Safety Issues in EEG-fMRI

On the effect of resistive EEG electrodes and leads during 7 T MRI: simulation and temperature measurement studies

 Leonardo M. Angelone, Christos E. Vasios, Graham Wiggins, Patrick L. Purdon, Giorgio Bonmassar

ABSTRACT:

The purpose of the study was to assess the effects of electrodes and leads on electromagnetic field and specific absorption rate (SAR) distributions during simultaneous electroencephalography (EEG) and 7-T MRI. Two different approaches were evaluated and compared to the case without electrodes: (a) the use of different EEG lead resistivity and (b) the use of a radiofrequency (RF) resistor on the lead near the EEG electrode. These configurations are commonly used in research and clinical settings. Electromagnetic field and SAR distributions generated by the transmit RF coil were evaluated using finite difference time domain simulations on an anatomically accurate head model. The spatiotemporal changes of temperature were estimated with the heat equation. Temperature changes during turbo spin echo sequences were also measured using a custom-made phantom: the conductive head mannequin anthropomorphic (CHEMA). The results of this study showed that the SAR and temperature distributions in CHEMA (a) increased when using low resistive leads, with respect to the no-electrode case; (b) were affected by the resistivity of the EEG leads, with carbon fiber leads performing better than standard copper leads; and (c) were not affected by the use of an RF resistor between the EEG electrode and the lead.

Magn Reson Imaging. 2006 Jul;24(6):801-12

 

Metallic electrodes and leads in simultaneous EEG-MRI: specific absorption rate (SAR) simulation studies

 Leonardo M. Angelone, Andreas Potthast, Florent Segonne,Sunao Iwaki, John W. Belliveau, Giorgio Bonmassar

ABSTRACT:

The purpose of this study was to investigate the changes in specific absorption rate (SAR) in human-head tissues while using nonmagnetic metallic electroencephalography (EEG) electrodes and leads during magnetic resonance imaging (MRI). A realistic, high resolution (1 mm(3)) head model from individual MRI data was adopted to describe accurately thin tissues, such as bone marrow and skin. The RF power dissipated in the human head was evaluated using the FDTD algorithm. Both surface and bird cage coils were used. The following numbers of EEG electrodes/leads were considered: 16, 31, 62, and 124. Simulations were performed at 128 and 300 MHz. The difference in SAR between the electrodes/leads and no-electrodes conditions was greater with the bird cage coil than with the surface coil. The peak 1 g averaged SAR values were highest at 124 electrodes, increasing to as much as two orders of magnitude (x172.3) at 300 MHz compared to the original value. At 300 MHz, there was a fourfold (x3.6) increase of SAR averaged over the bone marrow, and a sevenfold (x7.4) increase in the skin. At 128 MHz, there was a fivefold (x5.6) increase of whole head SAR. Head models were obtained from two different subjects, with an inter-subject whole head SAR variability of 3%. .

Bioelectromagnetics. 2004 May;25(4):285-95.