A DIFFUSE OPTICAL TOMOGRAPHY SYSTEM COMBINED WITH X-RAY MAMMOGRAPHY FOR IMPROVED BREAST CANCER DETECTION

A dissertation

submitted by

Thomas John Brukilacchio

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

TUFTS UNIVERSITY

May 2003

COPYRIGHT © 2003, THOMAS JOHN BRUKILACCHIO

ADVISER: David A. Boas, Ph.D.

ABSTRACT

A DIFFUSE OPTICAL TOMOGRAPHY SYSTEM COMBINED WITH X-RAY MAMMOGRAPHY FOR IMPROVED BREAST CANCER DETECTION

Thomas John Brukilacchio Adviser: David A. Boas

The central thesis of this dissertation states that optical imaging of diffuse tissues must be combined in co-registration with a recognized gold standard of mammographic screening, i.e. X-ray mammography, to gain wide acceptance in the clinical environment. This multi-modality imaging approach promises to overcome the deficiencies of both imaging modalities by drawing on the strengths of each. Functional and structural image contrast would be provided by optical and high-resolution structural contrast by X-ray. Furthermore, the structural information provided by X-ray could be used to improve the optical image reconstruction by providing boundary information and soft constraints for weakly correlated structural contrast. Ultimately, image-processing techniques could be developed to provide the radiologist with a three-dimensional image indicative of both optical and X-ray contrast that would provide much greater information content than either modality alone.

The design, characterization and optimization of a novel Time-Domain Optical Breast Imaging System are described. A comprehensive noise theory for ICCD's and laser source systems was developed to provide insight into methods for optimization of the time-domain system. The system used a mode-locked Ti:Sapphire laser source coupled to a 150-source fiber probe by a Source Fiber Multiplexer with a fiber-to-fiber switch time of under 300 µsec. This represented an improvement in switch time of more

ii

than three orders of magnitude over systems described in the literature. The unique multimodality probe was designed with quick-release features to permit a co-registered X-Ray image to be acquired within seconds of the optical image. Massively parallel detection of 313-detector fibers was enabled by a custom designed, high performance objective, interfaced to a time-gated, image-intensified charge coupled device camera (ICCD). The time-domain system was shown to be capable of acquiring a data set with high spatial resolution in less than 3 minutes, consistent with the requirements of a clinical-level system. Recommendations as to methods of optimizing the system performance are reported.

Acknowledgements

I wish to thank my wife, Sarah Brukilacchio, for her continued patience and support throughout all the ups and downs of my Ph.D. program over the last six years. I could never have hoped to balance the requirements of raising our two beautiful children, Briana and Tayler, running our company, Innovations in Optics, Inc., and completing the rigors of the doctoral program without her sustained physical and mental support. I also appreciate the patience and support of my parents, John and Gretchen Brukilacchio, and mother-in-law Betsy Harpley.

I recall visiting Tufts University several years ago to discuss the possibility of entering the doctoral program. I was elated to hear about a new professor that was soon to join the Electro-Optics Technology Center, coming out of the University of Pennsylvania. Although young, he was reported to be one of the leading authorities on the propagation of light in biological tissues, an area of study that piqued my interest. I asked the program director to sign me up as a student before David Boas even set foot on campus. I want to express my deep gratitude to David for taking me on early in his successful career and for all his continued patience and support over the last several years. It has truly been an honor working under the direction of one of the recognized fathers of the field of DOT.

I am also most grateful to other members of the Photon Migration Imaging Lab at Harvard's Massachusetts General Hospital, where I conducted my research. I thank Quan Zhang for his help in increasing my understanding of the instrumentation requirements of DOT and for his help in assembling the probe, Jonathan Stott for his succinct explanations of the DOT theory and for all his contributions in developing the

iv

software and system integration of the Time-Domain Optical Breast Imaging System, Anand Kumar for his help with the data reduction and analysis and moral support, Joe Culver and Maria Angela Franceschini (Tufts University) for their help in optimizing the phantoms, and Eric Bennet for helping with the administrative aspects of ordering all the system components and for helping with the assembly of the probe.

