Chapter 2

The Migration of Diffuse Photon Density Waves through Highly

Scattering Media

When light enters a highly scattering (or turbid) medium such as a cloud, milk, or
tissue, the photons do not simply reflect back from or transmit through the medium as
they would for a pane of glass. Instead, the individual photons scatter many times and

thus trace out random paths before escaping from or being absorbed by the medium.

In this chapter I consider the collective properties of these scattered photons. When
the intensity of a point source in a turbid medium with uniform optical properties is si-
nusoidally modulated, a macroscopic wave of photon density develops, and propagates
spherically outwards from the source. Although microscopically the individual photons
follow random walk-like trajectories, macroscopically a coherent photon density wave

is created.

After experimentally verifying the existence of these waves, | examine their re-
fraction at planar interfaces between media with different optical properties and their
refraction and diffraction by objects with different optical properties than the sur-
rounding media. | show that the perturbation of the diffuse photon density wavefronts

is captured by standard refraction, diffraction, and scattering models.

The theoretical basis of this work derives from the photon diffusion equation. The
radiative transport equation is a more accurate model for the migration of photons

in general, but is typically difficult to handle. I start this chapter by reviewing the
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assumptions that reduce the general transport equation to a diffusion equation. The
classical wave behavior of DPDW’s is then considered. At the end of the chapter,
the breakdown of the diffusion approximation is considered as well as higher order

approximations to the transport equation.

2.1 Diffusion Approximation to the Transport Equation

The linear transport equation for photons propagating in media that scatters and
absorbs photons is [54, 55, 56]
lw VL 0,00 e L(r, O, 1) Le, O, 1) £, )Y + S(r, 0,1)
(2.1)
L(r, Q,t) is the radiance at position r, traveling in direction Q, at time ¢, with units
of W m™2 sr~! (sr = steradian = unit solid angle). The normalized phase function
f(Q, Q’) represents the probability of scattering into a direction () from direction ).
v is the speed of light in the medium and pu; = ps + p, is the transport coefficient
where 5 1s the scattering coefficient and p, is the absorption coefficient. S(r,Q,t)
is the spatial and angular distribution of the source with units of W m™2 sr~'. The

photon fluence is given by

O(r, 1) = /dQL(r, 0,1 . (2.2)
The photon flux, or current density, is given by

I(r,t) = /dQL(r, 0,00 . (2.3)

Both the fluence and the flux have units of W m™2. The linear transport equation
neglects coherence and polarization effects. Recently, however, Ackerson et al. have
successfully included coherence effects within a transport model [57, 58]. Photon

polarization within the transport equation has also been considered by Fernandez and

Molinari [59].
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Figure 2.1: A schematic of the conservation of photons in a small element in phase
space. The phase element is at position r, time ¢, and direction (). Photons scattered

from all directions €’ into direction O at position r must be considered. Also, the scat-
tering from direction Q) and absorption within the phase element must be con81dered
as well as the flux of photons through the phase element.

The transport equation can be thought of as a conservation equation for the ra-
diance. If we consider a small element in phase space, that is a small volume around
position r and a small solid angle around Q at time t (see fig. 2.1), the left-hand side
of eq. (2.1) accounts for photons leaving the small element, and the right-hand side
accounts for photons entering the small element. The first term on the left-hand side
is the time-derivative of the radiance which equals the number of photons entering the
element minus the number leaving. The second term accounts for the flux of photons
along the direction ). The third term accounts for the scattering and absorption of
photons within the phase element. Photons scattered from an element in phase space
are balanced by the scattering into another element in phase space. The balance is
handled by the integral on the right-hand side of eq. (2.1) which accounts for photons
at position r being scattered from all directions (' into direction ). The second term

on the right-hand side is the source of photons.

Analytic solutions of the transport equation are difficult to obtain and numerical
calculations require large amounts of computational power. Solutions typically exist

only for simple geometries such as planar geometries with plane wave illumination
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[60], some spherical geometries [61], and a few other special cases [62].

These difficulties are reduced by considering approximate solutions to the trans-
port equation. A standard approximation method for the transport equation is known
as the Py approximation [54, 55, 56]. The method of the Py approximation is simply
to expand the radiance, phase function, and source in spherical harmonics Y} ,,, trun-

cating the series for the radiance at [ = N. The radiance and source are expanded

as
N {
L(I‘ Q t Z Z thm r, t lm( ) 5 (24)
(=0 m=-—1
and

S(r,Q,t) Z Z G (2, 1) Y10 () (2.5)

1=0 m=—1
By substituting eq. (2.4) into eq. (2.2) we see that ¢g ¢ is proportional to the photon
fluence. By substituting eq. (2.4) into eq. (2.3) we see that ¢ ,, are the components
of the photon flux. The ¢ ,,,(r,t) are the amplitudes of the different angular moments
of the source at position r and time ¢.
For the phase function, we make the reasonable assumption that the scattering

amplitude is only dependent on the change in direction of the photon, and thus

fQ-Q) = 3

=22mwlm> (2.6)

where P is a Legendre Polynomial of order [ and the second line is obtained using the
standard angular addition rule [63]. The phase function is normalized so that go = 1.
Note that g, is the average cosine of the scattering angle.

The P, approximation is quite good when the albedo ¢ = /(s + o) is close
to unity, the phase function is not too anisotropic (e.g. ¢1 < .99, but this depends
on the optical properties), and the source-detector separation is large compared to

1/(ps(1 — ¢1)). Within the P, approximation the radiance can be written as

R 1 3 R
L, Q1) = —0(r. )+ —J(r.1)- 0. (2.7)
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Similarly the photon source can be written as

R 1 3 R
S(r, 0, t) = —So(r.t) + —Sa(r,t) - 2, (2.8)

where So(r,t) and Sq(r,t) are respectively the monopole (isotropic) and dipole mo-
ments of the source.
Inserting eq. (2.7) and eq. (2.8) into eq. (2.1) and integrating over Q yields
10

o (1) 4 pa (1) + V- I, 1) = So(r, 1) . (2.9)

Inserting eq. (2.7) and eq. (2.8) into eq. (2.1), multiplying by Q, and integrating over
O yields

10 1

;a'](rvt) + (/“Lls + MG)J(r7t) + qu)(rvt) = Sl(rvt) ) (210)

where p!, = pi5(1 — ¢1) is the reduced scattering coefficient.
We obtain the P; equation by decoupling eq. (2.9) and eq. (2.10) for ®(r,1),

0P(r,t) N 3D [ 09(r,t) N 19°¢(r. 1)

Ve
DV=®(r,t) + vy, P(r, 1) + 5 pall BT
D
= vSp(r,t) + 3—% —3DV - Sq(r,t). (2.11)
v

D =wv/(3u)) is the photon diffusion coefficient. The absorption coefficient is dropped
from the photon diffusion coefficient to keep the set of approximations consistent. That
is, the P, approximation is valid when the albedo is close to unity and the scattering
is not highly anisotropic and thus p, < .. This has been discussed in greater detail
by Furutsu and Yamada [64]. The scattering coefficient and scattering anisotropy do
not explicitly appear in the P; equation (and subsequently the diffusion equation) but
instead appear together as the reduced scattering coefficient. This interplay between
the scattering coefficient and anisotropy to produce an “effective” scattering coefficient
is known as the similarity relation [65, 66, 67].

