics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801, USA
2Department of Psychology, University of Missouri, 210 McAlister Hall, Columbia, MO 65211, USA

SUMMARY

Non-invasive techniques for the study of human brain function based on changes of the haemoglobin content or on changes of haemoglobin saturation have recently been proposed. Among the new methods, near-infrared transmission and reflection measurements may have significant advantages and complement well-established methods such as functional magnetic resonance imaging and positron emission tomography. Near-infrared measurements can be very fast, comparable in speed to electrophysiological measurements, but are better localized. We will present the demonstration of measurements of millisecond signals due to brain activity in humans following stimulation of the visual cortex. However, major unresolved questions remain about the origin of the signals observed. Optical measurements on exposed cortex in animals show that both the absorption and the scattering coefficient are affected by neural activity. Model calculations show that the signals we detected may originate from rapid changes of the scattering coefficient in a region about 1 to 2 cm below the scalp. We discuss our measurement protocol, which is based on a frequency-domain instrument, and the algorithm to separate the absorption from the scattering contribution in the overall optical response. Our method produces excellent separation between scattering and absorption in relatively homogeneous masses such as large muscles. The extrapolation of our measurement protocol to a complex structure such as the human head is critically evaluated.

1. INTRODUCTION

One of the major advances in the understanding of light propagation in tissues was the demonstration that the diffusion approximation of the Boltzmann transport equation was reasonably well satisfied under a range of typical physiological conditions (Ishimaru & Patterson 1978; Fishkin \textit{et al.} 1991; Patterson \textit{et al.} 1989). Together with this theoretical and experimental result, during the past ten years there has been tremendous progress in optical techniques, including the availability of short-pulsed lasers in the near-infrared. It was soon realized that the information content of a time-resolved measurement in a uniform scattering medium (Patterson \textit{et al.} 1989) was sufficient to separate the contribution of scattering and absorption to the light attenuation in tissues. At the same time, it was proposed that the frequency-domain technique, which intrinsically contains the same information as the time-resolved measurement, may result in faster acquisition times and cheaper instrumentation (Fishkin \textit{et al.} 1991). One of the major differences between frequency and time domain is that in the frequency domain the measurement at a single modulation frequency can be sufficient to isolate the contribution of the scattering from that of the absorption. This is strictly true for homogeneous media, and for measurement locations far from the light source. However, in several practical situations the measurement of the front of the photon density wave must be performed relatively close to the source, or the source terms may be poorly determined. A few years ago we proposed to use a variant of the single-frequency method, the multidistance method, which avoids some of the problems related to the source term, but has some other restrictions in practical applications. In this article we discuss (i) the hardware used in the frequency-domain instrument, (ii) the implementation of the multidistance method for the measurement of absorption and scattering in homogeneous media and (iii) the application of fast acquisition techniques for the measurement of transient signals associated with neuronal activity.

2. PHOTON DENSITY WAVES

When working in the frequency domain, it is useful to think of light propagating in a turbid medium in terms of photon density waves. These waves of light intensity modulated at high frequency travel at constant velocity in the medium. Photon density waves display some of the optical phenomena associated with waves such as reflection, refraction and diffraction (O'Leary \textit{et al.} 1992). The velocity of the propagation
of the photon density waves and their attenuation in the turbid medium depend on the medium optical parameters. In particular, the photon density wave \(U(t) \) at the distance \(r \) from the source has the following expression valid in the diffusion regime in an infinite and homogeneous medium (Fishkin & Gratton 1993):

\[
U(t) = \frac{S}{4\pi Dr} \left(e^{-r/\left(\nu D\right)} + Ae^{-r/\left(D\right)}e^{i(\Phi_0 - \omega t)} \right) = U_{DC} + U_{AC}e^{i(\Phi_0 - \omega t)},
\]

