Optimal linear inverse solution with multiple priors

in diffuse optical tomography
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A general framework for incorporating single and multiple priors in diffuse optical tomography is
described. We explore the use of this framework for simultaneously utilizing spatial and spectral priors
in the context of imaging breast cancer. The utilization of magnetic resonance images of water and lipid
content as a statistical spatial prior for the diffuse optical image reconstructions is also discussed.
Simulations are performed to demonstrate the significant improvement in image quality afforded by
combining spatial and spectral priors. © 2005 Optical Society of America
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1. Introduction

Diffuse optical tomography (DOT) is a rapidly grow-
ing, new biomedical imaging method based on the
propagation of near-infrared light through tissue.-3
Owing to its sensitivity to hemoglobin, water, and
lipid contrast in tissue, the technique has been widely
used in the study of functional brain imaging,*-7
breast imaging,8-1! muscle,’2 and imaging of joint
inflammation.!314 The highly scattering nature of
near-infrared photons through tissue leads to a com-
plex forward and inverse problem. Furthermore, as
the inverse imaging problem is ill posed and gener-
ally underdetermined, the image quality is compro-
mised by poor spatial resolution and by sensitivity to
measurement noise.

One approach to improve image quality is to incor-
porate prior information into the inverse problem.
Arising from the portability of the instrument and
the use of fiber optics, DOT can easily be combined
and coregistered with other image modalities [for in-
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stance, magnetic resonance image (MRI), ultrasound,
and x ray]15-19 that can provide structural priors for
the DOT image reconstruction. Another feature of
tissue is that the optical properties vary as a function
of source wavelength. The spectral content of the op-
tical images enables the derivation of images of tissue
physiology from the known spectra of tissue chro-
mophores. These spectra can be exploited as a spec-
tral prior in the image reconstruction, leading to a
new imaging algorithm that can be used to recon-
struct the chromophore image directly from the opti-
cal measurements at different wavelengths, rather
than first reconstructing the optical properties and
then deriving the chromophore images.2°—22 In this
paper we review a flexible general framework with
which to incorporate different prior information si-
multaneously into the linear inversion.

We explore the use of this framework for simulta-
neously utilizing spatial and spectral priors. DOT is
generally sensitive to four major chromophores in the
breast tissue, oxyhemoglobin, deoxyhemoglobin, wa-
ter, and lipid.23 Therefore, if we had a spatial prior for
some of the chromophores, we would expect an im-
provement in the reconstruction of all of the chro-
mophores. The MRI method known as the three-point
Dixon technique, which separates the MR signal into
individual contributions of fat and water in each
voxel of tissue, can provide spatial information about
water and lipid content in the tissue.24 We propose to
obtain the water and lipid spatial distributions from
MRI and then to use these as a spatial prior in the
DOT image reconstruction of water and lipid while
leaving the hemoglobin images unconstrained. Fur-
thermore, this correlation between MRI and DOT



allows us to validate DOT directly with an estab-
lished imaging modality.

Here we first review a general framework for in-
corporating different priors into the linear inversion
that enables a new approach for DOT in which a
spatial prior is directly applied to the reconstruction
of physiological parameters. Then we present simu-
lation studies that quantify the improvement in the
image contrast-to-noise ratio (CNR) and the reduc-
tion of image parameter cross talk afforded by the
incorporation of different spatial and spectral priors
into the context of imaging breast cancer.

2. Linear Approach to Diffuse Optical Tomography and
Its Inverse Solution

A. Linear Approach to Diffuse Optical Tomography

When light enters a highly turbid medium, the indi-
vidual photons scatter many times and thus trace out
random paths before escaping from or being absorbed
by the medium. In the highly scattering regime, the
optical properties of the turbid medium are described
by two parameters: the reduced scattering coefficient
W (r, \) and the absorption coefficient w,(r, \). Pho-
ton migration in the highly scattering limit is well
approximated by the photon diffusion equation.2:25
We further assume that p,’ is spatially constant. The
absorption coefficient p, is expressed by two com-
ponents: the background, p,(\), and the small
perturbation between the background and another
state, dp,(r, N). The light energy density is expanded
in a perturbative series, ie., ®(r,\) = Py(r, \)
+ ®,(r, \) + . . ., and solved to the first order.26:27 The
first-order perturbative solution to the heterogeneous
equation in the limit in which ®; << @, is given by

