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22.1  INTRODUCTION
Fluorescence lifetime imaging microscopy (FLIM) is a well-established technique (Bastiaens and Squire 
1999; Berezovska et al. 2003; Selvin 2000; Vogel et al. 2006) that combines microscopic techniques with 
time-resolved detection to provide high-resolution lifetime images of thin tissue sections. This chapter 
concerns the in vivo time domain imaging of fluorescent contrast agents embedded in deep tissue. Optical 
molecular imaging is a rapidly growing field of interest (Bremer et al. 2003; Bugaj et al. 2001; Massoud 
and Gambhir 2003), with several contrast agents reported to date that cover the visible to the near infrared 
(NIR) spectral range. Although lifetime microscopy techniques are well established, whole body molecular 
imaging of lifetime contrast is relatively recent (Berezin et al. 2011; Bloch et al. 2005; Goiffon et al. 
2009; Nothdurft et al. 2009; Raymond et al. 2010). One possible explanation for this discrepancy is the 
general concern among researchers about the viability of fluorescence lifetime as a useful marker for in vivo 
imaging, given that the fluorophore can undergo complex interactions with the biochemical environment 
in vivo, altering its photophysical properties in indeterminable ways. In fact, two distinct phenomena can 
alter the fluorescence lifetimes as measured on the surface of a living subject. The first is the interaction of 
the fluorophore with the biological environment (e.g., pH, viscosity, and protein binding). The effect of 
tissue environment on the lifetime can be characterized in advance using careful control measurements 
(Raymond et al. 2010). The second phenomenon is the interaction of light with tissue, which can also 
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indirectly affect the temporal response of the fluorophore as measured on the surface. This chapter is 
mainly concerned with the second phenomenon, namely, the influence of tissue scattering and absorption 
on the lifetime of fluorophores embedded in biological tissue. The details of this influence are incorporated 
through differential equations that describe light propagation in scattering media. We will, in particular, 
derive a tomographic FLIM model, which is valid under a widely applicable condition, namely, that the 
fluorescence lifetime is longer than the intrinsic diffusive timescales in the medium. Under this “FLIM 
condition,” the temporal decay of fluorescence from deep tissue can be directly used to recover both the 
in vivo lifetimes and their corresponding yield distributions. Further, this model naturally leads to an 
elegant algorithm for tomographic FLIM, which allows the complete 3D separation of multiple lifetimes 
present within biological tissue. We will also discuss experimental aspects of performing tomographic 
FLIM in turbid media and present in vivo results using organ-specific contrast agents.

22.2  THEORY
22.2.1  GENERAL FORWARD PROBLEM STATEMENT

A typical tomography measurement involves optical sources and detectors placed on the boundary of 
the imaging specimen. The detected fluorescence can be described as a sequential propagation of the 
excitation light from the source(s) to the fluorophore, fluorophore emission, and propagation of the 
emission field from the fluorophore to the detector. This is described using coupled equations for light 
transport at the excitation and emission wavelengths. Let the source and detector locations be rs and rd. Let 
η(r) be the yield distribution (product of the quantum yield Q, concentration, and extinction coefficient) 
of the fluorophore, with r denoting the location of a point within the medium (voxel). The expression for 
the detected fluorescence in the time domain (TD) can then be written as a double convolution of the 
excitation (Gx(r,rs,t)) and emission (Gm(rd,r,t)) Green’s functions (GFs) with the fluorescence decay term 
(e−t/τ(r)) (additional scaling factors are necessary when considering experimental data, including the source 
and detector coefficients, geometrical factors, and fluorescence filter attenuation):

