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Purpose: To	develop	an	automated	machine-	learning-	based	method	for	the	dis-
covery	of	rapid	and	quantitative	chemical	exchange	saturation	transfer	(CEST)	
MR	fingerprinting	acquisition	and	reconstruction	protocols.
Methods: An	MR	physics-	governed	AI	system	was	trained	to	generate	optimized	
acquisition	 schedules	 and	 the	 corresponding	 quantitative	 reconstruction	 neu-
ral	network.	The	system	(termed	AutoCEST)	is	composed	of	a	CEST	saturation	
block,	a	spin	dynamics	module,	and	a	deep	reconstruction	network,	all	differenti-
able	and	jointly	connected.	The	method	was	validated	using	a	variety	of	chemical	
exchange	phantoms	and	in	vivo	mouse	brains	at	9.4T.
Results: The	acquisition	times	for	AutoCEST	optimized	schedules	ranged	from	
35	to	71 s,	with	a	quantitative	image	reconstruction	time	of	only	29	ms.	The	re-
sulting	exchangeable	proton	concentration	maps	for	the	phantoms	were	in	good	
agreement	 with	 the	 known	 solute	 concentrations	 for	 AutoCEST	 sequences	
(mean	absolute	error	=	2.42	mM;	Pearson’s	r = 0.992,	p < 0.0001),	but	not	for	an	
unoptimized	sequence	(mean	absolute	error	=	65.19	mM;	Pearson’s	r = − 0.161,		
p = 0.522).	Similarly,	improved	exchange	rate	agreement	was	observed	between	
AutoCEST	 and	 quantification	 of	 exchange	 using	 saturation	 power	 (QUESP)	
methods	 (mean	 absolute	 error:	 35.8	 Hz,	 Pearson’s	r = 0.971,	 p < 0.0001)	 com-
pared	to	an	unoptimized	schedule	and	QUESP	(mean	absolute	error	=	58.2	Hz;	
Pearson’s	r = 0.959,	p < 0.0001).	The	AutoCEST	in	vivo	mouse	brain	semi-	solid	
proton	volume	fractions	were	lower	in	the	cortex	(12.77%	±	0.75%)	compared	to	
the	white	matter	(19.80%	±	0.50%),	as	expected.
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1 	 | 	 INTRODUCTION

Chemical	 exchange	 saturation	 transfer	 (CEST)	 is	 an	 in-
creasingly	 explored	 molecular	 imaging	 technique	 which	
allows	 for	 the	detection	of	 signals	associated	with	milli-	
molar	 concentrations	 of	 proteins,	 metabolites,	 and	 vari-
ous	 molecular	 compounds.1,2	 It	 uses	 frequency	 selective	
radiofrequency	(RF)	pulses	to	saturate	the	magnetization	
of	exchangeable	protons	on	proteins,	lipids,	and	other	bio-
logically	interesting	compounds	that	later	undergo	chem-
ical	exchange	with	the	bulk	water	protons,	 thus	altering	
the	MR-	detectable	signal.3

The	potential	benefit	of	using	the	CEST	contrast	mech-
anism	was	demonstrated	 in	a	variety	of	clinical	applica-
tions,	 including	 cancer	 detection	 and	 grading,4	 stroke	
characterization,5	 characterization	 of	 neurodegenerative	
disorders,6	kidney	disease	monitoring,7,8	cartilage	and	in-
tervertebral	disc	imaging,9,10	cell	tracking,11–	13	and	cardiac	
disease	assessment.14

The	most	common	analysis	method	for	CEST-	weighted	
imaging	 is	 the	 magnetization	 transfer	 ratio	 asymmetry	
(MTRasym).	Although	it	is	straightforward	to	calculate	and	
was	found	useful	in	many	reports,	this	metric	is	affected	
by	a	mixed	contribution	from	several	exchange	and	relax-
ation	 properties,	 such	 as	 the	 relayed	 aliphatic	 nuclear	
Overhauser	enhancement	(rNOE)	and	the	water	T1	relax-
ation	time,	that	may	bias	the	interpretation	of	the	obtained	
contrast.15	Moreover,	the	MTRasym	is	strongly	affected	by	
the	 saturation	 pulse	 parameters	 used,	 challenging	 the	
comparison	of	findings	obtained	using	different	protocols,	
and	 requiring	a	 rigorous	optimization	of	 the	acquisition	
parameters.16

A	quantitative	CEST	technique	would	clearly	be	bene-
ficial	for	overcoming	the	abovementioned	challenges.	The	
exchange	parameters	(proton	volume	fraction	and	chemi-
cal	exchange	rate)	can	be	quantified	by	acquiring	multiple	
Z-	spectra	 with	 different	 saturation	 pulse	 durations	 and/
or	 powers,	 followed	 by	 analysis	 using	 methods	 such	 as	
quantification	 of	 exchange	 using	 saturation	 power/time	
(QUESP/QUEST),17	Omega-	plot,18,19	or	a	full	fitting	of	the	
Bloch–	McConnell	 equations.20	However,	 the	 long	acqui-
sition	times	and	the	complexity	of	 the	 in	vivo	multipool	

environment	 render	 this	 approach	 suboptimal	 for	 rou-
tine	 clinical	 use.	 CEST	 MR-	fingerprinting	 (MRF21)	 is	 a	
recently	 suggested	 promising	 alternative.22–	24	 In	 the	 MR	
fingerprinting	approach,	a	pseudo	random	and	fast	CEST	
acquisition	 schedule	 is	 used	 to	 obtain	 different	 “signal-	
signatures,”	representing	different	combinations	of	solute	
concentration	and	chemical	exchange	rate.	The	acquired	
experimental	 signals	 are	 then	 compared	 to	 a	 simulated	
signal	dictionary,	allowing	the	generation	of	quantitative	
CEST	 parameter	 maps.	 However,	 the	 CEST-	MRF	 per-
formance,	and	ability	 to	discriminate	different	exchange	
rates	 and	 proton	 volume	 fractions,	 is	 critically	 depen-
dent	on	 the	acquisition	parameter	 schedule	used.25	This	
mandates	a	careful	optimization	of	the	imaging	protocol,	
which	is	very	challenging	for	CEST/MT	imaging	given	the	
large	number	of	exchangeable	proton	pools	involved.

The	purpose	of	this	work	is	to	develop	and	validate	a	
novel	 paradigm	 for	 conducting	 and	 analyzing	 CEST	 ex-
periments.	We	hypothesized	that	an	MR	physics	governed	
AI	 system,	 termed	 here	 as	 AutoCEST,	 can	 be	 designed	
and	 trained	 to	 simultaneously	 generate	 an	 optimized	
and	 fast	 CEST	 acquisition	 schedule	 and	 at	 the	 same	
time	 provide	 the	 means	 for	 reconstructing	 quantitative	
exchange-	parameter	 maps,	 for	 any	 given	 and	 broadly	
defined	 multi-	pool	 CEST/MT	 scenario.	 To	 demonstrate	
the	efficiency	and	robustness	of	the	method,	a	validation	
study	using	a	variety	of	different	CEST	phantoms	was	per-
formed,	followed	by	an	in	vivo	mouse	imaging	experiment.

2 	 | 	 METHODS

2.1	 |	 AutoCEST architecture and 
realization

An	 overview	 of	 the	 AutoCEST	 approach	 is	 described	 in	
Figure	1A.	For	each	chemical	exchange	scenario	of	inter-
est	 (e.g.,	 amide,	 amine,	 creatine,	 magnetization	 transfer	
(MT),	etc.),	the	system	gets	as	input	a	general	description	
of	the	expected	range	of	parameter	values	and	simulates	
the	expected	MR	signals	from	a	random	CEST	acquisition	
protocol.	The	system	then	performs	automatic	optimiza-
tion,	which	ultimately	outputs	a	refined	set	of	acquisition	

Conclusion: AutoCEST	can	automatically	generate	optimized	CEST/MT	acqui-
sition	protocols	that	can	be	rapidly	reconstructed	into	quantitative	exchange	pa-
rameter	maps.

K E Y W O R D S
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protocol	 parameters	 (Figure	 1B,C	 orange	 rectangles)	 as	
well	 as	 optimized	 neural	 network	 weights	 (Figure	 1D,	
orange	 circles),	 capable	 of	 transforming	 the	 measured	
signals	 into	 quantitative	 CEST/MT	 proton	 exchange	 pa-
rameter	maps.