d,(r,, 1y )\)ZJ —duu(r, NvD 'G(x,, v, \)
4
X G(r, ry, Nd’r, (1)

where r, and r; are the source and detector locations,
respectively; G is the Green’s function solution of the
diffusion equation for our boundary conditions; v is
the speed of light in the medium; and D is the diffu-
sion coefficient and is equal to v/(3p,’). We discretize
Eq. (1), write it in a matrix-vector form, and further
assume additive noise in the measurement:

®,=Ax +n, (2)

where n is measurement noise with a zero-mean ran-
dom vector; A is the weight matrix; x is the vector of
the perturbation in the absorption coefficient, du.,,
where each element corresponds to a distinct voxel
location; and ®, is a vector of measurements in which
each element corresponds to a particular source—
detector pair.

B. Inverse Solution

There are various derivations for the linear inverse
operator used here. Assuming that both (ARA”
+ BC) and (ATC™'A + BR ) are invertible, then the
minimization of the expected error, the maximum a
posterior estimation when unknowns x and noise n
are jointly Gaussian distributed (i.e., Bayesian esti-
mation), the Tikhonov regularization, and the gener-
alized Wiener filter all result in the inverse operator
(W):

W=RAT(ARA" + C) ! (3)
and, equivalently,
W=(ATC'A+BR ) 'ATC, 4)
such that the reconstructed image is given by
X=Wo", (5)

where C is the covariance matrix of n, R is the esti-
mated covariance matrix for x from Eq. (2), B is the
regularization parameter, and ®” is the measured
data corresponding to the prediction ®,. Equation (3)
provides a general framework to incorporate different
prior information about the covariance of the mea-
surements and the covariance of the tissue optical
properties into the inverse solution. A detailed deri-
vation of the inverse operator W can be found in Dale
and Sereno.28 An advantage of the present formula-
tion is that any empirical observations or reasonable
assumptions about the second-order statistics of the
measurement noise and the perturbations of the op-
tical properties can be explicitly incorporated to con-
strain the solution.2?

Note that Eqs. (3) and (4) are equivalent in princi-
ple and that the choice between them can be made on
the basis of convenience or computational complexity.
In this paper we use Eq. (3).

3. Inverse with Prior Information

In this section we present different formulations for
the measurement and solution priors C and R, re-
spectively, focusing mainly on the use of spatial and
spectral priors in R.

A. Measurement Prior C

If we assume that the noise for each measurement is
independent of all other measurements and is of
equal variance, C is proportional to the identity ma-
trix. For the simulations in this paper, the standard
deviation of the additive noise is varied from mea-
surement channel to measurement channel. In this
case the C matrix is no longer an identity matrix,
although it is still diagonal.

Another prior that could be incorporated into C is
systemic physiological signals that interfere with the
signals of main interest; examples of such systemic
signals include the heartbeat, respiration, and blood
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pressure variations. Since these systemic signals are
common to multiple-measurement channels and are
spatially correlated, they produce a nonzero spatial
cross covariance for the data that can be considered in
the off-diagonal elements of C.

B. Spatial Prior in Diagonal Term of R

Because the inverse imaging problem for DOT is ill
posed and generally underdetermined, the image
quality is compromised by poor spatial resolution and
sensitivity to measurement noise.2 This can be im-
proved modestly by optimization of the geometry and
the number of measurements,3° but significant im-
provement can be obtained by inclusion of prior in-
formation into the image reconstruction.16.19,31,32