 U t d rW ts d s d( , , ) ( , , , ) ( )rr rr rr rr rr rr= ∫ 3 η
Ω

, (22.1)

where the weight function (also called the “sensitivity” function) is given by

 W t dt dt G t t es d

t
m

d
t( , , , ) ( , , ) ( )(rr rr rr rr rr rr= ′ ′′ − ′∫ − ′− ′

0

Γ ′′
′

′′∫ t x
s

t

G t) ( , , )rr rr
0

, (22.2)

where τ(r) = 1/Γ(r) is the fluorescence lifetime distribution. The above equation ignores re-emission of the 
fluorescence by the fluorophore, an assumption used widely in applications of tomographic fluorescence 
imaging and also termed the “Born approximation.” Besides this approximation, the accuracy of Equation 
22.1 depends on the level of approximation used for estimating the GFs, which depend on the intrinsic 
tissue optical properties, namely, absorption µ µa

x
a
m( ), ( )rr rr( ) and scattering µ µs

x
s
m( ), ( )rr rr( ) distributions at the 

excitation (λx) and emission (λm) wavelengths, in addition to the tissue anisotropy factor g. In general, the 
absorption and scattering are heterogeneous and include tissue components (such as water, melanin, and 
blood) and the absorption of the fluorophore (at both λx and λm). Generally, all the parameters, η(r), τ(r), 
µ µa

x m
s
x m( , ) ( , )( ), ( )rr rr  are unknown. A common starting point is the homogeneous approximation where the 

optical properties are assumed uniform throughout and fluorophore absorption is ignored for evaluating 
the GFs. In this case, the GFs in Equation 22.2 are the solutions to the homogeneous diffusion or transport 
equations. Note that µa

x m,  and µ s
x m,  can, in practice, be determined independently using two separate 

“excitation” measurements at wavelengths λx and λm. In this case, Equation 22.2 can provide a highly 
accurate description of time-resolved fluorescence in turbid media. With µa

x m,  and µ s
x m,  known, the GFs can 

be calculated using either the diffusion approximation or the radiative transport equation.
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Evaluation of the sensitivity (Equation 22.2) can become computationally intractable for multiple 
source–detector (S–D) pairs (~102), medium voxels (~104), and time points (~103). One simplifying 
approach is to solve Equation 22.2 in the frequency (Fourier) domain (FD), since the double convolution 
then simplifies to a product for each frequency. While convenient in some scenarios (Nothdurft et al. 
2009; Soloviev et al. 2007), this approach has the limitation that the Fourier transform is nontrivial for 
multiexponential decays, and multiple frequencies are required to reliably extract multiple lifetimes or 
complex decay profiles. Existing TD approaches to solve Equation 22.2 are overly simplistic (such as 
assuming point fluorophores in an infinite homogeneous medium; Hall et al. 2004), while the general 
formalism is quite intractable (Arridge and Schotland 2009). In what follows, we will take an approach 
to solve Equation 22.1 that is motivated by a practical observation, namely, that typical fluorescence 
lifetimes (τ) of fluorophores from the visible to NIR wavelengths are longer than the timescales for 
intrinsic diffusive relaxation in small volumes, τD (which is shorter than the absorption timescale τa = 
(vμa)−1; Haselgrove et al. 1992). We will make more precise definition of τD in Section 22.2.4. Under the 
approximation that τ > τD, it will be shown that Equations 22.1 and 22.2 can be cast into an elegant 
and rigorous formalism for inverting multiple lifetimes within turbid media (Kumar et al. 2005) that is 
analogous to the multiexponential model in FLIM. We will derive this “tomographic-FLIM” approach 
both in the frequency domain, using complex integration, and in time domain using Equation 22.2. 
Before proceeding, it is convenient to recast Equations 22.1 and 22.2 in the following way using the 
commutativity of the convolution:

 U t d r dt W t es d
B

s d

t
t tn( , , ) ( , , , ) ( )rr rr rr rr rr= ′ ′∫ ∫ − − ′3

0Ω

Γ ηnn

n

( )rr∑




, (22.3)

where we have defined a “background” weight function as

 W t dt G t t G tB
s d

x
s

m
d( , , , ) ( , , ) ( , , )rr rr rr rr rr rr rr′ = ′′ ′ − ′′ ′′

0

′′

∫
t

, (22.4)

and Γn = 1/τn are discretized values of the in vivo lifetime distribution with corresponding yield 
distributions ηn(r). In other words, each lifetime has a distinct yield distribution. We will see below that the 
ηn(r)’s can be separately reconstructed from analyzing the TD data.