The	 proposed	 technique	 is	 based	 on	 the	 integration	
of	CEST	physics	and	spin	dynamics	with	deep	 learning.	
In	a	classic	neural	network,	each	of	the	nodes	contains	a	

“weight	element,”	which	is	updated	and	optimized	during	
the	 backward	 propagation	 step.	 To	 allow	 an	 analogous	
equivalent	update	of	the	CEST	experiment	parameters	and	
achieve	efficient	optimization	using	auto-	differentiation,	
the	 analytical	 solution	 of	 the	 governing	 spin	 dynamics	
for	every	step	of	the	imaging	experiment	was	represented	
as	a	computational	graph	(Figure	1B,C).	Next,	a	deep	re-
construction	 network26	 was	 used	 to	 obtain	 quantitative		

F I G U R E  1  A,	Schematic	representation	of	the	AutoCEST	pre-	experiment	pipeline.	A	broadly	defined	clinical	scenario	serves	as	input	
which	allows	the	experiment	optimization	by	sequentially	simulating	CEST	saturation	(purple),	readout	and	recovery	(green),	and	deep	
reconstruction	(yellow).	AutoCEST	outputs	an	optimized	acquisition	schedule	and	a	reconstruction	network	(orange).	B,	CEST	saturation	
block	as	a	computational	graph.	The	blue	rectangles	represent	the	input	tissue	parameters:	initial	magnetization	(M0),	water	relaxation	rates	
(R1a,	R2a),	solute	transverse	relaxation	(R2b),	exchange-	rate	(kb),	and	volume	fraction	( fb).	The	orange	rectangles	represent	the	dynamically	
updated	protocol	parameters:	saturation	time	(Tsat),	saturation	power	(�1),	saturation	frequency	offset	(�rf).	The	graph	calculates	the	
magnetization	at	the	end	of	the	saturation	block	Mz[n

+].	C,	Bloch	equation-	based	image	readout	as	a	computational	graph.	The	blue	
rectangles	represent	the	water-	pool	parameters,	while	the	orange	rectangles	represent	the	dynamically	updated	protocol	parameters:	flip	
angle	(FA)	and	recovery	time	(Trec),	which	is	embedded	in	the	appropriate	relaxation	step.	Note	that	this	is	a	partial	display	due	to	space	
limitations.	D,	Deep	reconstruction	network	for	decoding	the	“ADC”	MR	signals	(purple	circles),	obtained	in	C	into	CEST	quantitative	
parameters	( fb	and	kb,	blue	circles)
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CEST/MT	 parameter	 maps	 (proton	 volume	 fraction	 and	
exchange	 rate).	 Notably,	 the	 acquisition	 and	 reconstruc-
tion	 steps	 are	 serially	 connected	 to	 allow	 joint	 optimi-
zation	 using	 automatic	 differentiation	 and	 stochastic	
gradient	descent.	The	detailed	AutoCEST	steps	include:

2.1.1	 |	 CEST	saturation	block

The	analytical	solution	of	the	Bloch–	McConnell	equations	
for	continous	wave	RF	irradiation,	for	either	a	two-	pool27	
(water	and	solute	proton	pools)	or	a	three-	pool20	(water,	
solute,	and	semi-	solid/MT	proton	pools)	imaging	scenario	
was	 represented	 as	 a	 computational	 graph	 (Figure	 1B).	
This	allows	the	calculation	of	the	water-	pool	Mz	compo-
nent	at	the	end	of	the	saturation,	and	more	importantly,	
the	update	of	the	saturation-	block	parameters	(Figure	1B,	
orange	rectangles)	during	training.

2.1.2	 |	 Readout	and	relaxation	spin	
dynamics	module

In	 the	 next	 step	 of	 the	 forward-	direction	 modeling,	 the	
transverse	spin	components	are	zeroed-	out,	assuming	suf-
ficient	gradient	spoiling	is	applied.	Next,	the	spin	dynamics	
are	 calculated	 during	 excitation	 and	 relaxation,	 using	 the	
Bloch	equations	with	a	discrete-	time	state-	space	model	 in	
the	rotating	frame	28	(Figure	1C).	This	allows	for	the	update	
of	the	flip-	angle	(FA)	and	the	recovery	time	(Trec)	parame-
ters	as	well	as	the	calculation	of	the	expected	“ADC”	signals.

2.1.3	 |	 Deep	reconstruction	network

The	 resulting	 MR	 signals	 are	 two-	norm	 normalized	
along	 the	 temporal	 dimension	 in	 a	 pixel-	wise	 manner	
and	 mapped	 into	 CEST	 quantitative	 parameters	 using	 a	
fully	connected	four-	layer	deep	reconstruction	network26	
(Figure	1D).	The	neural	network	is	composed	of	a	series	
of	fully	connected	dense	layers,	with	two	hidden	layers	of	
300	nodes	each	and	activated	by	hyperbolic	tangent	(tanh)	
functions.

The	 entire	 pipeline	 was	 implemented	 using	 PyTorch	
1.0.1	 and	 Python	 3.6.8	 on	 a	 Linux	 laptop	 computer	
equipped	 with	 an	 8-	core	 Intel	 i7-	7700HQ	 CPU	 (2.80	
GHz).	 AutoCEST	 was	 trained	 for	 a	 variety	 of	 chemical	
exchange	 scenarios	 as	 described	 in	 Sections	 2.2,	 2.4.2,	
and	Supporting	Information	Table	S1.	For	each	scenario,	
acquisition	schedules	of	N = 10	raw	(molecular	informa-
tion	encoding)	images	were	generated.	The	batch	size	was	
set	to	256	and	the	number	of	training	epochs	set	to	100,29	
while	 a	 different	 development	 set	 of	 simulated	 signals	

(not	 included	 in	 the	 training	 data)	 was	 used	 to	 confirm	
that	over-	fitting	is	not	reached.	To	further	promote	robust	
learning,	 white	 Gaussian	 noise	 (standard	 deviation	 of	
0.002)	was	injected	into	the	training	data.30,31	The	loss	was	
defined	as	the	mean-	squared-	error	between	the	estimated	
proton	 exchange	 rate	 and	 volume	 fraction	 values	 and	
their	 corresponding	 ground-	truth	 values.	 The	 RMSprop	
algorithm32	was	used	as	the	optimizer,	with	the	learning	
rates	of	 the	acquisition	schedule	parameters	and	 the	 re-
construction	network	set	to	0.001	and	0.0001,	respectively.

To	provide	basic	intuition	on	the	optimization	process,	
AutoCEST	 was	 set	 to	 update	 only	 the	 saturation	 pulse	
power	 for	 some	 of	 the	 scenarios	 (iohexol,	 BSA,	 and	 in	
vivo	 amide).	 Next,	 2,3,	 or	 5	 different	 acquisition	 param-
eters	 were	 defined	 in	 a	 simultaneous	 parameter	 optimi-
zation	for	the	in	vivo	MT,	pCr,	and	L-	arginine	scenarios,	
respectively.

Finally,	 the	 optimal	 acquisition	 schedule	 parameters	
found	by	AutoCEST	are	loaded	into	the	MR	scanner,	and	
a	 set	of	N,	molecular	 information	encoding,	 raw	 images	
are	 acquired	 (Figure	 2).	 The	 resulting	 images	 are	 then	
fed	voxel-	wise	into	the	AutoCEST-	trained	reconstruction	
network,	resulting	in	quantitative	CEST/MT	maps	of	the	
imaged	subject.

2.2	 |	 Phantom preparation

To	validate	the	suggested	approach,	an	extensive	in	vitro	
imaging	study	was	performed	using	a	set	of	seven	imag-
ing	phantoms,	each	composed	of	 three	different	vials	of	
a	 particular	 CEST	 compound,	 dissolved	 in	 PBS	 or	 in	 a	
buffer	 titrated	 to	 a	 particular	 pH	 value	 between	 4.0	 and	
7.4.	The	compound	concentrations	were	varied	between	
12.5	and	100	mM	in	all	cases	except	 for	BSA,	where	the	
w/w	concentration	was	varied	between	7.5%	and	15%.33–	36	
To	 verify	 the	 AutoCEST	 robustness	 for	 various	 imaging	
scenarios,	the	following	compounds	were	used:

2.2.1	 |	 Iohexol

An	x-	ray	iodinated	contrast	agent,	used	as	a	CEST	agent	
for	extracellular	pH	quantification.	Iohexol	contains	two	
exchangeable	amide	protons	at	a	chemical	shift	of	4.3	ppm	
relative	to	the	resonance	frequency	of	water.37,38

2.2.2	 |	 Phosphocreatine	(pCr)

A	crucial	metabolite	 for	heart	and	skeletal	muscle	ener-
getics,	 contains	 a	 single	 guanidinium	 exchangeable	 pro-
ton	at	2.6	ppm.31,39,40
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2.2.3	 |	 L-	arginine

An	amino	acid	with	three	equivalent	exchangeable	amine	
protons	with	a	chemical	shift	of	3	ppm	with	respect	to	the	
water	resonance.

2.2.4	 |	 Bovine	serum	albumin	(BSA)

A	 protein	 with	 a	 large	 number	 of	 exchangeable	 amide		
(3.5	 ppm),	 amine	 (∼2.75	 ppm),	 and	 rNOE	 (∼-	3.5	 ppm)	
protons.

While	iohexol,	pCr,	and	L-	arginine	contain	additional	
exchangeable	protons	at	other	chemical	shifts	than	men-
tioned	above,	the	optimization	was	focused	on	their	com-
monly	targeted	exchangeable	protons.	To	demonstrate	the	
ability	of	detecting	multiple	CEST	targets	within	the	same	
phantom,	various	AutoCEST-	based	acquisition	schedules	
were	generated	for	imaging	the	amide,	amine,	and	rNOE	
exchangeable	protons	of	BSA.

