
Chapter 5

Imaging the Scattering coe�cient

In the human body there are localized absorption changes and changes in the reduced

scattering coe�cient. Scattering is caused by a mismatch in the index of refraction

and depends on the size and shape of the scattering object. The reduced scattering

coe�cient also depends on the density of scatterers The presence of certain solutes

such as glucose or potassium can change the index of refraction of the intra- or extra-

cellular 
uid, changing the reduced scattering coe�cient. Imaging the scattering

coe�cient is important not only because large scattering changes can easily corrupt

an absorption image, but also because scattering is an additional form of contrast.

We will use the same expansions (Born, Rytov) that we used for the absorption

case and the same inversion techniques (SVD, SIRT) to image the reduced scattering

coe�cient.

To solve the di�usion equation for an in�nite, heterogeneously scattering medium

we expand the di�usion coe�cient, D = 1=3�0s, into spatially dependent, �D(r), and

independent (background), Do, pieces, i.e.

D(r)) �D(r) +Do: (5.1)

These terms are then incorporated into the di�usion equation (equation 2.18),

Jac(r) � �DrUac(r) (5.2)

to obtain

� i!U(r; rs) + v�aU(r; rs) +r � J(r; rs) = B�(rs); (5.3)

95



96 O'Leary, Imaging with Di�use Photon Density Waves

J(r; rs) = �(�D(r) +Do)rU(r; rs): (5.4)

When we insert equation 5.4 into 5.3, we obtain

� i!U(r; rs) + v�aU(r; rs)�r � ((�D(r) +Do)rU(r; rs)) = B�(rs): (5.5)

Then divide through by �Do we have

(r2 + k2)U(r; rs) +rF (r) � rU(r; rs) + F (r)r2U(r; rs) = �B�(rs)=Do (5.6)

F (r) = �D(r)=Do: (5.7)

5.1 Born Expansion

To solve this heterogeneous di�usion equation, we will use the same approaches as we

described in Chapter 4. We will assume that we have a homogeneous system. A �nite

system can be handled using image sources, just as we discussed in the absorption

case. First, using the Born approximation,

U(r; rs) = Uo(r; rs) + Usc(r; rs) (5.8)

so

(r2 + k2)Uo(r; rs)| {z }
homogeneous

+(r2 + k2)Usc(r; rs) (5.9)

+rF (r) � r (Uo(r; rs) + Usc (r; rs)) + F (r)r2(Uo(r; rs) + Usc(r; rs))

= �B�(rs)=Do| {z }
homogeneous

: (5.10)

If we subtract o� the homogeneous di�usion equation (marked homogeneous) and

assume that Usc � Uo, we again arrive at a Helmholtz equation for Usc,

(r2 + k2)Usc(r; rs) = �rF (r) � rUo(r; rs)� F (r)r2Uo(r; rs) (5.11)

which can be solved using the Green function method,

Usc(rd; rs) = �

Z
d3r G(r � rd)

�
rF (r) � rUo(r; rs) + F (r)r2 (Uo(r; rs))

�
(5.12)

G(r� rd) =
exp(jr� rdj)

4�jr� rdj
: (5.13)
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Using Green's �rst identity [65],
Z
V
d3x �r2 =

Z
S
d2x �n � r �

Z
V
d3x r� � r ; (5.14)

equation 5.12 becomes,

Usc(rd; rs) = �

Z
V
dr G(r� rd)rF (r) � rUo(r; rs)| {z }

I

(5.15)

�

Z
S
da Uo(r; rs)n � r (G(r � rd)F (r))| {z }

II

+
Z
V
dr rUo(r; rs) � r (G(r � rd)F (r))| {z }

III

:

The integral marked II is equal to zero, since we can take this surface to be at in�nity,

and both Uo and G exponentially decay to zero at in�nity. The third integral can be

expanded,
Z
V
dr rUo(r; rs) � r (G(r � rd)F (r)) =

Z
V
dr rUo(r; rs) � rG(r� rd)F (r)

+
Z
V
dr rUo(r; rs) � rF (r)G(r� rd): (5.16)

Note that the second term in the expansion cancels with the termmarked I in equation

5.15 and �nally

Usc(rd; rs) =
Z
V
dr rUo(r; rs) � rG(r� rd)

�D(r)

Do

: (5.17)

5.2 Rytov Expansion

Just as we did in the absorption case, we can also make a Rytov approximation,

U(r; rs) = Uo(r; rs)Usc(r; rsc) = exp(�o(r; rs) + �sc(r; rs)); (5.18)

Uo(r; rs) = exp(�o(r; rs)): (5.19)