The standard photon diffusion equation is obtained when the underlined terms
in eq. (2.11) are dropped. Dropping the dipole moment of the source is justified

by assuming an isotropic source. This assumption is usually supported by treating
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collimated sources as isotropic sources displaced one transport mean free path into the
scattering medium from the collimated source. The assumption for dropping the other
terms is best seen in the frequency-domain where the time dependence of the source is
taken as exp(—iwt). When the intensity of the source is sinusoidally modulated then
the photon fluence becomes ®(r) exp(—iwt). The time derivatives can then be replaced
by —iw and the rest of the underlined terms can be ignored when 3Dw/v* < 1. This
assumption is equivalent to vy /w > 1, that is the scattering frequency must be much
larger than the modulation frequency.
Given these assumptions we arrive at the photon diffusion equation for ®(r,?),

90 (r, 1)

—DVQCI)(I',t) —|— v/,LGCI)(r,t) —|— T

= vSo(r, 1) . (2.12)

Note that in the frequency-domain the photon diffusion equation can be rewritten as

the Helmholtz equation
—v
(V? + ki) ®ac(r) = - oolr) (2.13)

where the wavenumber is complex, i.e.

— Uy + 1w

> (2.14)

2
kAC -

2.2 Diffuse Photon Density Waves

When the source of photons in a turbid medium is intensity modulated, e.g. S(r,?) =
Spe(r) + Sac(r)exp(—iwt), then the photon fluence will oscillate at the same fre-
quency. This small but measurable traveling wave disturbance of the light energy
density is referred to as a diffuse photon density wave [3, 21, 22, 23, 68].

Diffuse photon density waves are scalar, damped, traveling waves. These traveling
waves arise formally in any diffusive system that is driven by an oscillating source
such as in heat conduction [69] and chemical waves [70]. Fishkin and Gratton for
example [21], have calculated the light energy density, U(r,t), within an optically

dense homogenous media in the presence of a modulated point light source at the
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origin. They then used the result and the principle of superposition to derive the light
energy density in the presence of an absorbing semi-infinite plane. The oscillatory
part of the solution for an infinite, homogenous dense random media with an intensity
modulated point source is [21, 6]

G ac(r,t) = ZfDi exp(ikr) exp(—iwt) . (2.15)

Sac is the source modulation amplitude, D = v/(3y)) is the photon diffusion coef-
ficient in the turbid medium where v is the speed of light in the medium and g/
is the reduced scattering coefficient, w is the angular modulation frequency, and the

wavenumber k is given by

— Uy + 1w
k= | ——————
D

2,2 2\ 1/4 .
_ 172 [ Vg —+ w 7 4w
= (-1) (72 ) exp (—§tan UMa)

2,2 2\ 1/4
1 1
Uity T 1 COS —tam_li +sin | = tan~! d . (2.16)
D? 2 Vflq 2 Vflq

This is not the only solution for k, however it is the solution which satisfies the

physical condition that the amplitude is exponentially attenuated rather than growing
(i.e. the imaginary part of k is greater than zero). This particular solution is obtained
by extracting the —1 from the rest of the equation on the second line. An analogous
equation for k can be found using the following approach (still requiring the imaginary

part of k to be greater than zero):

k= x4y,
o= (2 =y +i2uy,
2_ .2 _ Yl
€ y D b
Sy = —
y D7

2 2
_ Vfly w ) w B
k= 5D 1+( ) +1 +1 1+( ) 1 (2.17)
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Note that the solution for an intensity modulated point source, eq. (2.15), is a
spherical wave with a complex wavenumber. The complex wavenumber indicates that
the wave is exponentially attenuated and has a well defined wavelength, amplitude, and
phase at all points. Qualitatively this wavelength corresponds to the root-mean-square
displacement experienced by a typical photon during a single modulation period. It
can be altered by modifying D, p,, or w. This wave does not, on average, transport
any energy. The net diffusive energy transport arises in the DC (i.e. non-oscillating)

part of the process.

To experimentally verify the existence of diffuse photon density waves, we used
the experimental system described in section 6.1 to generate and measure a modulated
photon fluence. The measurements were made in a tank containing a highly scattering
emulsion known as Intralipid [71, 72, 73, 74]. Measurements of the phase and amp-
litude of the diffuse photon density wave (DPDW) were measured with respect to the
source at each point on a 0.5 cm square grid. The dimensions of the grid were small
compared with the dimensions of the tank so that the medium is a good approximation

of an infinite medium.

The results for an Intralipid concentration of 0.5% are exhibited in fig. 2.2. Con-
stant phase countours are shown at 20 degree intervals about the source. Notice that
the contours are circular, and that their radii can be extrapolated back to the source.
The phase shift and the quantity In|r®4¢(r)| are plotted as a function of radial dis-
tance from the source in the inset of fig. 2.2. The relationships are linear as expected
and give us the real and imaginary parts of the diffuse photon density wavenumber.
From these measurements we deduce the wavelength of the diffuse photon density
wave (11.2 cm). The equations for the real and imaginary parts of the wavenumber
can be solved for the reduced scattering coefficient and absorption coefficient of the

medium, i.e.

-1
e = % [tan (2 tan ™" %)] ) (2.18)
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K+ k?
py = —— . (2.19)
3 (2 + %)

Here k. and k; are respectively the real and imaginary parts of the wavenumber.
Using eq. (2.18) and eq. (2.19) we find that 1/,=5.0 cm™" and 1,=0.019 cm™ for 0.5%
Intralipid at 22°C. The photon absorption can be attributed almost entirely to water
[75].

2.3 Interaction with Free-Space Boundaries

Diffuse photon density waves propagating in infinite homogeneous media are spherical
waves. If the turbid medium is not infinite or homogeneous, then the wave fronts are
distorted. Here I consider homogeneous media that have a boundary between the
turbid media and media which do not scatter light. Microscopically, the perturbation
of the diffuse photon density wave arises from photons escaping into the non-scattering
medium. When a photon crosses the boundary from the turbid medium into the non-
scattering medium, there is no mechanism for changing the direction of the photon to
return it to the turbid medium except for Fresnel reflections at the boundary. This
photon escape reduces the number of photons in the wave front, thus reducing the
amplitude and altering the phase. Generally the long path length photons are more
likely to escape, reducing the mean path length and the DPDW wavelength. Thus the
phase tends to increase because of the presence of a free-space boundary.

Within the diffusion approximation, the exact boundary condition for an index
matched free-space boundary is that the component of the flux normal to the inter-

face, pointing from the non-scattering medium into the turbid medium, must be zero.

Specifically, [76, 77]

Jin(r) = iq)(r) + %ﬁ -Vo(r)=0, (2.20)

where 71 is the normal to the boundary pointing away from the turbid medium and r is

on the boundary. This boundary condition is known as the zero partial flux boundary
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Figure 2.2: Constant phase contours shown as a function of position for a homo-
geneous, 0.5% solution of Intralipid. The contours are shown in 20 degree intervals.
Inset: The measured phase shift (circles), and In|r®4¢(r)| (squares) are plotted as a
function of radial distance from the source So.
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Figure 2.3: Schematic of the extrapolated zero boundary condition.

condition. At the boundary, we measure the outward component of the flux

1 D .
Jout(r) = Z(I)(I') — %n . VCI)(I')
1 D
= —®(r)=——n-Vo(r). (2.21)
2 v
The second line is derived from the condition that .J;, = 0 on the boundary and

shows that what we measure on the boundary is proportional to the fluence and the
component of the flux normal to the boundary.

Generally it is difficult to obtain analytic solutions of the diffusion equation using
the zero partial flux boundary condition. Instead the approximate extrapolated zero
boundary condition is used. This requires the fluence to be zero at a distance of
2/(3p%) from the actual boundary. For example, for a semi-infinite medium with the
boundary at z = 0 and the turbid medium at z > 0 the extrapolated zero boundary
condition requires ®(z,) = 0, where z, = —2/(3u.). This extrapolation distance
comes from a linear extrapolation of the fluence at the boundary to the zero crossing
point (see fig. 2.3). It is argued that z, = —0.7104/4, gives better agreement with the
photon transport equation [78, 79]. Here I use z, = —2/(3p}) to remain consistent

with the recent literature (e.g [76]).
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Figure 2.4: Schematic of source and image source positions for a semi-infinite medium.