In our previous study of combined three-
dimensional (3-D) x-ray mammography and DOT,8
we utilized an x-ray image as a spatial prior for the
DOT reconstruction of a breast lesion. The spatial
prior was incorporated as a linear least-squares prob-
lem in which the cost function was composed of two
terms: the normal data residual term and a second
term containing the structural prior. The cost func-
tion f(x) is

fx) = |@" — Ax|* + B,/|IT - S)x|* + B, [ SxI,  (6)

where I is the identity matrix and S is a diagonal
matrix that describes the hypothesized support of the
tumor as indicated by the x-ray image. More specifi-
cally, in discrete form, the ith element of the diagonal
is a 1 if the ith voxel is identified as part of the tumor
by the x-ray image and 0 otherwise. ; and B, are the
two regularization parameters that control the de-
gree of regularization in the background and lesion,
respectively. The advantage of this method is that the
influence of the structural information can be ad-
justed by appropriately weighting the structural com-
ponent of the cost function.

This approach of implementing a spatial prior is
easily written in the form of Eq. (3). The diagonal of
R varies according to whether the corresponding
pixel is inside or outside the region of interest. Spe-
cifically, the ith element along the diagonal R,;
= B; ! when the ith voxel is outside of the region of
interest otherwise R;; = B, . A smaller value for B
reduces the penalty for the reconstruction of the op-
tical contrast and thus increases the probability of
finding contrast in the designated region. Unfortu-
nately, it also increases the image noise in the des-
ignated region.32

C. Spectral Prior

DOT is often used to image the concentration of oxy-
hemoglobin (HbO,) and deoxyhemoglobin (HbR) in
tissue.?-20:33 The technique exploits the fact that oxy-
hemoglobin and deoxyhemoglobin are the dominant
absorbers in the infrared region (650-950 nm). In a
typical reconstruction scheme there are three steps to
achieve the final HbO, and HbR images. First, the
measurements are taken simultaneously at two or
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more different wavelengths. Second, the images of
the absorption coefficients at the different wave-
lengths are reconstructed separately. Finally, the
concentration of HbO, and HbR are calculated from
the spectral variation in the absorption images. As
shown in our previous spectral prior study,?? if im-
ages of HbO, and HbR are reconstructed directly in-
stead of first reconstructing the spectral absorption
images, we can suppress the image noise and reduce
the cross talk in the HbO, and HbR images by forcing
spectral consistency in the reconstructed images.

If we assume that the absorption is dominated by
hemoglobin, then

Ma(N) = &xp0,(M[HDbO,] + expr(N[HDR], (7

where e, and ey, are the extinction coefficients of
HbO, and HbR, respectively, which are wavelength
dependant; and [-] indicates the concentration of the
chromophore. To obtain a unique solution of [HbO,]
and [HbR], we need measurements at two different
wavelengths at least.

Making use of Eq. (7) allows us to write ®; at two
different wavelengths directly in terms of the un-
known perturbations to the HbO, and HbR concen-
trations:

D\ [AND 0 BN .
[cpl(xz)]—[ 0 A()\z)][ﬁua()\z)] (8a)
3[HbO,]
[B[HbR]] (8b)
_ SHbOZOH)A()\l) SHle(Al)AO\l) 3[HbO,]
- |:8Hb02()\2)A(7\2) 8HbR()\2)A()\2) :|[ B[HbR] ]’
(8c)
B _ A(Ny) 0
E=:¢®I, A—[ 0 A(M)}
_ |:8Hb02, A €HbR, xl}
| Bmb0, 0, EHBR A, |

Notice that E is the Kronecker product of ¢ and I,
where the identity matrix I has dimensions equal to
the number of columns of A(\;). ®,(\,) and ®,(\,) are
column vectors of the measurement at wavelengths
\; and \,, where each element in the vector repre-
sents a different source—detector pair. The measure-
ment arises from spatial variation in the absorption
coefficient at each wavelength, as indicated by the
vectors dp,(\;) and dp,(\,), where each vector ele-
ment represents an individual volume element in the
highly scattering medium; A(\;) and A(\,;) are the
Jacobian matrices of the measurements with respect
to changes in the absorption coefficient at each wave-
length. The transformation from the spatial variation
in the absorption coefficient to the estimated mea-
surement at each wavelength is given by the weight



matrix.2 Substitution of Eq. (7) into Eq. (8a) results in
Eq. (8¢). It is through inversion of the matrix in Eq.
(8c) that we are able to reconstruct the images of the
physiological parameters [HbO,] and [HbR] directly,
rather than first reconstructing images of the absorp-
tion coefficient and then determining the hemoglobin
parameters.