For notational ease we will de�ne,

Uo � Uo(r; rs);�o � �o(r; rs) (5.20)

Usc � Usc(r; rs);�sc � �sc(r; rs): (5.21)
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When we plug these terms into the di�usion equation (5.6) we arrive at,

(r2 + k2)(UoUsc) +rF � r(UoUsc) + Fr2(UoUsc) = �B�(rs)=Do (5.22)

F = �D(r)=Do: (5.23)

We can expand the gradients of products,

r
2UoUsc +r

2UscUo + 2rUo � rUsc + k2UoUsc +rF � rUoUsc (5.24)

+rF � rUscUo + Fr2UoUsc + Fr2UscUo + 2FrUo � rUsc = �B�(rs)=Do

Note that

rUsc = r�scUsc: (5.25)

Using these identities and dividing through by Usc, Equation 5.24 becomes

r
2Uo| {z }

homogeneous

+r2�scUo + (r�sc)
2Uo + 2rUo � r�sc + k2Uo| {z }

homogeneous

(5.26)

+rF � rUo +rF � r�scUo + Fr2Uo + Fr2�scUo

+F (r�sc)
2Uo + 2FrUo � r�sc = �B�(rs)=Do| {z }

homogeneous

As in the absorption case we have assumed that Usc is negligible at the source position.

Next we subtract the homogeneous di�usion equation (marked homogeneous) and

note that

r
2(Uo�sc) = r

2Uo�sc +r
2�scUo + 2r�sc � rUo (5.27)

= �k2Uo�sc +r
2�scUo + 2r�sc � rUo (5.28)

We use this equation to replace 2r�sc � rUo in equation 5.26

r
2�scUo| {z }
+�

+(r�sc)
2Uo +r

2(Uo�sc) + k2Uo�sc| {z }
Helmholtz�like

(5.29)

�r
2�scUo| {z }
��

+rF � rUo +rF � r�scUo + Fr2Uo (5.30)

+Fr2�scUo + F (r�sc)
2Uo + 2FrUo � r�sc = 0: (5.31)
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This equation can be rearranged to form another Helmholtz equation. This Helmholtz

equation is solved by convolving with the appropriate Green function,

Uo(rd; rs)�sc(rd; rs) = �

Z
V
d3r G

8><
>:(r�sc)

2Uo +rF � rUo| {z }
A

+Fr2Uo| {z }
I

(5.32)

+rF � r�scUo| {z }
B

+Fr2�scUo| {z }
II

+F (r�sc)
2Uo + 2FrUo � r�sc| {z }

C

9>=
>; ;

where

G � G(rd � r) (5.33)

If we again use Green's �rst identity 5.14 then the term marked I becomes
Z
V
d3x FGr2Uo =

Z
S
d2x (FG)n � rUo| {z }

=0

�

Z
V
d3x r(FG) � rUo (5.34)

= �

Z
V
d3x GrF � rUo| {z }

A

�

Z
V
d3x FrG � rUo; (5.35)

and the resulting term marked A cancels with the term marked A in equation 5.32.

Similarly, the term marked II becomes
Z
V
d3x GFUor

2�sc =

Z
S
d2x GFUon � r�sc| {z }

=0

�

Z
V
d3x r(GFUo) � r�sc (5.36)

= �

Z
V
d3x GFrUo � r�sc| {z }

C

�

Z
V
d3x GUorF � r�sc| {z }

B

�

Z
V
d3x FUorG � r�sc (5.37)

and the resulting term marked B cancels with the term marked B in equation 5.32.

Likewise with C. This leaves us with

Uo(rd; rs)�sc(rd; rs) = �

Z
V
dr G(r�sc)

2Uo � FrG � rUo � FUorG � r�sc (5.38)

+FG(r�sc)
2Uo + FGrUo � r�sc: (5.39)

Note that because our system is totally symmetric with respect to the source and

detector,
Z
dr FUo(r; rs)rG(rd � r) � r�sc =

Z
dr FUo(r; rs)rG(rd � r) � r�sc (5.40)
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=

Z
dr F

exp(ikjr� rsj)

4�Dojr� rsj
r
exp(ikjrd � rj)

4�jrd � rj
� r�sc (5.41)

=

Z
dr F

exp(ikjrd � rj)

4�Dojrd � rj
r
exp(ikjr� rsj)

4�jr� rsj
� r�sc (5.42)

=

Z
dr FG(rd � r)rUo(r; rs) � r�sc: (5.43)

If we assume that

(r�sc)
2
�rG � rUo (5.44)

and F less than or on the order of 1, we can now write equation 5.32 as

Uo(rd; rs)�sc(rd; rs) =
Z
V
dr FrG � rUo: (5.45)

Note that in most systems of particular interest in the body, the reduced scattering

coe�cient is not expected to vary more than 100%. So our assumption that F is less

than or on the order of 1 is a good assumption.