For a semi-infinite medium, the solution of the diffusion equation (with the extra-
polated zero boundary condition) is easily obtained by using image sources. That is
an image of the real source is formed by reflection of the real source about the plane of
the extrapolated zero boundary (see fig. 2.4). Note that collimated sources are usually
approximated as isotropic point sources which are displaced a distance z,. = I* = 1/,
from the collimated source. Given the source and image source configuration shown
in fig. 2.4, the solution of the diffusion equation for a semi-infinite medium with a

collimated source on the real boundary is

o ) v.Sexp (ik\/p?l + (zq — Zt,,)Q) v.Sexp (ik\/p?l + (za + 200 + 226)2)
Pd,<d) = - .
47TD\/,03 + (24 — 21r)? 47TD\/,03 + (za + 240 + 22)?

(2.22)

The source is at p = 0 and z = 0 while the detector is at p = pg and z = z4. A useful
form of eq. (2.22) is when the detector is on the real boundary (zg = 0) and p > z,.
Under these conditions eq. (2.22) reduces to

vSexp (ikp)

®(pa,0) = 1= Dp?

[—ik (22 + 220 )| (2.23)

If there is a mismatch in the indices of refraction between the turbid medium and
free-space then the exact boundary condition is not the zero partial flux boundary

condition because photons are being reflected at the interface back into the turbid
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medium. In this case the exact boundary condition is [76, 77]

1 D . 1 D,
Jin(r) = Z(I)(I') + 557 Vo(r) = qu(l)(r) — Rj%n -VO(r), (2.24)

where R, and R; are respectively the reflection coeflicient for the isotropic fluence and

the reflection coefficient for the anisotropic flux. They are given by [76]
/2
R, = / 25in 6 cos 0 Rpyesnel (0)d8 (2.25)
0
/2
R, = / 35in 0 cos® O Rvesnel (0)d0 (2.26)
0

where Rpresnel(#) is the Fresnel reflection coefficient for unpolarized light [76]

1
RFresnel(G) — 5 (

1 (nm cos O — n . cos O

2
Nip COS O — 1y cOS O
Nip COS O =+ 11y cOs O

_|__

2 \ n;, cos 0 4 ngy cos

= 1 when 0. < 0 < 7/2. (2.27)

2
) when 0 <60 <46, ,

The angle of incidence, 8, is given with respect to the boundary normal, the refracted
angle, 0, is given by n;, sin § = ny sin 0, and n;, and n,, are respectively the index
of refraction inside and outside the turbid medium. This condition is called the partial
flux boundary condition. The partial flux boundary condition can be reduced to an

extrapolated zero boundary condition where

L+ Repp2

=L J* 2.28
T I R3 (2.28)
where
R¢ + R;
Rojp=—°2—"79 2.29
TR AR (2.29)

This boundary condition is described in detail by Haskell et al. [76] and Aronson [77].

2.4 Refraction and Diffraction of Diffuse Photon Density Waves

In this section I present experiments which illustrate the refraction and diffraction

of diffuse photon density waves. I demonstrate that the refraction of these waves at
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planar interfaces is well described by Snell’s Law [22]. In addition, I demonstrate that
simple diffractive and refractive models can be used to understand the scattering of
these waves by absorptive and dispersive objects embedded in an otherwise uniform

system [28].

2.4.1 Refraction at planar interfaces

Fig. 2.5 demonstrates the refraction of these waves in three ways. A planar bound-
ary has been introduced, separating the lower medium, with Intralipid concentration
¢;=1.0% and light diffusion coefficient D;, from the upper medium, with Intralipid
concentration ¢,= 0.25% and light diffusion coefficient D,. In fig. 2.5 contours of
constant phase are drawn every 20° for the propagation of the DPDW from the lower
medium to the upper medium. The contours below the boundary are the homogenous
media contours (without reflection); they are obtained before the partition is intro-
duced into the sample. The contours above the boundary are derived from the diffuse
photon density waves transmitted into the less concentrated medium. As a result of
the detector geometry, the closest approach to the partition is about 1 cm.

We expect a number of general results. First, the wavelength in the less dense
medium (A, = 14.8 cm) should be greater than the wavelength of the diffuse photon
density wave in the incident medium (A; = 8.17 em). This was observed. The ratio
of the two wavelengths should equal the ratio of the diffusional indices of refraction
of the two media. Specifically we see, as expected, that A, = A\jy/Dy/ D, = )\l\/CZ/Tu
(this relation holds when absorption is negligible). Furthermore, we would expect that
the apparent source position (.5;), as viewed from within the upper medium, should
be shifted from the real source position (S, = 4.0 £ 0.2 c¢m) by a factor A\;/A, =
0.55 as predicted by Snell’s law for paraxial waves. This is what we find within the
accuracy of this measurement. Using the radii from the full contour plots we see that
the apparent source position is shifted from 4.0 + 0.2 cm to 2.0 £ 0.25 c¢m from the
planar interface.

Finally, fig. 2.5 explicitly demonstrates Snell’s law for diffuse photon density
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Figure 2.5: Constant phase contours (in 20 degree intervals) as a function of position
showing the propagation of a diffuse photon density wave across a planar boundary
that separates 1% concentrated Intralipid from 0.25% Intralipid. S,, source position;
S;, apparent source position ; A, point on boundary; §;, angle of incident ray; #6,,
angle of refracted ray. The solid lines are obtained directly from data. The dot-
dashed lines are obtained by interpolation over large distances, and are drawn to
show the irregularities at large angles.
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waves. This can be seen by following the ray from 5, to the point A at the boundary,
and then into the upper medium. The ray in the lower medium makes an angle
f; = 14° with respect to the surface normal. The upper ray is constructed in the
standard way between the apparent source position 5;, through the point A on the
boundary, and into the medium above the boundary [80]. It is perpendicular to the
circular wavefronts in the less dense medium and makes an angle 6, = 26.6° with
respect to the boundary normal. Within the accuracy of the experiment, we see that
sinf;/sin 0, = 0.54 &~ \;/A,, so that Snell’s law accurately describes the propagation
of diffuse photon density waves across the boundary. The wavefronts become quite
distorted when the source ray angle exceeds ~ 30 degrees. These irregularities are a

consequence of total internal reflection, diffraction, and spurious boundary effects.

2.4.2 Refraction and diffraction by spherical inhomogeneities

Here I present measurements of diffuse photon density wavefront distortions that
arise when these waves are perturbed by purely absorptive or dispersive homogen-
eous spheres. In general one would expect both refractive and diffractive processes
to affect the wavefronts. Unfortunately, our intuition from conventional optics is of
limited applicability, since we must work in the near field. Measurements of wavefront
distortions from purely absorbing spheres are reasonably well described by a simple
diffraction model whereby the diffuse photon density wave is scattered by an absorbing
disk of the same diameter. The pure dispersive case is qualitatively different. Here
a ray optic model works well for scatterers characterized by a larger light diffusion
coefficient relative to that of the surrounding turbid medium, but a diffractive model
is required under the opposite conditions.