2.3	 |	 Animal preparation

All	 animal	 experiments	 and	 procedures	 were	 per-
formed	 in	 accordance	 with	 the	 NIH	 Guide	 for	 the	 Care	
and	 Use	 of	 Laboratory	 Animals	 and	 were	 approved	 by	
the	 Institutional	 Animal	 Care	 and	 Use	 Committee	 of	
the	 Massachusetts	 General	 Hospital.	 Three	 C57/BL6	
wild-	type	 male	 mice	 (27–	31	 gr)	 were	 purchased	 from	
Jackson	Laboratory.	They	were	anesthetized	using	1%–	2%	

isoflurane	and	placed	on	an	MRI	cradle	with	ear	and	bite	
bars	 to	secure	 the	head.	Respiration	rate	was	monitored	
with	a	small	animal	physiological	monitoring	system	(SA	
Instruments,	Stony	Brook,	NY),	and	the	temperature	was	
maintained	by	blowing	warm	air	in	the	bore	of	the	magnet.

2.4	 |	 Magnetic resonance imaging

All	imaging	experiments	were	conducted	using	a	9.4T	MRI	
scanner	 (Bruker	 Biospin,	 Billerica,	 MA),	 employing	 an	 in-	
house	programmed,	flexible	CEST-	EPI	protocol,22,25,41	loaded	
with	the	acquisition	parameters	generated	by	AutoCEST.

2.4.1	 |	 Phantom	studies

Imaging	was	performed	using	a	transmit/receive	volume	
coil	(Bruker	Biospin,	Billerica,	MA),	a	field	of	view	(FOV)	
of	32	×	32	mm2,	a	matrix	of	64	×	64	pixels,	and	a	5	mm	slice	
thickness.	The	iohexol	and	L-	arginine	phantoms	were	im-
aged	 at	 room	 temperature.	 The	 pCr	 and	 BSA	 phantoms	
were	heated	to	37◦C,	using	a	feedback	loop	between	a	small	
animal	physiological	monitoring	system	(SA	Instruments,	
Stony	Brook,	NY)	and	a	warm	air	blower.	Each	phantom	
was	 imaged	 using	 the	 AutoCEST-	generated	 scenario-	
specific	 acquisition	 schedules	 (Figure	 3	 and	 Supporting	
Information	 Table	 S1).	 Single-	shot	 QUESP-	EPI	 images	
were	acquired	with	saturation	at	±1×	the	chemical	shift	of	
each	phantom’s	exchangeable	proton,	except	for	the	BSA	
where	 the	 existence	 of	 both	 the	 amide	 and	 rNOE	 pools	

F I G U R E  2  AutoCEST-	based	quantitative	image	reconstruction.	The	optimized	protocol	parameters	(orange	rectangles,	�1	=	saturation	
pulse	power,	Tsat	=	saturation	pulse	duration,	�rf 	=	saturation	pulse	frequency	offset,	FA	=	readout	flip	angle,	Trec=	recovery	time)	are	
loaded	into	the	scanner,	allowing	for	the	acquisition	of	N	raw	ADC	(molecular	information	encoding)	images.	The	images	are	fed	voxelwise	
into	the	trained	reconstruction	network	(orange	circles),	resulting	in	quantitative	CEST/MT	parameter	maps	(e.g.,	proton	volume	fraction	 fb	
and	exchange	rate	kb)
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is	 incompatible	with	QUESP	estimation	of	 the	exchange	
rate.	The	QUESP	saturation	pulse	powers	ranged	from	0	to	
6	μT	in	1	μT	increments,	the	saturation	pulse	length	(Tsat	)	
was	3 s,	flip	angle	(FA)	=	90◦,	and	echo/repetition	times	
(TE/TR)	 =	 20/15000	 ms.	 For	 comparison,	 a	 CEST-	MRF	
scan	 was	 performed,	 using	 a	 previously	 reported	 phan-
tom	acquisition	schedule	(Supporting	Information	Figure	
S1),22	 shortened	 to	 include	only	 the	 first	N = 10	 images,	
for	 proper	 comparison	 with	 AutoCEST	 schedules	 of	 the	
same	 length.	The	CEST-	MRF	protocol	 included	a	 single	
saturation	frequency	offset	(aimed	at	the	target	compound	
chemical	shift	frequency),	TE/TR	=	20/4000	ms,	Tsat	=	3 s,	

and	FA	=	60◦.	A	traditional	Z-	spectra	was	obtained	using	
a	CEST-	EPI	protocol,	employing	a	saturation	pulse	power	
of	2	μT,	Tsat	=	3 s,	TE/TR	=	20/8000	ms,	and	saturation	fre-
quency	offsets	of	7	to	−7	ppm	with	0.25	ppm	increments.	
For	calculation	of	the	static	magnetic	field	B0	map	using	
the	water	saturation	shift	referencing	(WASSR)	method,42	
the	CEST	scan	was	repeated	with	a	saturation	pulse	power	
of	 0.3	 μT,	 and	 frequency	 offsets	 ranging	 between	 1	 to		
−1	ppm	with	0.1	ppm	increments.	T1	maps	were	acquired	
using	 the	variable	 repetition-	time	rapid	acquisition	with	
relaxation	enhancement	(RARE)	protocol,	with	TR	=	50,	
200,	400,	800,	1500,	3000,	5000,	and	7500	ms,	TE	=	7.2	ms,	

F I G U R E  3  AutoCEST-	generated	acquisition	schedules	for	the	various	imaging	scenarios	studied.	The	black	dashed	lines	with	squares	
represent	the	random/fixed	parameters	used	for	initializing	the	optimization	and	the	green	lines	with	circles	represent	the	final	AutoCEST-	
optimized	schedule.	For	iohexol	(A),	BSA,	amide	(B),	BSA,	amine	(C),	BSA,	rNOE	(D),	and	in	vivo	amide	(E),	only	the	saturation	pulse	
power	(B1)	was	optimized.	For	the	In	vivo	MT	(F,G),	pCr	(H–	J),	and	L-	arginine	(K–	O)	cases,	2,	3,	and	5	acquisition	parameters	were	
simultaneously	optimized,	respectively.	Additional	acquisition	schedule	information	is	available	in	Supporting	Information	Table	S1
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RARE	factor	=	2.	T2	maps	were	acquired	using	the	multi-	
echo	spin-	echo	protocol,	TR	=	2000	ms,	and	25	TE	values	
between	20	and	500	ms.

2.4.2	 |	 In	vivo	study

A	quadrature	volume	coil	was	used	for	RF	transmission	and	
a	mouse	brain	phased	array	surface	coil	was	used	for	receive	
(Bruker	 Biospin,	 Billerica,	 MA).	 A	 field	 of	 view	 (FOV)	 of	
19	×	19	mm2,	a	matrix	of	64	×	64	pixels,	and	a	1	mm	slice	
thickness	were	used	in	all	scans	except	for	a	high-	resolution	
T2-	weighted	 scan,	 where	 the	 matrix	 size	 was	 set	 to	 128	×	
128,	 and	 the	 TE/TR	 were	 30/2000	 ms.	 MT	 and	 amide	
AutoCEST	scans	were	performed	using	 the	generated	ac-
quisition	 schedules	 described	 in	 Figure	 3	 and	 Supporting	
Information	Table	S1,	with	an	echo	time	of	21.88	ms.

2.5	 |	 Comparison of different 
performance optimization methods

The	suggested	AutoCEST	approach	constitutes	a	unified	
framework	for	simultaneous	optimization	of	both	the	ac-
quisition	protocol	and	the	biophysical	parameter	quantifi-
cation.	To	better	understand	the	individual	contributions	
of	 each	 optimization	 component	 (or	 neural	 network)	 to	
the	overall	performance	optimization,	as	well	as	any	syn-
ergistic	 effects	 between	 the	 two,	 the	 AutoCEST	 perfor-
mance	was	compared	to	that	of	systems	where:	

1.	 A	traditional	MR-	fingerprint	dot-	product	quantification	
was	 applied	 on	 the	 data	 acquired	 using	 the	 optimized	
AutoCEST	 protocols.

2.	 A	deep	learning	optimization	of	parameter	quantifica-
tion	(similarly	to	the	process	described	in	Section	2.1.3)	
was	applied	on	the	data	acquired	using	an	unoptimized	
acquisition	schedule.

The	 resulting	 images	 were	 compared	 to	 the	 images	 ob-
tained	 from	 the	 full	AutoCEST	pipeline,	as	well	as	 to	 those	
obtained	 from	applying	an	entirely	 traditional	MRF	method	
using	 an	 unoptimized	 acquisition	 schedule	 (as	 described	 in	
Section	2.4.1	and	Supporting	Information	Figure	S1).	The	per-
formance	optimization	method	comparison	was	carried	out	
for	all	in	vitro	and	in	vivo	data	obtained	throughout	this	work.

2.6	 |	 Data analysis

Raw	AutoCEST-	generated	images	were	given	as	input	to	
the	 trained	 reconstruction	 network,	 yielding	 the	 corre-
sponding	proton	exchange	rate	and	volume	fraction	maps.	