I am also grateful to Kathleen Chen, a Masters Program student and Andres Bur, an undergraduate student at Tufts University, for their considerable help with assembling the many kilometers of optical fiber and placing the numerous ferrules in their respective plates for the time-domain probe.

The support of my employees at Innovations in Optics, Inc. was critical to balancing all my responsibilities. Thank you to Bob Householder, Manager of Engineering, Margaret Johnson, Administer, Pat Hopkins, Manager of Product Development, and Chuck DeMilo, Manager of Business Development.

I am most appreciative of the time and support offered by my thesis committee including my adviser, David Boas, Assistant Professor, Harvard Medical School, Associate professors Mark Cronin-Golomb and Van Toi Vo, Department of Biomedical Engineering, Tufts University, and Charles A. DiMarzio, Associate Professor, Electrical Engineering, of Northeastern University.

Finally, I am grateful to Advanced Research Technologies, Inc., of Saint-Laurent, Quebec, Canada, for providing the Ti:Sapphire Laser and ICCD camera, as well as funding other related instrumentation that made the Time-Domain Optical Breast Imaging System possible.

v

1

Table of Contents

1 Introduction

2	Review of	f Diffuse Optical Tomography:Theory and Tissue Optics	8
	2.1 Theo	bry of Diffuse Optical Tomography	9
	2.1.1	The Radiative Transfer Equation	9
	2.1.2	Diffusion Approximation to the Radiative	
		Transport Equation	12
	2.1.3	Solutions of the Diffusion Equation for a Slab	14
	2.1.4	The Heterogeneous Solution of the Diffusion Equation	
		by the Perturbation Approach	20
	2.1.5	The Inverse Problem and Image Reconstruction	23
	2.2 Brea	ast Tissue Anatomy and Optical Properties	25
	2.2.1	Breast Tissue Anatomy	25
	2.2.2	The Nature of Scattering in Breast Tissue	28
	2.2.3	Absorption in Breast Tissues	29
	2.2.4	Benign Breast Lesions	31
	2.2.5	Cancers of the Breast	32
	2.2.6	Breast Tissue Chromophores	34
	2.2.7	Optical Properties of Breast Tissue	41
	2.3 Sun	nmary	42

3	Time-Doma Backgroun	in Diffuse Optical Tomography for Breast Imaging: Id and Competing Imaging Modalities	46
	3.1 Alternat	ives to Optical Imaging of the Breast	48
	3.1.1 Fil	m X-ray Mammography	48
	3.1.2 Dig	gital Mammography	49
	3.1.3 Dig	gital Tomosynthesis	50
	3.1.4 Ult	trasound Tomography	50
	3.1.5 Ma	agnetic Resonance Imaging	51
	3.1.6 Pos	sitron Emission Tomography	52
	3.1.7 Th	ermal Imaging	52
	3.1.8 Ele	ectrical Impedance Tomography	53
	3.2 Optical I	Imaging Approaches	54
	3.2.1 Co	ntinuous Wave	56
	3.2.2 Fre	equency-Domain	57
	3.2.3 Tir	ne-Domain	58
	3.3 Review	of Past Work and Instrumentation in Time-Domain DOT Breas	t
	Imaging		61
	3.3 Summar	у	66
4	Design of a	Time-Domain Optical Breast Imaging System	69
	4.1 System-	Level Design of the Time-Domain Optical Breast Imaging	
	System .		71
	4.2 Time-Do	omain Source Subsystem	73