The diffraction of DPDW’s by absorptive spheres is illustrated in fig. 2.6. The
contours of constant phase and amplitude are plotted for a DPDW traveling in differ-
ent concentrations of Intralipid and diffracting around a 4.0 cm diameter absorptive
sphere. The sphere was saturated with ink so that the fraction of incident light trans-
mitted through the sphere was below the detection limit of ~107°. Nevertheless, the
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Figure 2.6: The diffraction of a diffuse photon density wave by a spherical absorber
with a diameter of 4.0 ecm. The light source is at the origin and generates a wave
with a wavelength of 22.2 cm in the plots on the left, and a wavelength of 15.4 ¢cm in
the plots on the right. Our experimental (theoretical) results are the solid (dashed)
curves. The phase contours are plotted every 20 degrees and the amplitude contours
are plotted in decreasing intervals of e~
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Figure 2.7: (a) In the diffraction model the sphere is replaced by an absorbing disk of
the same diameter (¢=4.0 cm) which lies in a plane through the center of the sphere.
Ry is the distance from the source, 5, to a point A in the diffraction plane (dashed line)
and R; is the distance from A to the image point, P. Here we take the z-axis to be
normal to the diffraction plane, and we let the diffraction plane coincide with the xy-
plane (i.e. z=0). The wavefront at P is calculated by integrating the standard Kirchoff
equation over the diffraction plane. (b) In the ray model the wavefront is calculated by
determining the phase and amplitude of rays which are refracted through a spherical
lens.

wavefronts on the other side of the sphere are detected. These wavefronts are formed
by the diffraction of the wave around the sphere.

Here, 1 have modeled this effect in a simple way. In the model, I replaced the
sphere by a totally absorbing disk of the same diameter. The disk was chosen to lie
in a plane containing the center of the sphere, with surface normal pointing in the z
direction. The diffraction from this disk can be calculated using the standard Kirchoff

construction [81]

exp(1k Rz) [ i

1] 2.30
R kRer] (2:30)

kz
O(xp,yp = 0,2,) = ﬁ/gdx dy ®(R;)

The construction is depicted in fig. 2.7a. Here ®(R;y) is the complex amplitude
of the photon fluence in the plane of the disk, R; is the length of the vector from
the source at position R, = (z; = 0,y, = 0,z5) to a point A = (z,y,z = 0) on
the diffraction plane, Ry is the length of the vector going from A to the detection
point R, = (2,,y, = 0,z,). The Green’s function is derived from the point source
solution for diffuse photon density waves in an infinite homogeneous medium so that

k is complex. Specifically, the Green’s function for this problem is derived from
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a superposition of Green’s function solutions of the Helmholtz equation. 1 chose

a superposition to satisfy Dirichlet boundary conditions on the diffraction plane at

z=0. Therefore, eq. (2.30) is derived from the integral of @(Rl)w

the diffraction plane, with G'p( Rz, Ry) = [exp(ikRy)/ Rz — exp(tkRY)/ R,] /4w, where
R: = R, — A, R, = R, — A, and R}, is just the image of Ry, reflected about the

daxdy over

diffraction plane.

The experimental (theoretical) results are the solid (dotted) curves in fig. 2.6. The
simple model approximates the measured wavefront distortion reasonably well. Note
that there are no free parameters in the fit. The model appears to fit the experimental
results better for bigger ratios of diffuse photon density wavelength to object diameter.
Of course, the function ®(R;) in the plane of the disk is only approximately correct
as a result of shadowing and diffraction by the front portion of the sphere. A similar
effect will modify the scattered wave. This effect is expected to be larger as the
wavelength decreases as observed in fig. 2.6. Nevertheless the model captures the

qualitative physics of the scattering.

The constant phase contours (solid line) arising from the scattering of a non-
absorptive sphere are shown in fig. 2.8. The Intralipid surrounding the sphere had the
same concentration in both experiments, but the concentration of Intralipid inside the
sphere was either lesser (fig. 2.8a) or greater (fig. 2.8b) than the surrounding medium.
The observed patterns are different. These effects can be approximated using a ray

optics model in the first case and a diffraction model in the second case.

In the ray optic model the scatterer is treated like a spherical lens with a different
diffusional index of refraction than the surrounding medium. The basic idea of the
model is depicted in fig. 2.7b. The complex wave amplitude is calculated from the
amplitude and phase for points along the rays emerging from the source. Some of the
rays were refracted through the sphere, others were not. This model ignores multiple

scattering in the sphere since the waves are heavily damped.

Again, we do not expect the model to give perfect quantitative agreement with

the measurements since diffraction effects are omitted. However, when the rays trans-
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@ (b)

Figure 2.8: The scattering of a diffuse photon density waves by purely dispersive
spheres. (a) The Intralipid concentration within the spherical shell is 0.125%, less
than the surrounding medium. (b) The Intralipid concentration is 2.8%), greater than
the surrounding medium. For both, the surrounding Intralipid is the same, the source is
located at the origin, the sphere has a diameter of 4.0 cm, and is centered at x=4.0 cm,
y=0.0 cm. The phase contours are drawn every 20 degrees for the experimental (solid
lines) and theoretical (dashed lines) results. The theoretical results were calculated in
(a) by the ray model and in (b) by the diffraction model.

mitted through the sphere are attenuated less than the rays outside of the sphere, we
would expect diffraction effects to be negligible. This is the case when the sphere has
a smaller concentration of Intralipid than the surrounding medium, and the expected
behavior was observed (see fig. 2.8a). For near axis rays the model also predicts
an apparent source position at z; = 3.5 cm. This is easily verified by standard ray

construction techniques.

The ray method does not work well for dense spheres. The dense sphere acts more
like an absorber, since the diffuse photon density wave is significantly attenuated upon
traveling through the sphere. For this reason one might expect the purely diffractive
model discussed earlier to work better. Indeed this is what was observed (see fig.

2.8b).
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2.5 Scattering of Diffuse Photon Density Waves

The previous section showed that diffuse photon density waves are distorted by the
presence of optical inhomogeneities. The degree of distortion is determined by the
characteristics of the inhomogeneity such as its position, shape, size, and scattering
and absorption properties. We saw that in some cases the perturbation can be modeled
using a simple diffraction or ray optic model. A better theory for the observed per-
turbation is desirable for many reasons. In particular, the simple models discussed
in the previous section only work for specific differences in the optical properties and
specific source-detector positions relative to the inhomogeneity. That is, the object
must be placed between the source and detector, and it must be highly absorbing
relative to the background or have a smaller scattering coefficient with no absorption
contrast. Since the Helmholtz equation is known to describe the transport of DPDW’s
in a piecewise homogeneous media [22, 82], we expect that an exact solution exists
for the scattering of DPDW’s by spherical objects [29, 30, 31]. The solutions will be
similar to, and simpler than, the theory of Mie scattering [83] often used in optics.
In this section I derive the analytic solution of the Helmholtz equation for a piece-
wise homogeneous system consisting of a spherical object composed of one highly
scattering medium embedded in a second highly scattering medium of infinite spatial
extent. This solution is easily extended to semi-infinite media using the extrapolated
zero boundary condition [4, 54, 56, 76]. The analytic solution is compared with ex-
perimental data in order to assess the theory’s predictive power, and a simple inverse
localization algorithm is demonstrated to determine the size and location of a spherical

object. Finally, the theory is extended to include more complex problems in imaging.

2.5.1 An Analytic Solution

The derivation of the analytic solution for the scattering of DPDW’s from spherical
inhomogeneities begins with the Helmholtz equation (eq. (2.13)). In the presence of a

spherical heterogeneity, the photon fluence is found by constructing a general solution
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to eq. (2.13) outside and inside the sphere and applying the appropriate boundary
conditions. It is natural to analyze the problem in spherical coordinates whose origin
coincides with the center of the spherical object (see fig. 2.9). The general solution

outside the sphere is a superposition of incident and scattered waves [63], i.e
(I)out = (I)inc + (I)scatt (231)

where

vSac  out
q)inc = - ~ kou - S
Dl Sl e~ xa)

.USACkout o . out,, out,,
i 2k i) Y ) ¥im(0.9) (232)
=0 m——l

is the spherical wave created by the source and incident on the sphere.