(1)

where \(\omega \) is the angular modulation frequency, \(r \) is the source detector separation, \(\nu \) is the speed of light in the medium, \(D \) is the diffusion coefficient which is defined as \(1/(3\mu_s^*) \) where \(\mu_s^* \) is the reduced scattering coefficient, \(\mu_a \) is the absorption coefficient, \(k = \sqrt{\nu/(\mu_s^* - i\omega)} \) is the phase of the source, \(A \) is its modulation depth and \(\Phi_0 \) is its strength. From equation (1), the value of the phase \(\Phi \) and the amplitude \(U_{AC} \) of the wave can be calculated taking the argument (for the phase) and the absolute value (for the amplitude) of \(U_{AC} \). The average value of the photon density is given by \(U_{DC} \):

\[
\Phi = r \left[\frac{\mu_s}{2D} \right] \sqrt{\left(1 + x^2\right)} - 1, \quad (2)
\]

\[
\ln(rU_{DC}) = -\left[\sqrt{\left(\frac{\mu_s}{D}\right)} \right] + \ln\left(\frac{S}{4\pi vD}\right), \quad (3)
\]

\[
\ln(rU_{AC}) = -\left[\sqrt{\left(\frac{\mu_s}{2D}\right)} \right] \sqrt{\left(1 + x^2\right)} + 1 + \ln\left(\frac{SA}{4\pi vD}\right), \quad (4)
\]

where

\[
x = \frac{\omega}{\nu \mu_s^*}, \quad (5)
\]

and

\[
D = \frac{1}{3\mu_s^*}. \quad (6)
\]

What is important is that from the value of the phase \(\Phi \) and amplitude \(U_{AC} \) (or \(U_{DC} \)) of the wave it is possible to extract the values of the reduced scattering and absorption coefficient of the medium. In the next section we discuss how to measure accurately the values of the phase and attenuation of the photon density wave.

3. FREQUENCY-DOMAIN INSTRUMENTATION

The basic design of our frequency-domain instrument follows the lines of the multifrequency-phase fluorometer developed in our laboratory about 15 years ago (Gratton & Linkeman 1983; Gratton et al. 1984). Since the light modulation frequency is of the order of 100 MHz, it is still difficult to measure the phase and the modulation of the light at this high frequency with high precision. In fact, to measure accurately changes in haemoglobin saturation of the order of 2–3%, we estimate that we need to measure the phase and the amplitude of the photon density wave with an accuracy of about 0.5° of phase and 0.4% of the amplitude of the wave. Using current technology, this accuracy can be easily achieved if the light intensity is adequate. To better appreciate this point, let us consider what is the source of noise in the measurement of the photon density wave. It has been shown (Pogue 1995) that the only source of noise in the commercial frequency-domain instrument by ISS Inc. is due to photon statistics. This instrument is built on the design of our instrument described in 1987. Based on the so-called four-phase measurement illustrated in figure 1, the uncertainty of the phase and amplitude measurement can be computed from the number of counts (photon detected) in each of the four-phase bins and assuming photon statistics. Consequently, to reach an accuracy of the phase of about 0.5°, we need a total of about 4000 counts in the four bins (French 1996).

Of course, this estimate varies depending on the effective modulation of the signal and figure 1 is based on 100% source modulation. The accuracy in the determination of the absorption and scattering coefficients depends also on systematic measurements errors. Systematic errors are much more difficult to account for. We have followed a ‘calibration procedure’ by which we determine the response of our system for a calibration sample for which we know (from independent measurements) the optical properties. Then the measurement in the tissue represents only a relatively small perturbation with respect to the pre-calibrated value. Using the calibration protocol, most of the systematic errors are avoided or strongly reduced (Fanti et al. 1995).

4. THE MULTIDISTANCE METHOD

One of the major problems encountered in the practical application of the measurement of the absorption and scattering parameters of turbid media using the front of the photon density wave is that the so-called ‘source terms’, i.e. the phase and the amplitude of the source are not exactly known. In addition, even if the phase and the amplitude of the source are exactly known, the description of the light transport in the multiple scattering medium is well described by the diffusion approximation only far from the source. We have shown that the extrapolation of the photon density wave phase measured far from the source back to the source can give values of the phase that are unphysical, i.e. negative values. This apparent contradiction is due to the approximation used to describe the propagation of the photon density wave. However, after travelling for a distance of about 7–8 mm from the source, the propagation of the photon density wave is well described by the diffusion approximation (Fanti et al. 1997). Since at those larger distances, the photon density wave travels at constant velocity and attenuates like an exponential divided by the distance, the phase as a function of distance and the logarithm of the amplitude (DC or AC) multiplied by the distance, are described by three straight lines (see equations (2)–(4)). The phase, DC and AC straight lines are associated with the corresponding slopes \(S_\Phi, S_{DC}, \) and \(S_{AC} \). From each one of a
Figure 1. Schematic representation of the frequency-domain acquisition principles. (a) A radio-frequency signal (RF) at 120 001 000 Hz is used to modulated the gain of the detector causing down-conversion of the laser frequency at 120 000 000 Hz. The difference frequency between the laser and the radio frequency, 1 kHz, is the cross-correlation frequency. (b) The DC, AC and phase of the cross-correlation signal contain the same information as the original high-frequency signal. The signal at the detector is attenuated and phase-shifted with respect to the signal at the source. (c) Measurement of four values per period of the cross-correlation signal is sufficient to provide the DC, AC and phase of the signal.