	4.3	Time-	Domain Detection Subsystem	84
	4.4	A Co-	Registered Time-Domain Optical and X-Ray	
		Mam	mography Probe	95
	4.5	Phante	om Design	100
	4.6	Summ	nary	104
5	N	oise M	odel for a Time-Domain Breast Imaging System	106
	5.	l Nois	e Model for an Image Intensified CCD Camera System	
		and	Гіme Domain Breast Imaging System	106
		5.1.1	Assumptions	107
		5.1.2	Basic Operating Principles of an ICCD Camera	107
		5.1.3	Intensifier Photocathode and the Photoelectric Effect	112
		5.1.4	Saturation Effects	115
		5.1.5	Photon Noise	117
		5.1.6	Intensifier Dark Noise	121
		5.1.7	CCD noise	125
		5.1.8	Affect of ICCD Point Spread Function on Signal-to-Noise Ratio	127
		5.1.9	Affect of Pixel Binning on Signal-to-Noise Ratio	129
		5.1.10	Affect of MCP Gain Voltage Fluctuations on the	
			Signal-To-Noise Ratio	133
		5.1.11	Effect of Source Fluctuations	134
		5.1.12	System-Level Signal-To-Noise Ratio	135

	5.2	Theor	retical SNR Analysis	13
	5.3	Sumr	nary	14
6	С	haract	erization and Noise Performance of a Time-Domain	14
	В	Breast]	Imaging System	
	6.1	Char	acterization	14
		6.1.1	Spectral Response of Laser and ICCD	14
		6.1.2	Warm-Up Time	14
		6.1.3	Transient Response – Wavelength Change and Data Acquisition	15
		6.1.4	Stability and Repeatability	15
		6.1.5	ICCD Gain	15
		6.1.6	Intensifier and CCD Linearity	16
		6.1.7	Impulse Response	16
		6.1.8	Cross Talk	16
		6.1.9	Dark Performance of ICCD	17
	6.2	Comp	parison of Theoretical and Measured SNR Data	17
	6.3	Sumr	nary	17
7	0	ptimiz	ing Clinical Performance of a Time-Domain	18
	В	Breast]	Imaging System	
	7.1	Back	ground Considerations	18
	7.2	Phant	om Measurement Analyses	18

	7.3	Preliminary Imaging Results	195
	7.4	Tissue Boundary Localization	197
	7.5	Trade-Off Analysis for Number and Positions of Delays and Sources	201
	7.6	Maximum Permissible Exposure (MPE) Limits	203
	7.7	Optimizing the Number and Order of Measurements for a Clinical	
		Time-Domain Breast Imaging System	206
	7.8	Summary	208
8	Summary and Conclusions		209
	8.1	Conclusions and Recommendations	210
	8.2	Recommendations for future work	213

List of Tables

6.1	Measured and fit data is shown that was used for the fit of measured data to the theory	178
7.1	Scattering Coefficients With and Without Compression Plates	195
7.2	Time Table for Clinical Optical Breast Measurement	207

List of Figures

2.1	Geometry of an Infinite Slab	16
2.2	Zero Boundary Conditions for Slab Geometry	17
2.3	Extrapolated Boundary Conditions for Slab Geometry	18
2.4	Anatomy of the Female Breast	26
2.5	Extinction Coefficients for Oxy-, Deoxy-Hemoglobin, Lipid and Water	36
2.6	Absorption Coefficients for Oxy-, Deoxy-Hemoglobin, Lipid and Water	37
3.1	Diffusion of Photons Through and Infinite Slab	55
4.1	System-Level Block Diagram	70
4.2	Time-Domain Breast Imaging System Layout	72
4.3	Laser Source Assembly	74
4.4	Fiber Source Multiplexer	75
4.5	Source Fiber Array Quick-Connect	77
4.6	Telecentric Scan Lens	78
4.7	Scan Lens Spot Diagram	79
4.8	Scan Lens Transverse Ray Aberrations	80
4.9	Scan Lens Polychromatic Diffraction MTF	81
4.10	Scan Lens Polychromatic Through Focus MTF	82
4.11	Scan Lens Field Curvature and Distortion	82
4.12	Scan of Laser Image Over Source Fiber	83
4.13	ICCD System	84
4.14	Cross Section of Custom ICCD Objective Lens	86
4.15	ICCD Objective Lens Layout	87
4.16	On and Off-Axis Ray Bundles Through ICCD Objective Lens	88
4.17	ICCD Objective Spot Diagram	89
4.18	ICCD Objective Transverse Ray Fan Plot	90
4.19	ICCD Objective Polychromatic Diffraction MTF	91
4.20	ICCD Objective RMS Spot Radius versus Field	91
4.21	ICCD Objective Polychromatic Through Focus MTF	92