F = �D=D (5.46)

= (D �Do)=D (5.47)

= 1 � (�0s + ��0s)=�
0

s (5.48)

= ��0s=�
0

s (5.49)

As in the absorption case, the structure of the Born and Rytov solutions look

very similar. Again, we see that the Born approximation makes the assumption that

the scattered wave is small, and the scattered wave scales linearly with the absorp-

tion. The Rytov approximation does not place a restriction on the magnitude of the

scattered wave change, but rather assumes that the scattered �eld is slowly vary-

ing. In the absorption case, a calibration plot of reconstructed absorption versus true

absorption showed that the Rytov solution procured an better reconstruction of the

absorption. In the scattering case, the Rytov solution does not improve the calibra-

tion plot. Virmont and Ledanois [66] have studied this e�ect, and have suggested an

adjustment to the Rytov solution that improves the scattering images.
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5.3 Matrix Equations

We now have an expression which relates the scattered wave to the heterogeneous

optical properties. From here the analysis is the same as in the absorption case; we

will digitize the integral, and make a series of measurements to generate a matrix.

Born:

0
BBBBB@

Usc(rs1; rd1)

...

Usc(rsm; rdm)

1
CCCCCA
=

0
BBBBB@

WB
11 : : : WB

1n

...
. . .

...

WB
m1 : : : WB

mn

1
CCCCCA

0
BBBBB@

�D(r1)

...

�D(rn)

1
CCCCCA

WB
ij = rUo(rj; rsi) � rG(rdi � rj)vh

3=Do (5.50)

Rytov:

0
BBBBB@

�sc(rs1; rd1)

...

�sc(rsm; rdm)

1
CCCCCA
=

0
BBBBB@

WR
11 : : : WR

1n

...
. . .

...

WR
m1 : : : WR

mn

1
CCCCCA

0
BBBBB@

�D(r1)

...

�D(rn)

1
CCCCCA

WR
ij =

rUo(rj; rsi) � rG(rdi � rj)vh
3

Uo(rdi; rsi)Do

(5.51)

The matrix is inverted using the same algorithms; SVD or SIRT to obtain �D

Figure 5.1 demonstrates the reconstruction of a single spherical object (1.2 cm

in diameter) from experimental data. The background media has �oa = 0.023 cm�1

and �o
0

s = 6.0 cm�1. A single, resin sphere having the same absorption coe�cient

as the surrounding medium, but a higher scattering coe�cient ( �0s � 15:0 cm�1), is

imaged using 120 measurements of amplitude and phase. In this reconstruction, we

have made use of a priori knowledge that the object is either absorbing or scattering,

that is we have assumed that the absorption coe�cient is homogeneous throughout
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Figure 5.1: The reconstruction of a highly scattering sphere using 1000 SIRT itera-

tions. See text for further discussion.

the medium. In chapter 6 we discuss solving for both absorption and scattering

simultaneously.

Just as in the absorption case, we have found that as we continue to iterate, the

image of a sphere gets gradually smaller and more highly scattering. Boas et al. [22]

have demonstrated that even in a best case scenario, the di�erence between a small,

highly scattering object and a larger, less scattering object is practically immeasurable

for objects with a diameter of less than 1 cm [22]. The authors demonstrate that

there is a family of degenerate solutions which all conserve the quantity ��av where

v is the volume of the sphere. Thus, in the SIRT reconstructions, the consecutive

iterations move the solution through this family of solutions. Because we always

start from the same initial guess (a homogeneous system) the reconstruction always

moves through the family of solutions in the same way. Figure 5.2 demonstrates a

series of reconstructions for di�erent numbers of iterations. Note that as the number

of iterations increases, the reduces scattering coe�cient of the object increases, and

the size decreases. We have left the iteration number as a free parameter in our

reconstructions.

If we use a �nite media, we must adjust the weights in our calculation to re
ect

the new boundary conditions. In particular, we would use the same methodology

as we did in section 4.13; replace Uo and G using the appropriate Green function

solutions for the given boundary condition.



Imaging Scattering 103

Figure 5.2: The reconstructed reduced scattering coe�cient (maximum value) as a

function of iteration. A 1 cm diameter sphere with �0s = 12 cm�1, �a = 0.03 cm�1 is

embedded with a medium with �0s = 10 cm�1, �a = 0.03 cm�1. The sources scan the

sides of a 7 cm square with a source modulation frequency of 200 MHz.
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