T1	 and	 T2	 exponential	 fitting	 were	 performed	 using	 a	
custom-	written	 program.	 Conventional	 CEST	 images	
were	 corrected	 for	B0	 inhomogeneity	 using	 the	 WASSR	
method.42,43	 The	 MTRasym	 was	 calculated	 using:	
MTRasym = (S−Δ� − S+Δ�)∕S0,	 where	 S±Δ�	 is	 the	 signal	
measured	with	saturation	at	±	the	relevant	solute	chemi-
cal	 shift	and	S0	 is	 the	unsaturated	signal.	Exchange	rate	
ground-	truth	 estimation	 was	 performed	 by	 fitting	 the	
QUESP	 data	 with	 the	 known	 solute	 concentration	 and	
measured	water	T1	given	as	fixed	inputs	for	each	phantom	
vial.44	 In	 addition,	 simultaneous	 QUESP	 estimation	 of	
both	the	exchange	rate	and	the	unconstrained	solute	con-
centration	was	performed	for	comparison.

CEST-	MRF	 signal	 matching	 was	 performed	 by	 cal-
culating	 and	 finding	 the	 maximum	 dot-	product	 (after	
two-	norm	 normalization)	 of	 each	 pixel’s	 trajectory	 with	
all	 relevant	 simulated	 dictionary	 entries.	 The	 dictionar-
ies	 were	 built	 using	 the	 same	 data	 properties	 used	 for	
training	 AutoCEST	 (Supporting	 Information	 Table	 S1).	
Dictionary	generation	was	performed	using	a	numerical	
solution	of	the	Bloch–	McConnell	equations,	implemented	
in	MATLAB	R2018a	(The	MathWorks,	Natick,	MA).22

In	 vitro	 statistics	 were	 calculated	 using	 79	 mm2	 cir-
cular	regions	of	 interest	(ROIs)	drawn	on	each	phantom	
vial.	 In	 vivo	 statistics	 were	 calculated	 using	 a	 gray	 mat-
ter	(GM)	ROI	positioned	on	the	cortex	and	a	white	matter	
(WM)	 ROI	 comprised	 of	 the	 corpus	 callosum	 and	 fiber	
tracts	(cerebral	peduncle,	optic	tract,	and	fimbria)	regions.	
Localization	of	mouse	brain	regions	was	performed	using	
the	Allen	Mouse	Brain	Atlas	 (adult	mouse	P56,	coronal,	
image	78)	as	a	reference.45,46	Pearson’s	correlation	coeffi-
cients	were	calculated	using	the	open	source	SciPy	scien-
tific	 computing	 library	 for	 Python.47	 Absolute	 error	 was	
defined	as	 |ground	 truth	value	−	estimated	value|.	One-	
way	 analysis	 of	 variance	 (ANOVA)	 followed	 by	 Tukey’s	
HSD	 test	 for	 comparing	 differences	 between	 multiple	
groups	was	performed	using	the	Python	module	statsmod-
els.48	Differences	were	considered	significant	at	p < 0.05.

3 	 | 	 RESULTS

3.1	 |	 AutoCEST- generated acquisition 
protocols

The	AutoCEST	optimization	of	a	quantitative	acquisition	
protocol	took	between	22	min	and	5.58	hr	(see	Supporting	
Information	Table	S1).	The	optimized	protocol	acquisition	
time	was	71.1 s	for	pCr,	47.6 s	for	L-	arginine,	and	35s	for	
all	 others	 (iohexol,	 BSA	 amide,	 BSA	 amine,	 BSA	 rNOE,	
in	vivo	amide,	and	 in	vivo	MT).	The	optimized	protocol	
parameters	are	shown	in	Figure	3.
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3.2	 |	 Phantom study— exchange 
parameter quantification performance

The	 AutoCEST	 reconstruction	 time	 for	 each	 pair	 of	
quantitative	 proton	 exchange	 rate	 and	 volume	 fraction	
maps	 (in	 vitro	 and	 in	 vivo)	 was	 28.62	 ±	 0.01	 ms.	 The	
resulting	 maps	 for	 iohexol,	 pCr,	 and	 L-	arg	 are	 shown	
in	 Figures	 4–	6,	 respectively.	 In	 all	 cases,	 an	 excellent	
agreement	 was	 oberved	 between	 the	 AutoCEST-	based	
calculated	 solute	 concentrations	 and	 the	 known	 solute	
concentrations,	yielding	an	absolute	error	of	2.42	±	2.53	
mM	 and	 a	 significant	 correlation	 (Pearson’s	 r = 0.992,	
p < 0.0001).	There	was	also	a	significant	correlation	be-
tween	 the	 QUESP-	calculated	 and	 AutoCEST-	measured	
proton	 exchange	 rates	 (r = 0.971,	 p < 0.0001),	 with	 an	

absolute	error	of	35.8	±	29.3	Hz	(Supporting	Information	
Table	S2).

The	 measured	 solute	 concentrations	 obtained	 with	
a	 pseudo-	random,	 unoptimized	 CEST-	MRF	 acquisition	
schedule	 (Supporting	 Information	 Figures	 S4–	S9,	 panel	
E)	were	poorly	correlated	with	the	known	solute	concen-
trations	 (Pearson’s	 r = − 0.161,	 p = 0.522),	 yielding	 an	
absolute	 error	 of	 65.19	 ±	 34.48	 mM.	The	 absolute	 error	
between	the	QUESP-	calculated	and	CEST-	MRF	measured	
proton	 exchange	 rates	 (Supporting	 Information	 Figures	
S4–	S9,	 panel	 I)	 was	 higher	 than	 that	 obtained	 using	
AutoCEST	(58.2	±	56.76	Hz),	yet	 there	was	a	significant	
correlation	between	unoptimized	CEST-	MRF	and	QUESP	
measured	exchange	rates	(r = 0.959,	p < 0.0001).	The	im-
plementation	 of	 QUESP	 for	 simultaneous	 estimation	 of	

F I G U R E  4  Iohexol	phantom	study.	Each	row	represents	a	single	phantom	composed	of	three	iohexol	vials,	with	different	
concentrations	(A)	or	pH	(D).	(B,	E)	AutoCEST-	generated	iohexol	concentration	maps.	(C,	F)	AutoCEST-	generated	amide	(4.3	ppm)	proton	
exchange	rate	maps.	The	white	text	next	to	each	vial	represent	its	mean	±	SD	parameter	value
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the	concentration	and	exchange	rate	yielded	a	higher	ab-
solute	error	in	solute	concentration	estimation	compared	
to	AutoCEST	(11.03	±	7.77	mM),	and	lower	absolute	error	
in	proton	exchange	rate	estimation	(23.94	±	29.54	Hz).

To	 demonstrate	 the	 differences	 between	 CEST-	
weighted	 and	 AutoCEST	 output	 images,	 conventional	
MTRasym	images	(acquired	using	a	fixed	saturation	pulse	
power	of	2	μT)	for	two	L-	arginine	phantoms	are	provided	
in	 Figure	 7.	 Although	 the	MTRasym	 image	 in	 Figure	 7B	
provides	 a	 clear	 contrast	 difference	 for	 different	 L-	arg	
vials,	 it	 cannot	 provide	 any	 definite	 information	 on	 the	
underlying	 biophysical	 mechanism;	 namely,	 whether	 a	
change	 in	 the	 solute	 concentration	 or	 pH	 is	 occurring.	
Moreover,	 the	 use	 of	 a	 single	 pulse	 saturation	 power	 is	
sub-	optimal	 for	 imaging	 scenarios	 with	 a	 wide	 possible	
range	 of	 proton	 exchange	 rates	 (or	 pH).	This	 is	 demon-
strated	 in	 Figure	 7D,	 where	 an	 L-	arginine	 vial	 with	 fast	
exchanging	protons	(pH	=	6)	appears	to	have	a	decreased	
contrast,	due	to	insufficient	saturation.	In	contrast,	a	sin-
gle	AutoCEST	imaging	protocol	was	capable	of	correctly	
quantifying	the	exchange	parameters	and	uncovering	the	
chemical	exchange	property	responsible	for	the	change	in	
contrast	(Figure	6D–	I).