(I)scatt - Z[Al,mjl(koutr) + manl(koutr)} 1/l7m(07 Qb) (233)
l,m
is the wave scattered from the object.
Inside the sphere, the general solution is

o, = Z{Cl,mjl(kinr) + Dl,mnl(kmr)}}/l,m(ev P) . (2.34)

l,m

Here, 5;(x) and n;(x) are Spherical Bessel and Neumann functions respectively, h;l)(:p)
are the Hankel functions of the first kind, Y7 ,.(¢, ¢) are the spherical harmonics, k"
and k" are the complex wavenumbers outside and inside the sphere respectively, r (rs)
is the position of the detector (source) measured from the center of the sphere, and r
(rs) is the smaller (larger) of |r| and |rs|. The unknown parameters (A; ., Bim, Cim,
Dy ) are determined using the following boundary conditions: (a) ® must be finite
everywhere except at a source, (b) ®,,; must asymptotically approach a spherically
outgoing wave as r — 00, (¢) the flux normal to the boundary must be continuous,
ie. Doyt - VO, = Diyt - V@, where Dy (D) is the photon diffusion coefficient
outside (inside) the sphere, and (d) the photon fluence must be continuous across the

boundary, i.e. ®;, = ®,,, at r = a [56, 82].
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Sourcee @000 Second Order ® Source

Figure 2.9: To solve the Helmholtz equation for a spherical boundary it is natural to
use spherical coordinates with the origin at the center of the object (a). The source is
positioned on the z-axis (5, = ) to exploit the azimuthal symmetry of the problem,
and the relevant distances between the source, object, and detector are indicated in the
figure. Scattering from multiple objects is diagrammed in (b). The first and second
order waves scattered from the first object are illustrated by the solid and dashed line
respectively. The relevant distances are indicated in the diagram.

Considering these boundary conditions and using the orthogonality relation for the

spherical harmonics [84], I find

Skt y Doixii(x)g — Diygi(x)
Al = —Z%hgl)(kout%)yl,m( 0) l t (1])1/( )].l(y) i ) ity) ]
Doutxh[ (f)]l(y) - Dznyh l’ .] y
(2.35)
B = 1A, , (2.36)
Cl _ USAOkouth( )(kout )Y* ( 0) Doutl'h;l) l’)];(l‘) — Doutxhl /( (l‘
D Doutxhgl)/(x)jl(y) - Dznyh l’ y)
(2.37)
Diw =0, (2.38)

where z = k®a, y = k™a, rs = (r = 2,0 = 7,¢ = 0), and j; and h;l)/ are the
(1)

first derivatives of the functions j; and h;’ with respect to the argument. Placing
the source on the z-axis exploits the azimuthal symmetry of the problem leading to
A = Crm = 0 for m # 0. The distortion of the wave is entirely dependent on the

parameters k% = k(w, g/ 1o), k" = E(w, 1/, 1), Dout, Din, Ts, and the object
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radius a. In general the infinite sum for ®,,; converges, permitting the sum to be
truncated after obtaining the desired precision. The proceeding calculations require
no more than 20 terms in the series to obtain better than 10~ precision, which far
exceeds experimental precision. On a Sun Microsystems (Mountain View, CA) Sparc
2, ®,,4 can be calculated 10-100 times per second (depending on the above mentioned
parameters).

For the special case wherein the heterogeneity is a perfect absorber, I satisfy the

zero partial flux boundary condition

L) — %%Cb(r) 0 (2.39)

at 7 = a. Of course ®;, = 0. The solution in this case is

Ay = i1 0 o v (.0 h(f)’(x) ~ ) (2.40)
() = e hy ()

By = 1A1m , (2.41)

Cim =0, (2.42)

Dy =0. (2.43)

The analytic solutions enable us to estimate the measurement precision required to
detect optical inhomogeneities. The required phase precision is determined from the
position-dependent difference in phase between the incident wave and the distorted
wave, while the required amplitude precision is found from the position-dependent
ratio of |®,.¢|/|®ine|. Contour plots of the phase difference and the amplitude ratio
indicate the spatial positions which are most sensitive to the presence of the object as
well as the required signal-to-noise ratio. Fig. 2.10 illustrates this spatially-dependent
sensitivity for a perfectly absorbing sphere immersed in a medium with z/, = 10.0 em™"
and i, = 0.02 cm™!. These plots show that 1.0° phase and 10.0% amplitude precision
is sufficent for localization with measurements made in the shadow (within 4.0 cm of

the object) of the 1.0 cm diameter absorber. This is well within the 0.1° phase and

0.1% amplitude precision available with current detectors. Localization of smaller
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Figure 2.10: These sensitivity plots demonstrate the phase and amplitude resolution
necessary to measure a DPDW distorted by a perfect absorber. Plotted in (a) is
the phase difference between an incident wave and the wave distorted by a 1.0 cm
diameter absorber. The ratio of the amplitude of the distorted wave with respect to
the incident wave is plotted in (b). For these plots, the surrounding medium’s optical
characteristics are ¢.=10 cm™! and 11,=0.02 cm™!, the modulation freq. is 200 MHz,
and v = 2.25-10' cm/s. The dots in (a) represent the locations where measurements
were made in order to characterize the object.
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absorbers will require better precision. A more detailed signal-to-noise analysis that

reveals the limits to detecting, localizing, and characterizing is given in chapter 3.

2.5.2 Experimental Verification of the Analytic Solution

Two sets of experiments were performed, one to check the validity of the theory and
the other to resolve object characteristics by fitting the theory to experimental data.
In the first set of experiments, the object and source are fixed in the Intralipid with
a separation z;. The phase and amplitude of the distorted DPDW are measured
by moving the detector to different points on a two-dimensional grid containing the
source and the center of the object. These experimental results are then compared
to the prediction of eq. (2.31) for the given object properties. In the second set of
experiments, the properties of different spherical absorbers are found by fitting the
theory to a measurement of the distorted wavefront along a line. This was accom-
plished by minimizing the least squares theoretical fit to the experimental data using
the object position and radius as free parameters. The optical properties of the In-
tralipid were determined before each experiment through separate measurements of
phase and amplitude of the DPDW propagating in the infinite homogeneous system
[3, 21]. These quantities were used in the subsequent analysis.

The measurements indicate that the analytic theory accurately predicts the dis-
tortion of the DPDW. Furthermore, because of the close agreement, we are able to
characterize a spherical absorber embedded in the turbid medium. These observations
were not obvious a priorifor one major reason: the theory is derived from the diffusion
equation, but photon migration is better approximated by a transport equation. In
fact, significant differences between the diffusion equation and the transport equation
arise near sharp boundaries. As mentioned below, evidence of these differences have
been detected.

The measured distortion of the DPDW by a perfectly absorbing sphere is shown in
fig. 2.11 and compared to the predicted distortion. This comparison illustrates that

the analytic solution shows good agreement with the experimental data.



Chapter 2. Migration of Diffuse Photon Density Waves 31

(b) Amplitude

12 !

T T

(centimeters)
[o)}
T
L
(centimeters)
(o)}
T
L

2k . 2k .

0 | | P | | ] 0 | | P | |

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
(centimeters) (centimeters)

Figure 2.11: The experimental measurements (solid lines) of a DPDW distorted by a
1.3 em radius perfect absorber are compared to the theoretical prediction (dotted lines)
for the given experimental parameters. Phase contours are drawn every 20 degrees
in (a), while the amplitude contours are drawn every e~%3. For this experiment, the
optical properties of the surrounding medium were p/,=3.0 cm™" and p,=0.02 cm™,

=200 MHz. and v = 2.25 - 10" ¢m/s.
/ 7
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Figure 2.12: The fits to experiment C and G from table 2.1 are presented in (a) and
(b) respectively. The experimental data (¢’s) are compared to the best fit (solid line).
The experimental parameters are given in table 2.1.
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Table 2.1: The results of fitting theory to a series of experimental observations of
a DPDW scattered by an absorber are presented in this table. The absorber had
a radius of a.;;, = 1.3 cm and was positioned at Z = 4.0 cm, X = 0.0 cm, and
Y = 0.0 cm. For each experiment, the detector was positioned at Zyetecror and scanned
from —2.0 < X < 2.0. The experiments were performed in different concentrations of
Intralipid for which the photon random walk step is given by [*. In all experiments,

te = 0.02 cm™' f = 200 MHz, and v = 2.25 - 10'° cm/s.