Here we show that inversion of Eq. (8b) results in
an equation of the form of Eq. (3). We then provide an
explanation as to why a spectral prior implemented
in this form provides improved image quality. Given
a Tikhonov regularization parameter of 3, the solu-
tion minimizing the cost function between estimated
measurements by use of Eq. (8b) and the measure-
ment @™ in the least-square sense is

3HbO,
[ SHbR

] =E’A"(AEE’A” + gC) ‘o™, 9
Comparing Eqgs. (9) and (3), we see that

R =EE”. (10)
Note that R is no longer a diagonal matrix but a block
diagonal matrix. The off-diagonal blocks account for
the correlation among the absorption coefficients in
the same spatial coordinate at different wavelengths.
In effect, solving separately at each wavelength im-
plicitly assumes that the off-diagonal blocks are all
zeros. Incorporating the wavelength correlation of
the absorption coefficient directly into the inverse
solution produces a solution that is optimal, as op-
posed to the indirect approach that incorrectly as-
sumes that the absorption coefficient is uncorrelated
across wavelengths. While incorporating the correla-
tion into the inverse solution is more computationally
complex, we demonstrate below that the complexity
is justified by the improved image quality.22 This
spectral prior is easily extended to consider N un-
known chromophores for which the extinction coeffi-
cients are known. Of course, measurements at N or
more wavelengths are necessary to uniquely deter-
mine the chromophore concentrations.

D. Combined Spatial and Spectral Priors

For the sake of simplicity, we consider measurements
at two wavelengths. We first write the weight matrix

. A\) O
A in the format A = 0 A
priors for the optical properties at different wave-
lengths, as in Subsection 3.B, it is straightforward to
show that R should have the form

. Given spatial

R =QEE"Q/, (11)

R, O
where Q = —— |. Notice that R, has the same
0 R, :

dimension and content as that in Subsection 3.B,
except that R, can vary with wavelength.
Being able to incorporate the spatial and spectral

priors into the reconstruction in one step is useful.
Since each prior alone has been shown to improve the
image quality, we would expect to further optimize
the reconstruction by combining two priors. The sim-
plicity of combining these different priors shows the
flexibility of the form of Eq. (3). This format will be
quite useful if we have reasonable assumptions, or
priors provided by some other image modality, about
the optical properties of the tissue.

If we want to incorporate spatial priors directly
onto the chromophores instead of onto the optical
properties, R should have the following structure:

R =EQQ'E" (12)

where

Q:|:\RHb02 | 0 }
0 \RHbR

Now Ry, and Ryyg are the a priori covariance ma-
trices for the chromophores. This format is useful if
we have reasonable assumptions, or priors provided
by other image modality, about the spatial variations
in concentration of the chromophores of the tissue.
We detail an example of this in Subsection 3.E.

E. Example of Direct Imaging of Absorbing
Chromophores with Magnetic Resonance Imaging
Providing Water and Lipid Spatial Priors

For diffuse optical imaging of breast cancer, the dom-
inant absorbing chromophores in the near infrared
are oxyhemoglobin, deoxyhemoglobin, water, and
lipid, with the spectral variation in the absorption
coefficient given by

Ha(N) = &m0, (M HDbO,] + epr(NIHDR] + &4,0(M[H,0]
+ Shpid()\)[Lipid] . (13)

MRI has been shown to quantify water and lipid
content in tissue. Water and lipid content can be
determined with the three-point Dixon technique.24
We can utilize these MR images as spatial priors for
the water and lipid optical images. The MRI priors
can be imposed as either a soft or hard constraint in
the water and lipid image reconstruction. To impose
this spatial prior on the chromophores, the R in Eq.
(3) should use the expression in Eq. (12), where