List of Figures

4.22	ICCD Objective Field Curvature and Distortion	93
4.23	Simulated Image of Detection Fiber Array, ICCD Objective	94
4.24	Rendered View of Probe Assembly	95
4.25	Source and Detector Probes in Phantom Stand	96
4.26	Early Prototype Probe Interfaced to X-ray Tomography System	97
4.27	Quick-Release Source Plate Probe Assembly	99
4.28	Phantom Mold with Glass Spheres	100
4.29	Vacuum System and Oven for Phantom Fabrication	101
4.30	Heterogeneous Phantom with Probe on Phantom Stand	103
4.31	Rendered View of Heterogeneous Phantom on Phantom Stand	104
5.1	ICCD Layout	108
5.2	Microchannel of MCP	110
5.3	Electronic Energy Diagram of Metal and Semiconductor	113
5.4	Equivalent Power for Thermionic Emission	123
5.5	Excess Noise Factor for MCP	124
5.6	Affect of SPSF Blur Radius on SNR	128
5.7	Theoretical SNR Sensitivity Plots –SNR versus Integration Time	138
5.8	Theoretical SNR Sensitivity Plots –SNR versus Flux	139
5.9	Theoretical SNR Sensitivity Plots -SNR versus MCP Gain Voltage	140
5.10	Theoretical SNR Sensitivity Plots -SNR for Constant Integrated Flux	142
6.1	Spectral Output of Mai Tai Mode-Locked Ti:Sapphire Laser	146
6.2	Relative Spectral Output Power of Ti:Sapphire Laser	147
6.3	ICCD Spectral Response	148
6.4	Warm-Up Response of Time-Domain Optical Breast Imaging System	150
6.5	TPSF Stability with Warm Up	151
6.6	Transient Response of Ti:Sapphire Wavelength Change	153
6.7	Transient Response of Ti:Sapphire Wavelength Change, Expanded	154
6.8	Transient Measurement Order Response	155
6.9	Stability of Ti:Sapphire Laser after 3-Hour Warm Up	157

List of Figures

6.10	Warm Up Effect due to High MCP Gain Voltage	158
6.11	ICCD Voltage Gain Response	159
6.12	ICCD Linearity and Saturation Effects	160
6.13	ICCD Photocathode Saturation	161
6.14	ICCD MCP Gain Saturation	163
6.15	Transient Response of ICCD	164
6.16	ICCD CCD Lineartiy	166
6.17	Impulse Response of Time-Domain Optical Breast Imaging System	167
6.18	Cross Talk of Time-Domain Optical Breast Imaging System	169
6.19	ICCD Dark Signal versus Integration Time	171
6.20	Comparison of Measured Data and Theory for Time-Domain System	175
6.21	Excess Noise Fit	177
6.22	Fit for Photocathode Saturation	178
7.1	Typical Background Image for ICCD	181
7.2	Background Image at High MCP Voltage Gain	182
7.3	Background-Corrected TPSF for Low Absorption Phantom	183
7.4	TPSF Shift versus Wavelength for High Absorption Phantom	184
7.5	Absorption Map of High Absorption Homogeneous Phantom	186
7.6	Edge Effect on TPSF with and without Compression Plates	187
7.7	Effect of Compression Plates on TPSF	188
7.8	TPSF's for High Absorption Phantom	189
7.9	Edge Effect on TPSF for Low Absorption Phantom	190
7.10	Source and Detector Geometry for Scatter Calculation	194
7.11	Reconstructed Image of Heterogeneous Absorption Phantom	196
7.12	Localization of Tissue Phantom Boundaries	198
7.13	Placement of Time Gates Relative to TPSF Shape	201
7.14	Maximum Permissible Exposure (MPE) for Skin Exposure	205
7.15	MPE for CW case	206