EXp. Zdetector Intralipid [* = 1//,L/5 Zfit Xfit Yfﬁ @ £t

cm cm cm cm cm cm
A 6.5 0.25% 0.60 3.87 -0.05 0.08 1.02
B 7.5 0.25% 0.60 4.08 -0.06 -0.56 1.04
C 6.5 0.50% 0.33 4.06 0.00 -0.13 1.12
D 7.5 0.50% 0.33 4.01 -0.02 0.08 1.15
E 6.5 0.75% 0.23 4.20 0.01 -0.07 1.15
F 7.5 0.75% 0.23 4.11 0.00 0.12 1.20
G 6.5 1.00% 0.18 412 0.02 0.00 1.22
H 7.5 1.00% 0.18 4.17 0.00 0.04 1.21

As an example of the utility of the analytic solution, a simple least-squares fitting
algorithm was used to fit the analytic solution to the measurements of phase and
amplitude of the DPDW to predict object size and location. Measurements were taken
along lines parallel to those indicated in fig. 2.10a. The results of these experiments

are presented in table 2.1. Fits for two of these experiments are shown in fig. 2.12.

The results in table 2.1 show that a fit to measurements made in the shadow of the
object determines the x and y position of the absorber to an accuracy of 0.1 cm and

the z position to £0.2 cm. Finally, the object radius was determined to within £+0.3
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Figure 2.13: The fits to experiment C (+’s) and H (*’s) from table 2.2 for the scattering
of DPDW’s from purely scattering spheres. The experimental data are given by the
symbols and the best fits by the solid lines. There is an arbitrary amplitude and
phase difference between the two sets of data. The fits were made using the objects
optical properties and initial source amplitude and phase as free parameters. The
experimental parameters are given in table 2.2.

cm. With a decrease in the photon random walk step, the discrepancy between the
determined radius and the known radius is seen to decrease. This trend is a result of

applying the diffusion equation to a system with a sharp absorbing boundary.

To demonstrate that this least-squares fitting algorithm can be used to character-
ize the optical properties of spherical objects, I measured the amplitude and phase of
DPDW’s scattered by purely scattering objects. The objects were spheres of poly-
styrene resin with different concentrations of titanium-oxide (Ti0O3). The method for
casting these spheres is described in section 6.3. Measurements were taken along lines
parallel to those indicated in fig. 2.10a with a 2.5 cm diameter object centered at x=0
and y=4 cm. The results of these experiments for spheres with different concentrations

of TiO, are presented in table 2.2.

Fits for two of these experiments are shown in fig. 2.13. The fits agree well with the
experimental data. Fits were made for spheres with eight different concentrations of

TiO; and in all cases good agreement was found. The reduced scattering coefficient of



34 Boas, Diffuse Photon Probes of Turbid Media: Theory and Applications

Reduced Scattering Coefficient vs. TiO_ Concentration
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Figure 2.14: The best fits for the reduced scattering coefficients is graphed versus the
Ti0; concentration in the resin spheres. The expected linear relationship and zero
intercept are observed.

the object is expected to increase linearly with the concentration of Ti0;. The data in
table 2.2 show this trend. A summary of the determined reduced scattering coefficient
versus TiOy concentration is shown in fig. 2.14. Note that the relationship is linear
and that the reduced scattering coefficient goes to zero as the TiO; concentration goes

to zero.

2.5.3 Scattering from Multiple Objects

When the sample contains two or more spherical objects, the distorted wave is calcu-
lated by summing scattering events of different order. We first calculate the scattering
of the incident wave from each object. This is the first order scattered wave. The first
order scattered waves are incident on and consequently scattered by the surrounding
objects resulting in second order scattered waves whose amplitude is smaller than

the first order wave. For two spherical objects embedded in an infinite homogeneous
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Table 2.2: Results for the fitted object reduced scattering coefficient versus different
T10, concentrations.

Background TiO, Concentration Object

Exp | p) em™ | gy em™" | grams TiO, / 100 ml Resin | g, em™*
A 2.56 0.014 0.03 2.31
B 2.56 0.014 0.06 5.42
C 2.08 0.008 0.09 5.00
D 2.08 0.008 0.11 8.63
E 1.87 0.020 0.12 7.91
F 1.91 0.018 0.15 10.6
G 2.12 0.018 0.18 16.6
H 2.15 0.015 0.21 16.4
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medium, the general solution is of the form
Bour = Bt 3 (O + 00 ) (244
n=1

where ®") is the n** order scattered wave from the i** object (see fig. 2.9). While

scatt,n

the first order waves (‘Diilﬁ,i) are easily calculated using eq. (2.32), the second order
waves (‘Diilﬁ,i) require the solution of complex integral equations since the first order
waves are not spherical. If the first order waves are spherical to a good approximation,
then the second order waves can be computed analytically using the same procedure
for calculating the first order scattered waves. The condition is only satisfied for small
absorbing objects. In this regime we can check the significance of the second ordered
scattered waves from the ratio of ®2 . to ®,,... This ratio indicates that o2 s

scatt,n scatt,n

negligible when

(S a.1 5 a,j s .
(&a?’) (U Ha,j a?) Lod exp (th(rei +rij +rja —rsa)) < 1, (2.45)

K3
D, D, TsiliyTjd

where ¢ and j denote the different objects (see fig. 2.9) and o, is the difference in

the absorption coefficient between the i** object and the background.

2.5.4 Semi-Infinite Media

In medical imaging, measurements are typically made by placing the source and de-
tector on the scalp or surface of the breast. Treating such a system as infinite is
obviously incorrect and will lead to discrepancies between theory and experiment.
Planar boundaries between diffusive and non-diffusive media can be modeled by re-
quiring ®,,; = 0 on an extrapolated zero boundary a distance z, = 2/(3u’) from the
actual boundary (some investigators use z, = 0.7104/34)), away from the diffusive
medium [4, 76, 78, 79]. Multiple planar boundaries can be modeled by employing
additional extrapolated zero boundary conditions. To first order, the extrapolated
zero amplitude boundary condition is satisfied by placing an image source of negat-

ive amplitude at the position of the actual source reflected about the extrapolated
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zero boundary. The photon fluence is then calculated by superimposing the DPDW’s
generated by the two sources and their respective scattered waves. In general, one
must also consider an image of the scattered waves to ensure that ®,,; equals zero on
the extrapolated zero boundary. These images then create waves that scatter off the

object ad infinitum.

2.5.5 General Heterogeneous Media

In biological media the optical inhomogeneities will have arbitrary shapes. It is not
possible to find analytic solutions for general heterogeneous media. We must therefore
resort to numerical techniques. There are many approaches to numerically solving the
diffusion equation for spatially varying optical properties, including finite difference,
finite element, and perturbative methods. Here I present a short review of perturbative
methods.