\Rio, 0 0

0
0 \Rgr O 0
0 (14)

0 0 0

Rino,» Rir, Ru,0, and Ry;,4 are all diagonal matrices.
Our working hypothesis is that there is a positive
correlation between local water and lipid chro-
mophores of DOT and local water and lipid MRI con-
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Table 1. Chromophore Content of the Background Medium and the
Absorbing Objects

HbO, HbR Water Lipid
Inclusions (nM) (nM) (%) (%)
Background 25 10 40 30
3HbO, (object 1) 45 10 40 30
3HDbR (object 2) 25 20 40 30
3Water (object 3) 25 10 70 30
dLipid (object 4) 25 10 40 50

trast. The diagonal elements of each of the four
matrices encode the prior estimates of the spatial
variance in the corresponding chromophore concen-
trations. We can therefore incorporate the MRI prior
on water and lipid content in Ry, and Ry, as a
monotonically increasing function of the correspond-
ing MRI contrast. In this example we assume that we
do not have prior spatial information for Ry, or
R, and thus Ry, and Ry are identity matrices.
Previous research has shown that incorporation of
physiological priors of hemoglobin and spatial priors
improves the image quality.1® Another more straight-
forward way to use the spatial MRI water and lipid
prior is to simply take the MRI water and lipid con-
tent estimate as the DOT water and lipid content.
The validity of such a strict correspondence requires
in vivo verification. Although Merritt et al. have
shown a 100% correlation in phantoms,34 for now we
consider the statistical correlation. In Subsection 4.B
we describe a simulation to demonstrate the improve-
ment in DOT image quality provided by an MRI spa-
tial prior for water and lipid. We note that the
incorporation of multiple priors as described in Sub-
section 3.D is necessary to utilize a spatial prior on a
specific chromophore. Utilizing the same spatial prior
on the absorption coefficient instead of on the specific
chromophore would likely degrade the image quality.

4. Simulation Results

We performed simulations in the context of imaging
breast cancer to demonstrate the improvement in im-
age quality that arises from spectral priors, as in Eq.
(10), and the further improvement with both spectral
priors and spatial priors on water and lipid content as
provided by MRI, as in Eq. (12).

For the simulations, we considered four chro-
mophores: HbO,, HbR, water, and lipid. Four spher-
ical absorbing objects were embedded in an otherwise
homogeneous slab-geometry medium. The diameter
of each object was 2 cm, and the thickness of the slab
was 6 cm. The composition of the background was
chosen to be similar to that of a young woman’s
breast.23 The chromophore content of the background
medium and of each object is listed in Table 1. The
positions of the four objects are shown in Fig. 1. The
spectral variation of the scattering coefficient is as-
sumed to have the form p,” = a\ 5%, where a is a
constant, \ is the wavelength in nanometers, and SP
is the scatter power. In all of the simulations, we
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20 sources
Z=4cm
2cm Z=6cm
| A
9 detectors——
10 cm
Fig. 1. Four targets are embedded in the homogeneous back-

ground in the simulations. All targets have a diameter of 2 cm.
Targets 1, 2, 3, and 4 are HbO,, HbR, water, and lipid perturba-
tions, respectively.

assume that p,’ is spatially uniform throughout the
medium; ¢ and SP are given the values 2200 and
0.83, respectively.23

Simulated measurements are generated with the
analytical Born approximation in slab geometry at
six wavelengths: 685, 750, 808, 830, 930, and 960 nm.
These wavelengths were chosen to keep the condition
number of the extinction matrix € small. According to
Corlu et al.,2! wavelengths that minimize this condi-
tion number will reduce the cross talk among the
chromophores. The positions of sources and detectors
are shown in Fig. 1.

The sources are rf modulated at 70 MHz. There are
20 sources and 9 detectors placed in a transmission
geometry, as indicated in Fig. 1. Both shot noise and
electronic noise are included in the data, and the
noise is uncorrelated from channel to channel. The
noise model is based on our frequency-domain instru-
ment and is fully described in Ref. 35. We control the
parameters so that the noise is shot-noise limited at
high signal-to-noise ratios (SNRs) and the electronic
noise limited at low SNRs. The range of the SNR
across measurements at each wavelength is listed in
Table 2. For the reconstructions, we assume that we
know the measurement standard deviation and use
this information in the covariance matrix C of the
linear inverse operator Eq. (3).