A pair of slopes, we can extract the values of the absorption and scattering coefficients according to the following expressions (Fantini et al. 1994a).

Using the DC, phase: \(\mu_s = -\frac{\omega}{2\pi} \frac{S_{DC}}{S_{\phi}} \left(\frac{S_{\phi}^2}{S_{DC}^2} + 1 \right)^{-1} \) \(\mu_s' = \frac{S_{DC}}{3\mu_s} \) \(\mu_s' = \frac{S_{AC}}{S_{\phi}} \) \(\mu_s = \frac{\omega}{2\pi} \frac{S_{DC}}{S_{AC}} \left(\frac{S_{AC}}{S_{\phi}} \right) \) \(\mu_s' = \frac{S_{DC}}{3\mu_s} \)

Using the AC, phase: \(\mu_s = -\frac{\omega}{2\pi} \frac{S_{DC}}{S_{AC}} \left(\frac{S_{AC}}{S_{\phi}} + 1 \right)^{-1} \) \(\mu_s' = \frac{S_{AC}}{3\mu_s} \)

Using DC, AC: \(\mu_s = \frac{\omega}{2\pi} \frac{S_{DC}}{S_{AC}} \left(\frac{S_{AC}}{S_{\phi}} - 1 \right)^{-1} \) \(\mu_s' = \frac{S_{DC}}{3\mu_s} \)

There are additional practical advantages of the multidistance method. One of the most important is the relative independence of the slope measurement on the curvature of the surface on which the measurement is made (Cerussi et al. 1996). For practical purposes, we have implemented the measurement of the slope of the phase and amplitude by measuring the amplitude and the phase of the photon density wave at four selected distances from the source. A computer algorithm calculates the average scattering and absorption from those slopes. The recovery of \(\mu_s \) and \(\mu_s' \) is very accurate and given the nature of the measurement, i.e., measuring a slope rather than a value, \(\mu_s \) and \(\mu_s' \) are largely independent from the absorbance of the skin or other local factors (Fantini et al. 1994a).

Although the equations we have reported are valid in the infinite medium, similar equations can be written for the semi-infinite medium, which better approximate actual measurement techniques (Fantini et al. 1994b). Generally, measurement of the scattering and absorption coefficients of a particular area of the body can be done non-invasively by placing a light source (emitting light in the near-infrared range—between 700 nm and 1300 nm) and a detector on two points on the surface of the skin, at a distance of a few centimetres apart. Most tissues in the human body are
highly scattering in the near-infrared. For instance, the reduced scattering coefficients of grey and white matters of the adult brain range between 20 and 30 cm\(^{-1}\) for the grey matter and between 70 and 120 cm\(^{-1}\) for the white matter (Van der Zee et al. 1993). On the contrary, the absorption coefficients of the adult brain are of the order of 0.25 cm\(^{-1}\) for the grey matter, and 0.05 cm\(^{-1}\) for the white matter (Van der Zee et al. 1993). These basic optical properties of the brain tissues indicate that the Boltzmann transport equation for photons inside the head can be solved in the diffusion approximation (Case & Zweifel 1967; Jacques 1989; Fishkin et al. 1991; Madsen et al. 1991; Gratton et al. 1993; Svaasand et al. 1993) and that the propagation of photons through the tissue can be described as a diffusion process (Ishimaru 1978). This has several consequences of practical importance.