With a perturbative method the signal reaching the detector is considered to be
a superposition of the DPDW that travelled through a homogeneous system, plus
the first order scattering of DPDW’s from optical inhomogeneities, plus the second
order, etc. The optical properties of the background/homogeneous medium are usually
taken to be the average or most common optical properties. One generally divides
the region of interest (i.e. the region containing the inhomogeneity) into voxels. The
first order scattered DPDW is then the scattering of the incident DPDW from each
voxel. If the optical properties of the voxel are the same as the background then no
wave is scattered from that voxel. The voxels are chosen to be small enough so that
the scattered DPDW can be linearized, that is the amplitude of the scattered wave is
linearly proportional to the change in the absorption coefficient and the change in the
reduced scattering coefficient.

One way to derive the linearized scattered DPDW is to take the limiting form of
D0t (eq. (2.33)) for small radius spheres. To leading order in k°*'a and k"«

(I)scatt(rsa r, I'd) — USAC

exp(ik|rs — r|) exp(ik|r — r4|) l47ra3]
3

A7 Doye|rs — v An|r — vyl
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(e oo ) o

Dot rs— x| [ [ —ral] |3 ou + 20p(r

Here, 611, = plain — fa,out 18 the difference in the absorption coefficient of the voxel and

background, duf, = pf ;, — il ., is the difference in the reduced scattering coefficient,
k = ko, and 6 is the angle between the line joining the source to the voxel and the
line joining the detector to the voxel. The volume for a sphere of radius a appears in
eq. (2.46). If the voxel is not a sphere then the 47a®/3 must be replaced by the actual
volume of the voxel.

Pyeart(rs, r,1rq) is linearized by assuming that dp’(r) < pl. The first order scat-
tered wave reaching the detector is found by summing the contributions from each
voxel. When ®,.44:(rs,r,rq) is linearized then a matrix equation can be written for

(1)

the first order scattered wave ®,.;4;. The matrix equation is

(I)giz)ztt(rs,lv I'd,l) M1,1 M1,2 T MLm 5Ma,1
q)giz)ztt(rs,Zv I'd,z) Mz,l Mz,z T Mz,m 5Ma,2
(I)gi()ztt(rs,nv I.d,ll) Mn,l Mn,? T Mn,m 5/~La,m
N1,1 N1,2 Tt N1,m 5/1/571
N2,1 Nz,z te Nz,m 5/1/53
+ . (247)
Nn,l Nn,2 e Nn,m 5M{97m

(I)(l)

sentt(Tsis Ta ) s the first order scattered wave for the 1" source-detector pair, 51, ; and

p, ; are respectively the change in the absorption and reduced scattering coefficients
of voxel j relative to the background. The elements of matrix M and matrix N are

given by the linearized version of eq. (2.46). Specifically,
klrs; —r; ke, —ra]) [4ma’| [ —
M;; =v54 eXp(krs,: — ril) exp(iklr; — ra.) l i ] [ U] . (2.48)

C
47TDOML|I'57Z' — I']‘| 47T|I']' — I'd72'| 3 Dout
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and

N = uSac exp(ik|rs; — r;|) exp(ik|r; — rg;)) l47ra3]

47TDOML|I'57Z' — I']‘| 47T|I']‘ — I'd72'| 3

1 1 0;;
lik— 7] lik— ] lco,s ’f] : (2.49)
s — 1] v —rail ] | 45 out

where r; is the position of the 5t voxel and r;; and ry,; are the position of the ith

source and detector respectively.
This same matrix equation can be found directly from the heterogeneous diffusion
equation. When the optical properties are spatially varying then the photon diffusion

equation is
—VD(r)-Vo(r) — D(r)V*®(r) + vpta(r)®(r) — iw®d(r) = vSp(r) . (2.50)

Separating the spatially constant terms to the left-hand side and the spatially varying
terms to the right-hand side we get

2wy Ul W
Vo(r) ) o(r) + ZDO(I)(I') =
1 51t o\ .
_ﬁ&)(r) # Vo) V) + o O(r)q)(r) +3 (,,L - @%) 51 b(r) .

(2.51)

The solution to this equation is, after integrating Vil (r) - V®(r) by parts and recog-
nizing that V20©) = k26

o) = P URr b)) gy

A7 Dylr — 1y D,
dp(r')
+ TVCI)(I") VG, r)|de’ . (2.52)

This equation is usually solved perturbatively by assuming that ® = ®© 4+ ) 4
®® 4 ..., This is known as the Born approximation. Substituting this perturbative

expansion into eq. (2.52) and collecting terms of like order, we obtain

v, exp (1k,|ra — rsl)

(I)(O)(rs,rd) D |I'd T |
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Figure 2.15: A drawing of a pulse-train from a mode-locked laser and the correspond-
ing Fourier expansion.

dD(r)

5 VOO (r,,r)- VG(r,rq)| dr.

Q(l)(rs,rd) = /l%a(r)q)(o)(rs,r)G(r,rd)—l—

(2.53)

This equation for the first order scattered wave (first Born approximation) is identical
to the equation that we obtained by summing the limiting form of the analytic solution

over all voxels.

2.6 Time-Domain Measurements

The DPDW scattering theory is easily extended to the time domain. A pulse-train
of light propagating in a turbid media can be thought of as a superposition of many
DPDW’s with different modulation frequencies (see fig. 2.15). Thus, a time resolved
measurement of the propagation of a light pulse is an easy way to determine the
frequency response of the system [85]. To calculate the response to a pulse of light,

we simply compute the scattering due to each DPDW in parallel.
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I computed the temporal evolution of a light pulse with width 7=10 ps and period
T=1.0 pus in an infinite medium with different size perfect absorbers. The results
indicate that the measured photon fluence decreases as a result of an absorber but
that the decay rate of the fluence is relatively unaffected by its presence. These results

are consistent with the experimental observations of Liu et al. [36].

2.7 Photon Migration within the P; Approximation

At optical wavelengths between 600 and 900 nm, the absorption of photons in the
body is generally small compared to the corresponding scattering rate. Thus a major
condition for the validity of the diffusion approximation is satisfied. The criteria is
sometimes violated in hematomas, liver, and other regions with large concentrations of
blood where photon absorption is large. A more accurate model of photon transport
is required to describe and analyze photon migration through these systems. This
section presents the P solution of the transport equation [87, 88], which is a more
accurate approximation for photon transport than the diffusion approximation. I
demonstrate the advantages and disadvantages of the P5 approximation for analyzing
highly absorbing systems. I find that the P; approximation, in general, permits a more
accurate determination of the reduced scattering, u’, and absorption, p,, coefficients
for highly absorbing systems (i.e. p,/p, > 0.1) or systems probed at modulation
frequencies in excess of 2 to 3 GHz. In systems with highly anisotropic scattering
(i.e. (cos@) ~ 1), determination of the reduced scattering coefficient using the P;
approximation gives values comparable to results obtained within the diffusion (P;)

approximation.

2.7.1 P; Theory

The transport equation was presented in section 2.1 (eq. (2.1)) along with a description
of the Py approximation method. Here, I present the solution of the Ps; approxim-

ation and discuss the limits in which the P; approximation reduces to the diffusion
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approximation. The P, equations are not solved because of inconsistencies that arise
at boundaries [55].

Expanding the radiance L(r,Q,t), phase function f(Q,Q’), and source S(r,Q,t)
terms of the transport equation (eq. (2.1)) in spherical harmonics and evaluating the

integral over dQ’; the transport equation is rewritten as

1 0o m A R
SR Gt i — [ Yin( @) =0, (25)
v Ot
where /,L,E’) = ps(1 — g1) + pa (note /,L,EO) = 1a). g1 is the coefficient for the I moment

of the normalized phase function. For the Henyey-Greenstein phase function, g, = ¢'
where ¢ is the average cosine of the scattering angle (see appendix B). When the
photon scattering is anisotropic then /,L,EZ—H) > /,L,E’).