A. Improvements with a Spectral Prior

An example comparison of the reconstructed HbO,,
HbR, H,0, and lipid images without and with spec-
tral priors is shown in Figs. 2 and 3, respectively.
More specifically, Fig. 2 is generated by reconstruc-
tion of p, images at six wavelengths, followed by a
pixel-by-pixel calculation of the concentration of each
chromophore. Figure 3 is generated by calculation of

Table 2. Range of SNR Measurements at Each Wavelength

Source Wavelength (nm)

SNR Measurement 685 750 808 830 930 960

Maximum SNR (dB) 67 69 71 69 51 37
Percentage of channels with
SNR above 20 dB 90% 91% 97% 99% 82% 3T%




Fig. 2. Physiological image reconstruction without any prior in-
formation, using simulated data. The images are shown for the
slice at a depth of 4 cm where the true objects are centered. (3, is set
to 0.0005. The field of view of the image is 8 cm X 10 cm.

the chromophore concentrations directly with spec-
tral priors, as in Eq. (9). The images are shown for the
slice at a depth of 4 cm where the true objects are
centered. In the reconstruction we assume that the
background tissue properties are known. After ob-
taining the perturbation images, we added the back-
ground properties. The regularization parameter
has different effects on the resolution of the two dif-
ferent imaging procedures. We therefore altered the
regularization parameter for each to equalize the
FWHM of the reconstructed HbO, object. If we define
B = B,*max(ARAT), for the cases in Figs. 2 and 3, B,
is equal to 0.0005 without spectral priors (i.e., R
= I) and 0.0001 with spectral priors. The improve-
ment in the reconstruction with priors is obvious in
terms of the CNR of the image. The H,O and lipid
reconstructions without spectral priors are too noisy

HbO, HbR
36HM 15hM
. . & '8
28 1
24 9

Fig. 3. Physiological image reconstruction with a spectral prior,
using simulated data. The images are shown for the slice at a depth
of 4 cm where the true objects are centered. B, is set to 0.0001. The
FWHM of the reconstructed HbO, object is the same as the one in
the reconstruction without a prior, which is shown in Fig. 2. The
field of view of the image is 8 cm X 10 cm.
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Fig. 4. Plot of the CNR versus the FWHM of the reconstructed
images without and with spectral priors, using simulated data.
Dashed arrow, CNR and FWHM in the reconstruction shown in
Fig. 2; solid arrow, values in the reconstruction shown in Fig. 3.

to see any heterogeneity. Note that the H,O and lipid
CNRs can be improved by increasing the regular-
ization at the expense of resolution, as discussed in
more detail by the end of this paragraph. The issue
of cross talk among different chromophores is more
complicated and is discussed in more detail the next
paragraph. To compare the reconstructions quanti-
tatively, we calculated the CNR, FWHM, and cross
talk among the different chromophores, given a set
of regularization parameters (10 ° = 8, = 10). The
CNR is given by the peak value of the reconstructed
contrast divided by the mean standard deviation of
every voxel in the image. The mean standard devia-
tion is the statistical result of 100 independent noise
simulations for each regularization parameter. In
Fig. 4, we plot the log (CNR) versus the FWHM.
Generally, over a wide range of regularization pa-
rameters B, the reconstruction of all four chro-
mophores with a spectral prior has a better CNR than
that without a spectral prior. One can argue that the
better CNR in the water and lipid images results
from a loss of spatial resolution; however, the dra-
matic improvement in CNR is worth the small loss in
resolution. To facilitate the comparison of the images
in Figs. 2 and 3 with the results in Fig. 4, the dashed
and solid arrows in Fig. 4 indicate the CNR and
FWHM of the reconstructions in Figs. 2 and 3, re-
spectively.