AutoCEST	 quantitative	 images	 for	 the	 amide,	 rNOE,	
and	 amine	 exchangeable	 protons	 of	 BSA	 are	 shown	 in	
Figure	8.	The	proton	volume	fraction	maps	were	in	good	
agreement	 with	 the	 ground	 truth	 BSA	 concentration.	
AutoCEST-	based	estimation	of	the	exchange	rates	yielded	
parameter	values	(BSA	amide	∼45	Hz,	BSA	rNOE	∼15	Hz,	
BSA	amine	∼783	Hz)	in	good	agreement	with	previous	lit-
erature	reports.22,41,49,50

3.3	 |	 AutoCEST of in vivo mouse brain

Representative	AutoCEST-	generated	quantitative	semi-	
solid	exchange	parameter	maps	are	shown	in	Figure	9,	
and	 additional	 results	 obtained	 for	 all	 mice	 are	 avail-
able	in	Supporting	Information	Figure	S2	and	Table	S3.		
The	 semi-	solid	 proton	 volume	 fraction	 maps	 were	 in	
good	 agreement	 with	 the	 Nissl-	stained	 histology	 tis-
sue	 section	 (Figure	 9D),	 where	 neuronal	 cell	 bodies	
of	 GM	 are	 preferentially	 stained.	 In	 particular,	 an	 el-
evated	 semi-	solid	 volume	 fraction	 was	 observed	 for	
the	subcortical	WM	(19.80%	±	0.50%)	compared	to	the	
GM	 (12.77%	 ±	 0.75%),	 allowing	 a	 clear	 identification	
of	 the	 corpus	 callosum	 and	 white	 matter	 fiber	 tracts.	
The	obtained	values	were	in	good	agreement	with	pre-
vious	 literature	 reports.51,52	 The	 semi-	solid	 chemical	
exchange	 rate	 was	 faster	 in	 the	 GM	 (56.54	 ±	 3.1	 Hz)	
compared	to	WM	(43.87	±	2.36	Hz),	in	agreement	with	
the	literature.24,52,53

Amide	exchange	parameter	maps	for	the	same	mouse	
used	 in	 Figure	 9	 are	 shown	 in	 Supporting	 Information	
Figure	 S3.	 The	 corresponding	 GM/WM	 parameter	 val-
ues	 are	 shown	 in	 Supporting	 Information	Table	 S4.	The	
AutoCEST-	generated	amide	proton	volume	fractions	were	
0.29%	±	0.16%	and	0.40%	±	0.27%	for	 the	GM	and	WM,	
respectively.	The	amide	proton	exchange	rates	were	60.81	
±	9.28	Hz	and	73.02	±	51.11	Hz,	for	the	GM	and	WM,	re-
spectively,	 which	 are	 in	 the	 general	 range	 of	 previously	
reported	values,24,41,54	 yet	higher	 than	 the	exchange	 rate	
measured	 using	 water	 exchange	 spectroscopy	 (WEX)	 in	
the	rat	cortex.49

F I G U R E  5  Phosphocreatine	(pCr)	phantom	study.	A,	Ground	truth	solute	concentration	and	pH.	B,	AutoCEST-	generated	pCr	
concentration	map.	(C)	AutoCEST-	generated	guanidinium	(2.6	ppm)	proton	exchange	rate	map.	The	white	text	next	to	each	vial	represent	
its	mean	±	SD	parameter	value
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F I G U R E  6  L-	arginine	phantom	study.	Each	row	represents	a	single	phantom	composed	of	three	L-	arginine	vials,	with	different	
concentrations	(A)	or	pH	(D,	G).	(B,	E,	H)	AutoCEST-	generated	L-	arginine	concentration	maps.	(C,	F,	I)	AutoCEST-	generated	amine		
(3	ppm)	proton	exchange	rate	maps.	The	white	text	next	to	each	vial	represent	its	mean	±	SD	parameter	value
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3.4	 |	 Comparison of different 
performance optimization methods

The	 performance	 of	 the	 full	 AutoCEST	 pipeline	 was	
compared	 to	 that	 of	 individual	 elements	 of	 the	 pipeline	
to	examine	the	importance	of	each	element	to	the	overall	
performance	 optimization	 (Supplementary	 Information	
Figures	S4–	S16).	A	statistical	analysis	comparing	the	differ-
ent	optimization	variants	is	provided	in	Figure	10,	where	
the	absolute	error	for	each	case	was	calculated	using	the	
phantoms	where	the	most	reliable	ground	truth	was	avail-
able	 (measured	 concentration	 and	 QUESP-	derived	 pro-
ton	 exchange	 rate).	 The	 best	 performance	 was	 observed	
for	the	full	AutoCEST	pipeline,	where	a	sigificantly	lower	
absolute	 error	 in	 quantifying	 the	 compound	 concentra-
tion	 (p < 0.01,	 n = 18	 phantom	 vials,	 one-	way	 ANOVA	
followed	 by	 Tukey’s	 HSD	 test)	 was	 obtained	 compared	
to	 the	 use	 of	 unoptimized	 acquisition	 schedules	 (with	
or	without	deep	NN	quantification).	Nevertheless,	using	
the	 AutoCEST-	dervied	 acquisition	 schedules	 for	 “classi-
cal”	dot-	prodcut	MRF	quantification	yielded	significantly	
lower	 errors	 (p < 0.01,	 n = 18	 phantom	 vials,	 one-	way	
ANOVA	followed	by	Tukey’s	HSD	test)	compared	to	un-
optimized	MRF	acquisition,	demonstrating	the	potential	
of	AutoCEST	for	also	serving	as	a	means	for	CEST-	MRF	

protocol	 optimization.	 Notably,	 the	 chemical	 exchange	
rate	is	generally	more	challenging	for	quantification	com-
pared	to	the	compound	concentration.	It	is	therefore	not	
surprising	 that	 the	 differences	 in	 the	 exchange	 rate	 er-
rors	 between	 the	 different	 optimization	 methods	 were	
less	striking	than	for	the	concentration.	Nevertheless,	the	
median	absolute	error	and	the	standard	deviations	in	the	
quantification	 error	 were	 much	 smaller	 for	 AutoCEST	
compared	to	other	methods.

4 	 | 	 DISCUSSION

Since	its	establishment	more	than	20	years	ago,	CEST	MRI	
has	been	increasingly	investigated	as	a	promising	contrast	
mechanism	for	studying	a	variety	of	disease	pathologies.	
However,	 while	 numerous	 clinical	 CEST	 studies	 have	
demonstrated	 its	 potential,2	 this	 technique	 has	 not	 yet	
been	adopted	 in	routine	clinical	practice.	The	main	bar-
riers	 for	clinical	 translation	have	been	the	typically	 long	
image	 acquisition	 times,	 the	 semi-	quantitative	 nature	 of	
the	proton	exchange-	weighted	image	contrast,	which	de-
pends	on	a	complex	overlay	of	contrasts	from	different	ex-
changeable	proton	pools	(MT,	rNOE,	amide,	amine),	and	
the	 inability	 to	 separate	 out	 contributions	 to	 the	 CEST	

F I G U R E  7  Conventional	CEST-	
weighted	imaging.	Each	row	represents	
a	single	phantom,	composed	of	three	
L-	arginine	vials,	with	different	pH.	
(B,	D)	MTRasym	images	obtained	from	
a	Z-	spectrum	acquisition	with	a	fixed	
saturation	pulse	power	of	2	μT.	The	red	
arrow	in	D	points	to	the	highest	pH	vial,	
which	demonstrated	a	decreased	MTRasym	
contrast	due	to	insufficient	saturation.	
AutoCEST-	generated	maps	of	the	same	
phantoms	are	available	in	Figure	6E,F,H,I
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F I G U R E  8  BSA	phantom	study.	Each	row	represents	a	different	molecular	target	(amide	at	3.5	ppm,	rNOE	at	−3.5	ppm,	or	amine	at	
2.75	ppm,	respectively),	imaged	from	the	same	phantom	(A,	D,	G).	(B,	E,	H)	AutoCEST-	generated	amide,	rNOE,	and	amine	proton	volume	
fraction	maps,	respectively.	(C,	F,	I)	AutoCEST-	generated	amide,	rNOE,	and	amine	proton	exchange	rate	maps,	respectively.	The	white	text	
next	to	each	vial	represent	its	mean	±	SD	parameter	value



   | 13PERLMAN et al.

contrast	from	chemical	exchange	rate	and	proton	volume	
fraction,	 both	 of	 which	 may	 be	 changing	 with	 time	 and	
disease	progression.	A	quantitative	and	rapid	imaging	ap-
proach	could	drastically	improve	the	clinical	applicability	
of	CEST,	rendering	 it	as	an	attractive	means	 for	gaining	
new	diagnostic	insights.