The individual photon trajectories form the source to the detector are highly variable and they comprise an extended volume. Modifying the optical properties occurring within this volume influence the light intensity and the time-of-flight. The size of the volume determines the spatial resolution of the technique (of the order of 1 cm). Due to the diffuse nature of light propagation in tissues, only photons travelling deeply into the medium are likely to reach the detector. The volume explored by a source–detector pair located on the surface of the medium (head) is a curved spindle with an average depth about one-quarter the distance between the source and the detector (Bonner et al. 1988; Gratton et al. 1994). Therefore, it is possible to study the properties of relatively deep structures (such as the cortex) by placing a source and a detector on the surface of the head. The number of photons reaching the detector (i.e. the attenuation) decreases more than exponentially with the source–detector distance (equation (3)), whereas the phase delay of the photon density wave is linear with distance (equation (2)). In the case of head tissues, the large attenuation of the light limits the maximum useful source–detector distance to less than 10 cm, and effectively limits the maximum penetration depth to less than 5 cm from the surface. For adult heads, also the high absorption of the grey matter can further limit the effective penetration.

The crucial point in the determination of the optical parameters of tissues using the multidistance method is in how well the actual anatomy realize the conditions of a semi-infinite medium. We have demonstrated that the effect of the skin absorption is negligible in the multidistance method, but the effect of large underlying structures such as bones or fat layers, may strongly modify the modalities of light propagation. In particular the relatively clear cerebral fluid layer can strongly affect the modalities of light propagation (Firbank et al. 1996). We have performed Monte-Carlo simulations on layered structures to assess how much the multidistance method is affected by the different layers (Gratton et al. 1995b). The results are quite complex and cannot be easily generalized, since they strongly depend on the optical properties and thickness of the different layers. However, for reasonable multidistance method may provide one of the most robust approaches. For example, figure 2 shows Monte-Carlo simulations of the recovery of the optical parameters of an underlying layer using the multidistance method: a function of the layer depth. In the simulations, the medium has an absorption of 0.043 cm\(^{-1}\) and a scattering coefficient has a value of 3.2 cm\(^{-1}\). In the frequency-domain simulation a frequency of 110 MHz for light modulation was used and four detectors spaced by 1 cm with the first one at 3 cm from the light source were used as shown in figure 2a. The layer had the same scattering coefficient as the surrounding medium and an absorption of a factor of two larger than the medium (\(\mu_a = 0.086\) cm\(^{-1}\)). The layer was then moved in one centimetre steps from the surface depth of zero (corresponds to no layer) to a depth of 7 cm. The recovered optical parameters are shown in figure 2b. For this simple situation, the multidistance method recovers the optical parameters of the layer within 25% of its value when the layer is at a depth of 2 cm. Of course, for other layer positions, the optical parameters of the layer are not well recovered.
In the experiments described, the light source was a light-emitting diode (LED) with a wavelength of 715 nm, and a power of less than 1 mW. The source-detector distance was fixed at 3 cm (computer simulations indicated that this distance allows for the detection of phenomena occurring at a depth of up to 3 cm (Gratton et al. 1995a)). The phase and the attenuation of the photon density wave were acquired using sampling rates varying between 12.5 and 50 Hz in different experiments. The measurements were obtained using a single-channel system (maps were obtained by repeating measurements at multiple locations).

The pulsation of the vascular system, and in particular of large and medium arteries, that is associated with systolic activity of the heart produces relatively large changes in the transmission of light through tissue (Jennings & Choi 1983). The signal due to pulsation may be quite significant and it is exploited for studying haemodynamic effects related to brain activity. However, when the interest is in detecting neuronal activity, pulsation may produce substantial artefacts that are difficult to eliminate with simple filtering approaches. It is therefore important to separate the changes in intensity due to haemodynamics from the changes due to neuronal activity. We have developed an algorithm for the estimation of the pulse artifact (Gratton & Corballis 1995) based on a regression procedure in which the effect of systolic pulsation is estimated from the data. The basic idea is that pulsation produces a signal that is always self-similar, although it may vary in intensity and duration. Our tests showed that, when used to estimate and subtract the effects of pulsation from the optical recordings, the procedure substantially reduces the impact of the pulsation artefact. This procedure was applied to all our data.