The CNR improvement obtained with the spectral
priors is expected since the reconstruction with the
priors exploits the fact that optical properties within
a voxel are correlated across wavelengths. The com-
parison of the cross talk between chromophores does
not yield a clear message. Here we define cross talk of
chromophore i into j as the measured contrast j di-
vided by the measured contrast in i at a location
where the true object has contrast only in chro-
mophore i. From our simulations, we found that in
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Fig. 5. Physiological image reconstruction with both spectral and
spatial priors for water and lipid content, using simulated data.
The images are shown for the slice at a depth of 4 cm where the
true objects are centered. B, is set to 0.0001. The FWHM of the
reconstructed HbO, object is same as that in the reconstruction
without a prior, which is shown in Fig. 2. The field of view of the
image is 8 cm X 10 cm.

most cases, use of a spectral prior yields a cross-talk
reduction (results not shown). However, some in-
crease in the cross talk between, for example, HbO,
and HbR was observed upon incorporation of the
spectral prior, although particular choices of wave-
length combinations have been shown to have a
strong effect on cross talk.2! Since we consider only a
single set of wavelengths here, conclusions about the
efficacy of using spectral priors based on cross talk
would be misleading. We intend to continue investi-
gating optimal wavelength combinations further to
identify combinations that yield substantial improve-
ments in image CNR and image cross talk.

B. Case Comparison of Reconstruction with Spectral
Prior and with both Spectral and Magnetic Resonance
Image Spatial Priors

The method of adding MRI water and lipid spatial
priors to the reconstruction is described as follows.
We assume that the MRI water and lipid contrast
and optical contrast are well correlated. We further
assume that MR images yield an accurate estimation
of the water and lipid content. We take the simulated
equivalent of normalized MR images and add them in
the diagonal Ry o and R;;;q term of Q in Eq. (14). This
soft constraint technique provides the reconstruction
prior information about the location and amplitude of
the water and lipid perturbations, but it does not
constrain the optical image to explicitly match the
MRI prior. Figure 5 shows the reconstruction with
both spectral priors and water and lipid spatial pri-
ors, using Eq. (12). Figure 6(b) shows all the water
and lipid Z slices of the 3-D reconstruction shown in
Fig. 5 to demonstrate the improved Z resolution
achieved when both spectral and spatial priors are
used. Figure 6(a) illustrates the Z resolution achieved
when only spectral priors are included in the recon-
struction. The regularization parameter that we
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(a) (0)

Fig.6. (a)The 3-D display of water and lipid image reconstruction
with the spectral prior, using simulated data. (b) The 3-D display
of water and lipid image reconstruction with both spectral and
spatial priors, using simulated data.

choose is the same as the one in the reconstruction
with only spectral priors (shown in Fig. 3). Compar-
ing Figs. 3 and 6(a), we see that the improvement in
CNR and spatial resolution for the water and lipid
images is significant in both the lateral (Fig. 5) and
the axial [Fig. 6(b)] directions. The HbO, and HbR
images are comparable with those obtained with only
the spectral priors (Fig. 3), since no spatial informa-
tion was provided for the hemoglobin.

Note that we could also use the water and lipid
content derived from MR images as a fixed prior for
optical imaging. By assuming that these parameters
are already known, our optical imaging problem
would be simplified to only a two-parameter recon-
struction (HbO, and HbR), while including the effects
of the known water and lipid content into the optical
solution. We would expect this approach to improve
the optical image quality for HbO, and HbR, as sug-
gested by Schweiger and Arridge.3!

5. Summary

We have described and illustrated a flexible frame-
work for including single and multiple priors in the
linear DOT image reconstruction. This framework
enables us to impose spatial priors directly on the
physiological parameters of interest rather than on
the optical properties derived from multiple physio-
logical processes. We illustrated the improvements to
image CNR achieved when spectral priors are incor-
porated into the direct reconstruction of HbO,, HbR,
H,O0, and lipid. We also demonstrated the advantage
of also imposing spatial priors on the physiological



parameters, such as those accessible via MR images
of water and lipid content.
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