A	CEST	MRF	approach	could	help	overcome	the	above	
challenges	 and	 provide	 quantitative	 CEST	 and	 MT	 in-
formation.22–	24	 Recently,	 it	 was	 further	 combined	 with	
deep	learning	architectures,	for	rapid	MT55,56	and	CEST/
MT41	fingerprinting.	However,	previous	studies	have	also	
demonstrated	that	the	ability	to	discriminate	different	ex-
change	parameter	values	depends	critically	on	the	choice	
of	 acquisition	 schedule.22,25	 In	 particular,	 the	 transfer	
of	 a	 CEST-	MRF	 acquisition	 protocol	 from	 one	 chemical	
exchange	 scenario	 to	 another	 is	 not	 straight-	forward,25	
requiring	a	through	optimization,	validation	with	appro-
priate	tissue-	like	phantoms,	and	expert	knowledge	of	the	
effect	of	the	acquisition	protocol	properties	on	the	result-
ing	 CEST	 signals.	 As	 demonstrated	 here,	 naively	 taking	
a	random	CEST-	MRF	acquisition	schedule,	which	might	
be	 useful	 for	 a	 particular	 CEST	 agent	 and	 applying	 it	
for	 other	 compounds/applications,	 could	 result	 in	 very	
poor	 performance.	 This	 is	 demonstrated	 in	 Supporting	

Information	 Figures	 S4–	S12	 panels	 E	 and	 I,	 where	 poor	
agreement	is	observed	between	the	exchange	parameters	
determined	from	an	unoptimized	CEST-	MRF	acquisition	
schedule	and	the	known	ground	truth	values	for	Iohexol	
(Supporting	 Information	 Figures	 S4–	5E,I),	 phosphocre-
atine	 (Supporting	 Information	 Figure	 S6E,I),	 L-	arginine	
(Supporting	 Information	 Figures	 S7–	9E,I),	 and	 BSA	
(Supporting	 Information	 Figures	 S10-	12E,I)	 phantoms.	
In	 contrast,	 here	 we	 demonstrate	 that	 AutoCEST	 can	
adapt	and	optimize	the	acquisition	schedule	for	a	variety	
of	distinctly	different	chemical	exchange	scenarios,	accu-
rately	 mapping	 the	 exchange	 parameters	 (Figures	 4–	10,	
Supporting	Information	Table	S2).	In	addition,	AutoCEST	
was	able	to	accurately	map	the	solute	concentration	and	
chemical	exchange	rate	 in	a	very	short	 time	with	acqui-
sition	times	of	only	35–	71 s	and	an	almost	instantaneous	
reconstruction	time	of	29	ms.	This	dramatically	reduced	
scan	 time	could	greatly	assist	 in	 incorporating	CEST	 in-
vestigations	 into	 routine	 clinical	 imaging	 with	 minimal	
interference	with	workflow	or	time	constraints.

The	 AutoCEST	 method	 proposed	 here	 constitutes	 a	
unified	 framework	 for	both	 the	design	of	 fast	CEST/MT	
acquisition	 protocols	 and	 the	 reconstruction	 of	 quanti-
tative	 parameter	 maps.	 Importantly,	 the	 method	 is	 fully	

F I G U R E  9  AutoCEST	imaging	of	a	representative	in	vivo	mouse	brain.	(A)	T2-	weighted	image	and	(D)	corresponding	Nissl-	stained	
mouse	brain	section	with	the	cerebral	cortex	(ctx),	corpus	callosum	(cc),	and	fiber	tracts	(ft,	composed	of	cerebral	peduncle,	optic	tract,	and	
fimbria)	identified.45,46	AutoCEST-	generated	(B)	semi-	solid	proton	volume	fraction	( fss)	and	(C)	chemical	exchange	rate	(kssw)	maps.	(E,	F).	
Analysis	of	the	resulting	exchange	parameters	in	the	white	matter	(WM,	defined	as	the	corpus	callosum	and	white	matter	fiber	tracts)	and	
gray	matter	(GM).	Data	are	presented	as	mean	±	SD	with	all	data	points	overlaid
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automatic,	removing	the	need	for	user-	dependent	analy-
sis	and	exhaustive	tuning	and	optimization	of	acquisition	
protocols.	 The	 AutoCEST	 realization	 was	 inspired	 and	
driven	 by	 the	 AutoSeq	 method,	 which	 allows	 for	 auto-
matic	 sequence	 generation	 in	 1D	 and	 single	 pixel	T1/T2	
quantitative	imaging.28,57	Recently,	the	MRzero58	method	
was	 reported,	 which	 further	 incorporates	 gradient	 and	
RF-	events	for	learning	2D	imaging	acquisition	schedules,	
including	free	k-	space	trajectories.59	The	present	work	ex-
pands	on	the	idea	of	AI-	based	sequence	design	for	CEST/
MT	quantitative	imaging,	where	a	crucial	need	for	auto-
matic	 schedule	 invention	 lies.	 Observing	 the	 differences	
between	the	acquisition	schedules	used	for	AutoCEST	ini-
tialization	 and	 the	 final	 optimized	 schedules	 (Figure	 3),	
can	provide	some	intuition	into	the	underlying	optimiza-
tion	performed.	For	example,	optimization	of	the	acquisi-
tion	schedules	for	both	the	Iohexol	(at	room	temperature)	
and	BSA-	amide	 imaging	scenarios	resulted	 in	saturation	
pulse	powers	that	were	lower	than	initialized.	This	can	be	
explained	 by	 the	 relatively	 slow	 exchange	 rates	 of	 these	
compounds	(<300	Hz)	which	are	not	expected	to	benefit	
from	a	high	saturation	power.	Similarly,	the	optimal	satu-
ration	frequency	offset	for	amide	and	amine	exchangeable	

protons	 remained	 roughly	 fixed	 at	 the	 solute	 frequency	
offset,	as	expected	for	a	CEST	agent	with	a	relatively	nar-
row	spectral	width	(Figure	3O),	while	the	spectrally	very	
broad	semi-	solid	MT	case	required	a	wider	range	of	satu-
ration	pulse	frequency	offsets	(Figure	3G).

The	particular	patterns	obtained	for	some	of	the	opti-
mized	parameters	appeared	to	lack	any	noticeable	human-	
intuition	(Figure	3E–	J),	similar	to	the	results	obtained	in	T1
/T2	MRF	sequence	generation.60	This	highlights	the	need	
for	 an	 automated	 computer-	based	 optimization	 process.	
In	 addition,	 although	 the	 resulting	 optimized	 protocols	
were	mostly	substantially	different	than	the	initial	acqui-
sition	 schedules,	 there	 were	 a	 few	 cases	 where	 the	 pro-
tocols	 were	 not	 drastically	 modified	 (Figure	 3C,D).	This	
might	 explain	 the	 success	 of	 some	 previously	 reported	
random	CEST-	MRF	schedules,	which	could	in	some	cases	
randomly	“land	on”	suitable	parameters.

The	 AutoCEST-	generated	 schedules	 tended	 to	 have	 a	
longer	recovery	time	compared	to	the	initial	value.	Notably,	
quantitative	CEST	is	characterized	by	an	internal	trade-	off	
between	a	sufficiently	high	SNR	and	a	clinically	relevant	
scan	time.25	While	longer	recovery	times	improve	the	for-
mer,	 some	 compromise	 must	 be	 made	 to	 accommodate	

F I G U R E  1 0  Absolute	error	analysis	for	the	different	optimization	methods,	based	on	the	phantoms	described	in	Figures	4,	5,	and	6.	A,	
Absolute	error	for	compound	concentration	mapping.	B,	Absolute	error	for	proton	chemical	exchange	rate	mapping.	The	evaluated	methods	
were	(left	to	right)	AutoCEST	(blue),	dot-	product	MRF	quantification	applied	to	data	acquired	using	AutoCEST-	optimized	schedules	
(purple),	deep	learning-	based	quantification	applied	to	data	acquired	using	an	unoptimized	CEST-	MRF	acquisition	protocol	(green),	and	
CEST-	MRF	dot-	product	quantification	applied	to	an	unoptimized	acquisition	schedule	(black).	Statistical	analysis	of	the	resulting	exchange	
parameters	was	carried	out	using	one-	way	analysis	of	variance	(ANOVA)	followed	by	Tukey’s	HSD	test	(n = 18	phantom	vials).	*p < 0.05;	
**p < 0.01.	In	all	box	plots,	the	central	horizontal	lines	represent	median	values,	box	limits	represent	upper	(third)	and	lower	(first)	quartiles,	
whiskers	represent	1.5×	the	interquartile	range	above	and	below	the	upper	and	lower	quartiles,	respectively,	and	all	data	points	are	plotted
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for	the	latter.	In	this	work,	we	have	either	fixed	or	limited	
the	lower	and	upper	bounds	for	the	AutoCEST	optimized	
Tsat	and	Trec	(Supporting	Information	Table	S1).	Although	
probably	not	reaching	the	optimal	possible	sensitivity,	this	
approach	has	yielded	very	good	performance	(Supporting	
Information	Table	S2),	while	satisfying	the	need	for	a	short	
scan	time	with	all	output	schedules	shorter	than	72 s.

All	the	experiments	conducted	in	this	work	were	fixed	
to	create	acquisition	schedules	of	N = 10	raw	images,	to-
gether	 with	 additional	 restrictions	 on	 the	 scan	 time	 (in	
the	form	of	maximal	Trec	and	Tsat,	Supporting	Information	
Table	S1).	While	this	was	done	to	push	the	boundaries	of	
quantitative	CEST	beyond	the	limits	set	by	previous	work,	
a	slight	relaxation	 in	the	parameter	restriction	could	 im-
prove	 the	 quantitation	 performance,	 and	 still	 retain	 suf-
ficiently	clinically	 relevant	 scan	 times.	 In	 the	 future,	 the	
number	of	raw	images	acquired	(N)	could	be	defined	as	a	
dynamically	optimized	parameter.	 In	addition,	while	 the	
saturation	power	was	limited	to	not	exceed	a	fixed	value	for	
each	of	the	scenarios	(Supporting	Information	Table	S1),	it	
could	be	replaced	in	the	future	by	a	specific	absorption	rate	
(SAR)	 penalty	 term,	 incorporated	 in	 the	 cost-	function.58	
Similarly,	a	penalty	term	for	exceedingly	long	scan	times	
could	be	used	to	further	improve	SNR/scan-	time	balance.