5. MEASUREMENT OF NEURONAL ACTIVITY

Recent studies on exposed cortex have shown that the optical properties of the cortex change when the cortex is functionally active due to absorption and scattering changes (Grinvald et al. 1986; Frostig et al. 1990; Federico et al. 1994; Holtzoff et al. 1994). Absorption changes are identified with metabolic and haemodynamic phenomena and they are relatively slow (seconds). Scattering changes are less well understood. Studies on isolated neurons (Cohen 1972) and on the nervous systems of invertebrates (Stepnowski et al. 1991) have shown that the scattering from neurons change during action potentials (milliseconds). Since near-infrared light can penetrate deeply into tissue, optical methods employing near-infrared radiation could also be used to image internal body structures non-invasively (Chance 1989; Benaron & Stevenson 1993).

(a) Absorbing and scattering objects can be detected through the skull

We demonstrated using phantoms that detection of deep structures (4-5 cm) inside a highly scattering medium was possible using non-invasive techniques (Benaron & Stevenson 1993; Gratton et al. 1994). A semi-infinite scattering medium bounded by a non-scattering medium was simulated using a tank filled with skimmed milk. Using this phantom, we studied the volume explored by a photon density wave introduced by a source at the surface and detected at another point on the same side of the surface. The
average path followed by photons diffusing from the source to the detector was determined by observing the effects of a small absorbing sphere immersed in the liquid phantom. The placement of the absorbing sphere was varied systematically, and the phase and the amplitude of the photon density wave were measured at each sphere position. The reasoning used in this study was that the absorbing sphere interferes with the measurements only if it intersects the average path followed by the photons. The results confirmed the prediction that photons travelling from the source to the detector follow trajectories which are contained in a banana-shaped region. In addition, the data demonstrated that the volume explored in time-resolved measurements was much narrower than that explored in steady-state measures. Some of the results of these initial studies were reported by Gratton et al. (1994). Using the same experimental set-up, we showed that by moving the detector at the surface of the scattering medium, a shadow of the absorbing sphere can be easily distinguished by recording the phase and the amplitude of the photon density wave. We further showed that the images of absorbing objects could be obtained through bone structures by placing a small absorbing sphere inside a sheep’s skull (Gratton et al. 1994). The skull was then submerged in skimmed milk. The surface of the milk was scanned using a source-detector pair. The image obtained with the sphere inside the skull was compared with an image obtained without the sphere. The difference between the two images indicated that structures with specific optical properties can be visualized through the skull. In addition we proved that scattering objects give larger signals than absorbing objects.

(b) Non-invasive measurement of brain activity: distinction between fast and slow effects

Several studies have shown that functional changes of brain activity can be detected by optical methods based on measures of propagation of photon density waves (Chance et al. 1993; Hoshi & Tamura 1993; Obrig et al. 1994; Gratton et al. 1995a, b; Maki et al. 1995). Instead, fast effects are best visualized using time-resolved methods (see Gratton et al. 1995a, b; Meek et al. 1995).

To a large extent, the slow effects can be attributed to the changes of absorption that are probably produced by oxygenation and haemodynamic changes which occur in active areas of the brain (Obrig et al. 1994; Villringer & Dirnagl 1995). They may also be related to the effects observed with PET studies of blood flow, although the time-course of the latter cannot be studied with the same level of detail.

(c) Detection of fast optical signals

We have used several protocols to stimulate fast optical signal (Gratton et al. 1995a, b; Gratton et al. 1996; Fabiani et al. 1996). Our studies indicate that fast signals may reflect localized neuronal activation related to specific stimulation (or preparation for movement). Using the location where fast signals are observed, we have obtained maps demonstrating spatial resolution of at least 5 mm. In other studies using visual stimulation we showed that changes in the brain optical parameters can distinguish between stimulation effects (localized to area 17) and attention effects (that are evident in extrastriate areas of the occipital cortex). Furthermore we demonstrated that the localization of fast optical signal shows spatial correspondence with fMRI data and temporal correspondence with visual evoked potential data collected in the same paradigm.