Next, we multiply eq. (2.54) by Yaﬁ(fl) and integrate over 0. Using the ortho-
gonality relations for the spherical harmonics, we obtain an infinite set of coupled
linear differential equations for ¢, ,,, that agree with Kaltenbach and Kaschke [87]. See
appendix A for these calculations. Within the P5 approximation, the moments greater
than [ = 3 are ignored, i.e. we set ¢;,, = 0 for [ > 3. By considering higher moments
of the radiance, the P55 approximation should be more accurate than the diffusion ap-
proximation. However, the P; approximation will break down as the anisotropy of the
radiance is increased by increasing photon absorption and/or the DPDW modulation
frequency.

Working in the frequency domain (i.e. 9/0t — —iw), the equation for ¢gp in a

homogeneous medium is

991+ 59 + 7| oo, 0) = Waoolr, ) + Xano(r,0) + Y gaofr, ) + Zasolr,e)
(2.55)

where

w2 LW
B =90 +i- (55Ma + 27l 4 350 + 63,,L§3>) - (zmaui” + 28u, 1Y + 35M§2>M§3>)
(2.56)
Y = 105(—i— A pua) (=i A ) (=i ) (=i 4 ) (2.57)
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and the right-hand-side of eq. (2.55) contains the moments of the source distribution.
The coefficients W, X, Y, and Z are given in section A.1.2 by eq. (A.34), eq. (A.35),
eq. (A.36), and eq. (A.37) respectively.

Let’s assume that the source is an isotropic point source such that ¢ o = 0 for

[ > 0. For an infinite medium, the solution of eq. (2.55) is of the form

1 .
Qbo,o X Eexp(lkpiﬁr) ) (2-58)

where k,3 1s given by

B£VB? - 36y
18 '

Here I concentrate on the negative root. The positive root contributes to the solution

2 _
ks =

(2.59)

only within a few mean free paths of the source. This solution has been discussed
previously [88], particularly with regards to the positive root and the appropriate
boundary conditions for semi-infinite media.

For typical parameters where the diffusion approximation is known to be valid,
|36v/3?| < 1. For example, using u;, = 100.0 ecm™", p, = 0.1 em™', g = 0.9, and
w = 0, we see that 36v/3% = 0.005. Eq. (2.59) can then be expanded to first order,

16} 36~ 0 W
k2, = E(l 1= W) S 3 (—pa + i~) = Kiiys - (2.60)

This is the well known wavenumber solution from the diffusion equation (see eq. (2.14)

giving

[21]). In the regime where the diffusion approximation is known to be valid, eq. (2.56)
and eq. (2.57) can be approximated as

3 = =350 (2.61)

LW
¥ = 105(—i— 4 pra )yt (2.62)

Thus, for these parameters, the P5 solution reduces to the diffusion solution, indicating
that the diffusion equation is valid when |36v/3% < 1, i.e.
108 w Y

|— (e — 1= )| < 1. (2.63)
55 U D
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For systems that do not satisfy this condition, it is believed that the full solution of
the P5; equation would more accurately approximate photon transport through the
system. Furthermore, from this condition, we see that the limits of validity of the
diffusion equation can be checked by: (1) increasing u, relative to ps, (2) increasing
w/v relative to s, and (3) decreasing the scattering anisotropy factor while holding

(. constant.

2.7.2 Comparison of P; and Diffusion Theories

To test the usefulness of the P; approximation compared to the diffusion approxima-
tion, I first generated data for known parameters using a Monte Carlo computer code
for photon transport in an infinite, homogeneous system. The code is explained in
section 6.1.2 and supplied in appendix C. The Monte Carlo code was used to find the
temporal response to a pulse of light injected into a homogeneous, infinite medium for
various optical properties and scattering anisotropies. I then used the generated data
to compare diffusion theory and P5 as a function of p,, the modulation frequency w
(by Fourier transforming the data) and the scattering anisotropy. The comparison was
made by fitting amplitude and phase data versus the source-detector separation using
the P5 solution and diffusion solution to find p) and p,. Source-detector separations
ranging from 2.0 to 4.0 cm, in steps of 0.2 cm, were used.

Fig. 2.16 displays the optical properties determined from the Monte Carlo data
using the P5; approximation and the diffusion approximation versus the known ab-
sorption coefficient of the medium. Results are plotted for data generated with two
different anisotropy factors. All results in fig. 2.16 are for a modulation frequency
of 390 MHz. The analysis based on the P5 approximation is significantly better than
diffusion theory at determining the correct !, when the scattering is isotropic, i.e.
g = 0, and the absorption coefficient exceeds 10% of the known reduced scattering
coefficient. A similiar difference is observed for the determined absorption coefficient.
For anisotropic scattering (¢ = 0.9), we see that in finding p/ the Ps approximation

is not as good as the diffusion approximation when p,/u. < 0.2, although Ps still en-
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ables a more accurate determination of f,. This is most likely a result of a premature
truncation of the spherical harmonic expansion of the phase function in arriving at
the P theory. In diffusion theory the anisotropy is implicitly contained in the reduced
scattering coefficient, while in the Ps theory the anisotropy is expressed explicitly.
Modifying the Ps theory with the §-E(4) approximation discussed by Star [88] may
improve the determination of /. Basically, within the §-E(4) approximation, a delta
function is added to spherical harmonics expansion of the phase function (eq. (2.6))
to compensate for the truncation.

To investigate the accuracy of the diffusion approximation and the P; approxim-
ation for high modulation frequencies, I used Monte Carlo data for a system with
ph =10.0 cm™! and g, = 0.50 cm™! and calculated the optical properties using both
approximations for frequency components ranging from 0 to 6 GHz. The results are
plotted in fig. 2.17 for a system with isotropic scattering (fig. 2.17 a and b) and aniso-
tropic scattering with ¢ = 0.9 (fig. 2.17 ¢ and d). In the case of isotropic scattering,
the P3 approximation is in general more accurate than diffusion theory, although dif-
fusion theory is accurate to 5% for modulation frequencies less than 4 GHz. For
anisotropic scattering, however, ;i’ is more accurately determined by diffusion theory
up to 6 GHz, while Ps is superior for determining p,. Similar trends are observed for

different absorption coefficients.

2.8 Summary

We have seen that the migration of photons in highly scattering media can be treated
by the photon diffusion equation. For an intensity modulated source, the diffusion
equation predicts a coherent photon density waves that propagate spherically outwards
from the source, and this has been observed. Although microscopically the photons
are individually following a random walk, macroscopically they produce a coherent
intensity wave. The properties of this intensity wave can be understood using conven-

tional optics. This was demonstrated experimentally with the refraction of DPDW’s
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Figure 2.16: A comparison of diffusion theory (closed circles) and the Ps approxima-
tion (open circles) for finding the scattering (top) and absorption (bottom) properties
of an infinite system is presented as a function of the known absorption coefficient
of the medium () was fixed at 10.0 cm™'). The results for isotropic scattering are
presented in (a) and (b), and the anisotropic results are given in (c¢) and (d).
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Figure 2.17: Optical properties determined using diffusion theory (stars) and Ps (dia-
monds) are compared with the known optical properties (solid line) as a function of
the modulation frequency. The results for isotropic scattering are presented in (a) and
(b), and the anisotropic results are given in (c¢) and (d).
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at a planar interface between two different scattering media, and the refraction, dif-
fraction, and scattering by spherical inhomogeneities. Interestingly, the scattering is
accurately modeled by an analytic solution of the Helmholtz equation and is analog-
ous to a scalar version of Mie Theory for the scattering of electromagnetic waves from
dielectric spheres. Experimental observations demonstrate that this solution can be
used in conjunction with a simple imaging algorithm to characterize spherical ob-
jects. Finally we looked at higher order approximations to the transport equation,
specifically the Ps; approximation, and found that the applicability of DPDW’s could

be extended to probe highly absorbing media such as liver and hematomas.