The	 AutoCEST	 determined	 exchange	 parameters	 for	
the	 in	vivo	mouse	brain	were	 in	general	agreement	with	
the	literature	for	two-	pool	MT	and	three-	pool	amide/MT	
imaging;	 however,	 the	 resulting	 in	 vivo	 amide	 exchange	
rates	were	higher	than	a	previous	WEX	estimation	in	the	
rat	cortex49	and	demonstrated	a	rather	large	standard	devi-
ation	(Supporting	Information	Table	S4).	Although	amide	
chemical	exchange	rate	is	a	subject	of	some	controversy	in	
the	 field,	 given	 that	 various	 groups	 have	 reported	 amide	
proton	 exchange	 rates	 >100	 Hz,24,61	 it	 might	 be	 useful	
to	 pursue	 additional	 strategies	 for	 exploring	 multi-	pool	
AutoCEST	 imaging.	 In	particular,	 the	use	of	a	 single	ac-
quisition	 schedule,	 with	 saturation	 at	 the	 amide	 proton	
frequency	only,	may	make	discrimination	of	both	amide	
and	 MT	 pool	 exchange	 parameters	 more	 challenging.	
For	example,	we	have	recently	demonstrated	that	nailing	
down	the	MT	pool	parameters,	with	an	MT-	specific	acqui-
sition	 schedule,	 and	 then	 sequentially	 using	 them	 as	 di-
rect	inputs	for	the	amide-	pool	classification,	significantly	
improved	the	performance	in	CEST-	MRF	of	oncolytic	vi-
rotherapy	 treated	 mice.41	 Future	 work	 could	 expand	 the	
architecture	 of	 AutoCEST	 to	 allow	 for	 such	 sequentially	
acquired	information	to	be	incorporated.	In	addition,	sev-
eral	 other	 compounds	 could	 be	 added	 to	 the	 model	 and	
simulations	for	improved	accuracy,	such	as	glutamate	and	
guanidyl	amine	protons.

While	 the	 experiments	 described	 here	 were	 all	 per-
formed	 on	 preclinical	 scanners	 with	 continuous	 wave	

saturation	 pulses,	 the	 implementation	 of	 AutoCEST	 for	
clinical	scanners	could	be	straightforwardly	translated	for	
cases	in	which	a	single	continuous-	wave	block	pulse	could	
be	applied	(e.g.,	when	the	required	Tsat	and/or	B1max	are	
not	expected	to	be	too	large),	or	by	modifying	the	analyti-
cal	solution	of	the	CEST	saturation	block	to	accommodate	
for	a	pulse	train.62–	64

5 	 | 	 CONCLUSION

The	suggested	 framework	provides	a	 fast	and	automatic	
means	 for	 designing	 and	 analyzing	 quantitative	 CEST	
experiments,	 potentially	 contributing	 to	 the	 efforts	 to	
disseminate	 CEST/MT	 in	 the	 clinic.	 The	 superiority	 of	
AutoCEST	performance	compared	to	unoptimized	CEST	
MRF	highlights	the	importance	of	optimizing	the	acqui-
sition	 schedule	 for	 improved	 discrimination	 of	 the	 ex-
change	parameters.
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TABLE S1	Detailed	properties	of	the	simulated	data	used	
for	training	AutoCEST
TABLE S2	Comparison	of	the	concentrations	and	proton	
chemical	exchange	rates	determined	by	AutoCEST,	CEST-	
MRF,	and	QUESP
TABLE S3	 AutoCEST-	determined	 semi-	solid	 proton	
chemical	exchange	rates	(kssw)	and	volume	fractions	( fss	)	for	
GM	and	WM	brain	tissue	regions	from	three	in	vivo	mice
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TABLE S4	AutoCEST-	determined	amide	proton	chemical	
exchange	rates	(ksw)	and	volume	fractions	( fs)	for	GM	and	
WM	brain	tissue	regions	from	an	in	vivo	mouse
FIGURE S1	A	previously	 reported	phantom	acquisition	
schedule,22	 shortened	 to	 N = 10	 images	 and	 used	 as	
a	 reference	 unoptimized	 CEST-	MRF	 protocol.	 The	
saturation	pulse	duration	was	3 s,	the	recovery	time	was	
1s,	the	readout	flip	angle	was	60◦,	and	the	saturation	pulse	
frequency	was	set	to	the	chemical	shift	of	the	exchangeable	
proton	of	each	imaged	phantom
FIGURE S2	 AutoCEST	 brain	 imaging	 of	 three	 in	 vivo	
mice.	 Each	 row	 represents	 a	 different	 animal	 with	 T2	
-	weighted	 images	 (A,	 D,	 G)	 and	 AutoCEST-	generated	
semi-	solid	proton	volume	fraction	(B,	E,	H)	and	chemical	
exchange	rate	maps	(C,	F,	I)
FIGURE S3	AutoCEST	amide	proton	exchange	parameter	
mapping	of	an	 in	vivo	mouse.	A,	T2-	weighted	 image.	B,	
AutoCEST-	generated	 amide	 proton	 volume	 fraction	 (fs).	
C,	AutoCEST-	generated	amide	proton	chemical	exchange	
rate	(ksw)
FIGURE S4	 Comparison	 of	 different	 performance	
optimization	 methods—	iohexol	 phantom	 with	 various	
concentrations.	 A,	 Ground	 truth	 concentrations	 and	
QUESP-	determined	 proton	 exchange	 rates.	 The	 top	 row	
shows	the	resulting	Iohexol	concentration	maps	and	the	
bottom	row	shows	the	resulting	amide	(4.3	ppm)	proton	
exchange	 rate	 maps	 obtained	 using	 (B,	 F)	 AutoCEST,	
(C,	 G)	 dot-	product	 MRF	 quantification	 applied	 to	 data	
acquired	 using	 AutoCEST-	optimized	 schedules,	 (D,	 H)		
deep	 learning-	based	 quantification	 applied	 to	 data	
acquired	 using	 an	 unoptimized	 CEST-	MRF	 acquisition	
protocol,	and	(E,	I)	CEST-	MRF	dot-	product	quantification	
applied	to	an	unoptimized	acquisition	schedule.	The	white	
text	next	to	each	vial	represent	its	mean	±	SD	parameter	
value
FIGURE S5	 Comparison	 of	 different	 performance	
optimization	 methods—	Iohexol	 phantom	 with	 various	
pH	 levels.	 A,	 Ground	 truth	 concentrations	 and	 QUESP-	
determined	proton	exchange	rates.	The	top	row	shows	the	
resulting	Iohexol	concentration	maps	and	the	bottom	row	
shows	the	resulting	amide	(4.3	ppm)	proton	exchange	rate	
maps	obtained	using	(B,	F)	AutoCEST,	(C,	G)	dot-	product	
MRF	 quantification	 applied	 to	 data	 acquired	 using	
AutoCEST-	optimized	 schedules,	 (D,	 H)	 deep	 learning-	
based	 quantification	 applied	 to	 data	 acquired	 using	
an	 unoptimized	 CEST-	MRF	 acquisition	 protocol,	 and		
(E,	I)	CEST-	MRF	dot-	product	quantification	applied	to	an	
unoptimized	acquisition	schedule.	The	white	text	next	to	
each	vial	represent	its	mean	±	SD	parameter	value
FIGURE S6	 Comparison	 of	 different	 performance	
optimization	methods—	Phosphocreatine	(pCr)	phantom.	
A,	Ground	truth	concentrations	and	QUESP-	determined	
proton	 exchange	 rates.	The	 top	 row	 shows	 the	 resulting	