We (Gratton et al. 1995a) recorded fast optical signals (with detectors placed on the surface of the head directly above the two motor cortices, and the light source placed on the vertex), while subjects were performing a task in which they were required to tap one hand or one foot at regular intervals. Because of the neuroanatomical characteristics of the primary motor cortex (in which the right motor strip controls movements in the left part of the body and vice versa), differential effects were expected for hand movements that were contralateral or ipsilateral to the location of the detector. Specifically, it was hypothesized that when the detector was placed on the side contralateral to the hand movement, the photon path should cross motor areas in which neurons were active. In this study, four subjects were asked to tap one of their hands for 10 s at a frequency of 0.8 Hz; 10 s of rest preceded and followed the tapping period. As expected systematic differences in the photon delay parameter emerged as a function of side movement, consisting of changes occurring at the tapping frequency (0.8 Hz and/or its harmonics).

The tapping experiment had several limitation. Specifically, maps of activity could not be derived from the data because only two locations (one above each of the motor strips) were tested. In addition, the data recording was not time-locked with the tapping movements of the subjects. In further studies we address these problems (Gratton et al. 1995b) to determine whether fast optical signals could be used to derive a retinotopic map of the primary visual cortex. To gain more understanding of the time-course of
fast optical signal, a faster sampling rate (20 Hz) was employed and the recording of the optical parameters was time-locked to the presentation of visual stimuli. The stimuli consisted of four black-and-white vertical grids, displayed in the four quadrants of a computer monitor. On each trial, one of the grids switched colours every 500 ms, while the alternating grid was varied across trials. This was expected to produce systematic variations in the segment of primary visual cortex being stimulated on each trial. Photon migration parameters (light intensity and delay) were measured from 12 scalp locations over the occipital lobe, to obtain a map of the visual cortex. Average waveforms corresponding to the changes in optical parameters during the first 500 ms after stimulation were derived. The analyses identified a deflection in the delay parameter, peaking 100 ms after stimulation and reaching a maximum delay of about 10 ps. The maps obtained with these data (reported by Gratton et al. (1995b)) indicate that the areas of maximum response for each of the four stimulation conditions correspond to the expected retinotopic map of the visual field in primary visual cortex (i.e. the maps are inverted along both the vertical and horizontal axes). Direct data on the depth of these effects are not available. However, simulations reported by Gratton et al. (1995a) suggest that changes of about 10 ps in the delay parameter, combined with virtually no change in the intensity parameter, are consistent with variations in scattering (or absorption) of layers located at a depth of 1.5–3 cm (which corresponds to the depth of the superficial half of the primary visual cortex). The latency of the effects appear consistent with the idea that they may be due to the scattering changes ensuing in conjunction with electrical neuronal activity, as proposed by Stepnoski et al. (1991); see also Frostig 1994). The time resolution of the optical measurement can be as high as 1 ms, using our current instrument (figures 3 and 4).

6. CONCLUSIONS

The results from our studies of fast changes of optical properties suggest that this signal occurs simultaneously with or before the surface electrical potential (evoked potential or ERP). This makes the fast optical signal an ideal marker for indexing the occurrence of neuronal activity. The fast optical signal also appears to be very localized, so as to allow
different parts of the same neuroanatomical area of the cortex (as in the case of Brodmann's area 17) to be distinguished. Our data indicate that this localization is consistent with that obtained using fMRI. This may be useful in two ways. (i) It may help us when studying the relative timing of neuronal activity in different brain areas. This may have profound theoretical implications, since we expect most brain functions (such as vision, memory, attention, language, movement control, etc.) to depend on the dynamic interactions between different brain areas. (ii) The possibility of deriving data with high resolution both in the temporal and the spatial domains may help the integration of various non-invasive methods for studying brain function, and in particular electrophysiological and haemodynamic techniques.

Although non-invasive optical methods are quite promising for the study of brain function, it is also clear that these methods have intrinsically limited resolution. However, the temporal resolution can be further improved to parallel the temporal resolution of electrical signals. So far our data are constrained by methodological issues, some of which appear solvable, others beyond the capabilities of non-invasive measurements using photon density waves. The lack of a three-dimensional reconstruction can, in principle, be solved using a reconstruction algorithm. Another important consideration is the lack of understanding of the origin of the signal observed. At present we have not been able to determine the changes of the phase delay upon activation of certain parts of the brain.

This work is supported by NIH grants RR03155 and CA57032, and also a joint Whitaker-NIH grant RR10966.

REFERENCES