pCr	 concentration	 maps	 and	 the	 bottom	 row	 shows	 the	
resulting	 guanidinium	 (2.6	 ppm)	 proton	 exchange	 rate	
maps	obtained	using	(B,	F)	AutoCEST,	(C,	G)	dot-	product	
MRF	 quantification	 applied	 to	 data	 acquired	 using	
AutoCEST-	optimized	 schedules,	 (D,	 H)	 deep	 learning-	
based	 quantification	 applied	 to	 data	 acquired	 using	
an	 unoptimized	 CEST-	MRF	 acquisition	 protocol,	 and		
(E,	I)	CEST-	MRF	dot-	product	quantification	applied	to	an	
unoptimized	acquisition	schedule.	The	white	text	next	to	
each	vial	represent	its	mean	±	SD	parameter	value
FIGURE S7	 Comparison	 of	 different	 performance	
optimization	methods—	L-	arginine	phantom	with	various	
concentrations.	 A,	 Ground	 truth	 concentrations	 and	
QUESP-	determined	 proton	 exchange	 rates.	 The	 top	 row	
shows	 the	 resulting	 L-	arginine	 concentration	 maps	 and	
the	bottom	row	shows	the	resulting	amine	(3	ppm)	proton	
exchange	rate	maps	obtained	using	(B,	F)	AutoCEST,	(C,	G)	
dot-	product	MRF	quantification	applied	to	data	acquired	
using	 AutoCEST-	optimized	 schedules,	 (D,	 H)	 deep	
learning-	based	 quantification	 applied	 to	 data	 acquired	
using	 an	 unoptimized	 CEST-	MRF	 acquisition	 protocol,	
and	(E,	I)	CEST-	MRF	dot-	product	quantification	applied	
to	 an	 unoptimized	 acquisition	 schedule.	 The	 white	 text	
next	to	each	vial	represent	its	mean	±	SD	parameter	value
FIGURE S8	 Comparison	 of	 different	 performance	
optimization	methods—	L-	arginine	phantom	with	pH	4–	5.	
A,	Ground	truth	concentrations	and	QUESP-	determined	
proton	 exchange	 rates.	The	 top	 row	 shows	 the	 resulting	
L-	arginine	concentration	maps	and	the	bottom	row	shows	
the	 resulting	amine	 (3	ppm)	proton	exchange	rate	maps	
obtained	 using	 (B,	 F)	 AutoCEST,	 (C,	 G)	 dot-	product	
MRF	 quantification	 applied	 to	 data	 acquired	 using	
AutoCEST-	optimized	 schedules,	 (D,	 H)	 deep	 learning-	
based	 quantification	 applied	 to	 data	 acquired	 using	
an	 unoptimized	 CEST-	MRF	 acquisition	 protocol,	 and		
(E,	I)	CEST-	MRF	dot-	product	quantification	applied	to	an	
unoptimized	acquisition	schedule.	The	white	text	next	to	
each	vial	represent	its	mean	±	SD	parameter	value
FIGURE S9	 Comparison	 of	 different	 performance	
optimization	 methods—	L-	arginine	 phantom	 with	
pH	 5–	6.	 A,	 Ground	 truth	 concentrations	 and	 QUESP-	
determined	 proton	 exchange	 rates.	The	 top	 row	 shows	
the	 resulting	 L-	arginine	 concentration	 maps	 and	 the	
bottom	row	shows	the	resulting	amine	(3	ppm)	proton	
exchange	 rate	 maps	 obtained	 using	 (B,	 F)	 AutoCEST,	
(C,	 G)	 dot-	product	 MRF	 quantification	 applied	 to	
data	 acquired	 using	 AutoCEST-	optimized	 schedules,	
(D,	 H)	 deep	 learning-	based	 quantification	 applied	
to	 data	 acquired	 using	 an	 unoptimized	 CEST-	MRF	
acquisition	protocol,	and	(E,	I)	CEST-	MRF	dot-	product	
quantification	 applied	 to	 an	 unoptimized	 acquisition	
schedule.	The	white	text	next	to	each	vial	represent	 its	
mean	±	SD	parameter	value
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FIGURE S10	 Comparison	 of	 different	 performance	
optimization	 methods—	BSA	 phantom	 with	 amide		
(3.5	ppm)	as	the	target	compound.	A,	Ground	truth	BSA	
concentrations	and	pH.	The	top	and	bottom	rows	show	the	
resulting	amide	proton	volume	fraction	and	exchange	rate	
maps,	respectively,	obtained	using	(B,	F)	AutoCEST,	(C,	G)	
dot-	product	MRF	quantification	applied	to	data	acquired	
using	 AutoCEST-	optimized	 schedules,	 (D,	 H)	 deep	
learning-	based	 quantification	 applied	 to	 data	 acquired	
using	 an	 unoptimized	 CEST-	MRF	 acquisition	 protocol,	
and	(E,	I)	CEST-	MRF	dot-	product	quantification	applied	
to	 an	 unoptimized	 acquisition	 schedule.	 The	 white	 text	
next	to	each	vial	represent	its	mean	±	SD	parameter	value
FIGURE S11	 Comparison	 of	 different	 performance	
optimization	methods—	BSA	phantom	with	aliphatic	rNOE	
(−3.5	ppm)	as	the	target	compound.	A,	Ground	truth	BSA	
concentrations	 and	 pH.	 The	 top	 and	 bottom	 rows	 show	
the	resulting	rNOE	proton	volume	fraction	and	exchange	
rate	 maps,	 respectively,	 obtained	 using	 (B,	 F)	 AutoCEST,	
(C,	 G)	 dot-	product	 MRF	 quantification	 applied	 to	 data	
acquired	 using	 AutoCEST-	optimized	 schedules,	 (D,	 H)	
deep	learning-	based	quantification	applied	to	data	acquired	
using	an	unoptimized	CEST-	MRF	acquisition	protocol,	and	
(E,	I)	CEST-	MRF	dot-	product	quantification	applied	to	an	
unoptimized	acquisition	 schedule.	The	white	 text	next	 to	
each	vial	represent	its	mean	±	SD	parameter	value
FIGURE S12	 Comparison	 of	 different	 performance	
optimization	 methods—	BSA	 phantom	 with	 amine	
proton	 (2	 ppm)	 as	 the	 target	 compound.	 A,	 Ground	
truth	BSA	concentrations	and	pH.	The	top	and	bottom	
rows	show	the	resulting	amine	proton	volume	fraction	
and	 exchange	 rate	 maps,	 respectively,	 obtained	 using		
(B,	F)	AutoCEST,	(C,	G)	dot-	product	MRF	quantification	
applied	 to	 data	 acquired	 using	 AutoCEST-	optimized	
schedules,	 (D,	 H)	 deep	 learning-	based	 quantification	
applied	 to	 data	 acquired	 using	 an	 unoptimized	 CEST-	
MRF	 acquisition	 protocol,	 and	 (E,	 I)	 CEST-	MRF	 dot-	
product	 quantification	 applied	 to	 an	 unoptimized	
acquisition	 schedule.	 The	 white	 text	 next	 to	 each	 vial	
represent	its	mean	±	SD	parameter	value
FIGURE S13	 Comparison	 of	 different	 performance	
optimization	methods—	in	vivo	MT	imaging,	animal	#1.	
The	top	and	bottom	rows	show	the	resulting	semi-	solid	
proton	 volume	 fraction	 and	 chemical	 exchange	 rate	
maps,	 respectively,	 obtained	 using	 (A,	 E)	 AutoCEST,	
(B,	 F)	 dot-	product	 MRF	 quantification	 applied	 to	
data	 acquired	 using	 AutoCEST-	optimized	 schedules,	

(C,	 G)	 deep	 learning-	based	 quantification	 applied	
to	 data	 acquired	 using	 an	 unoptimized	 CEST-	MRF	
acquisition	protocol,	and	(D,	H)	CEST-	MRF	dot-	product	
quantification	 applied	 to	 an	 unoptimized	 acquisition	
schedule
FIGURE S14	 Comparison	 of	 different	 performance	
optimization	 methods—	vivo	 MT	 imaging,	 animal	 #2.	
The	 top	 and	 bottom	 rows	 show	 the	 resulting	 semi-	solid	
proton	volume	fraction	and	chemical	exchange	rate	maps,	
respectively,	obtained	using	(A,	E)	AutoCEST,	(B,	F)	dot-	
product	 MRF	 quantification	 applied	 to	 data	 acquired	
using	 AutoCEST	 optimized	 schedules,	 (C,	 G)	 deep	
learning-	based	 quantification	 applied	 to	 data	 acquired	
using	 an	 unoptimized	 CEST-	MRF	 acquisition	 protocol,	
and	(D,	H)	CEST-	MRF	dot-	product	quantification	applied	
to	an	unoptimized	acquisition	schedule
FIGURE S15	 Comparison	 of	 different	 performance	
optimization	 methods—	in	 vivo	 MT	 imaging,	 animal	 #3.	
The	 top	 and	 bottom	 rows	 show	 the	 resulting	 semi-	solid	
proton	volume	fraction	and	chemical	exchange	rate	maps,	
respectively,	obtained	using	(A,	E)	autoCEST,	(B,	F)	dot-	
product	 MRF	 quantification	 applied	 to	 data	 acquired	
using	 AutoCEST	 optimized	 schedules,	 (C,	 G)	 deep	
learning-	based	 quantification	 applied	 to	 data	 acquired	
using	 an	 unoptimized	 CEST-	MRF	 acquisition	 protocol,	
and	(D,	H)	CEST-	MRF	dot-	product	quantification	applied	
to	an	unoptimized	acquisition	schedule
FIGURE S16	 Comparison	 of	 different	 performance	
optimization	 methods—	in	 vivo	 amide	 imaging.	 The	 top	
and	bottom	rows	show	the	resulting	amide	proton	volume	
fraction	 and	 chemical	 exchange	 rate	 maps,	 respectively,	
obtained	 using	 (A,	 E)	 autoCEST,	 (B,	 F)	 dot-	product	
MRF	 quantification	 applied	 to	 data	 acquired	 using	
AutoCEST-	optimized	 schedules,	 (C,	 G)	 deep	 learning-	
based	 quantification	 applied	 to	 data	 acquired	 using	 an	
unoptimized	 CEST-	MRF	 acquisition	 protocol,	 and	 (D,	
H)	 CEST-	MRF	 dot-	product	 quantification	 applied	 to	 an	
unoptimized	acquisition	schedule
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