22.2.2  FREQUENCY DOMAIN

One way to analyze the TD forward problem is to Fourier-transform the data. In the frequency domain, 
the double convolution in the integrand of Equation 22.4 reduces to a simple product:

 U t d r d e Ws d
i t B

s d
n n( , , ) ( , , , ) (rr rr rr rr rr rr= ∫ ∫ −

−∞

∞
3
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ωτ
ωrr

� ������� �������
. (22.5)

where

 � � �W G GB
s d

x
s

m
d( , , , ) ( , , ) ( , , )rr rr rr rr rr rr rrω ω ω=  (22.6)

is the FD sensitivity obtained as a Fourier transform of the TD sensitivity (Equation 22.4), with ω as 
the modulation frequency. The standard FD approach (see, for example, Chapter 13) is to reconstruct 
the spatial distribution of F(r,ω) (quantity within the square brackets in Equation 22.5) from the FD 
measurements at a given frequency ω. The lifetime and yield distributions are obtained as the phase and the 
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real part of F(r,ω), respectively. As is clear from Equation 22.5, the TD data provide multiple frequencies. 
Handling multiple frequencies with the above forward problem becomes complicated since F(r,ω) 
inseparably involves both a measurement parameter ω and the unknown lifetime τ(r). This necessitates a 
nonlinear approach as described, for example, in Milstein et al. (2003). However, it has also been shown 
that multiple frequencies do not necessarily improve the quality of the reconstruction (Milstein et al. 
2004), with the number of useful frequencies restricted to the first three or four frequency components 
from zero.

22.2.3  TOMOGRAPHIC FLIM MODEL

The TD forward problem in Equations 22.3 and 22.4 can be reduced to a sum of exponential decays, 
analogous to the signal in microscopic FLIM (Bastiaens and Squire 1999), the difference being that 
the amplitude coefficients of the lifetimes will now correspond to a measurement set for tomographic 
reconstructions, while in microscopy, they directly relate to the amplitude of the lifetime component in a 
particular tissue location. We will prove this result using two different methods, one using the FD form in 
Equation 22.5 and the other directly from the general TD forward problem, viz., Equations 22.3 and 22.4. 
The result derived using the direct TD approach is applicable to the entire TD fluorescence signal, while 
the FD approach is applicable only to the asymptotic or long-time portion of the TD fluorescence. The TD 
approach results in a tomographic FLIM model that clearly elucidates the individual contributions of the 
diffusive background and fluorescence decay to the measured TD fluorescence signal. We will also discuss 
the conditions when the tomographic FLIM model is valid.

22.2.3.1  Frequency domain derivation of tomographic FLIM
We apply contour integration (from complex analysis; Matthews and Walker 1970) to solve the FD 
integral in Equation 22.5. Without loss of generality, we consider an infinite homogeneous medium (the 
results will, however, be shown later to be valid for bounded heterogeneous media) and examine the 
analytic nature, in the complex variable sense, of the integrand of Equation 22.5. The homogeneous GFs 
are �G ik Dx m x m x m( , ) ( , ) ( , )( , , ) exp( )rr rr1 2 12 4ω ρ π= / , where ρ12 = |r1 − r2|, k v i Dx m

a
x m x m( , ) ( , ) ( , )= − +( ) µ ω /

/1 2
, 

D vx m
s
x m( , ) ( , )= /3µ  is the diffusion coefficient, and v is the velocity of light in the medium. It is evident that 

the integrand in Equation 22.1 possesses simple pole singularities distributed along the negative imaginary 
axis at ωn = −iΓn (see Figure 22.1) due to the fluorescence decay term, F(r,ω). In addition, the homogeneous 
GF and its spatial derivatives are bi-valued owing to the square root in k, implying branch points 
(Matthews and Walker 1970) in the lower half plane at ω µ= −iv a

x m( , ). To evaluate U (Equation 22.5), we 
choose a contour (C) shown in the complex “ω-plane” in Figure 22.1 and apply Cauchy’s integral theorem 

Complex
ω–plane

–iΓn
–ivµxa

–ivµam

Branch cut

Im{ω}

e{ω}

U(rs, sd, t)

Figure 22.1 Complex ω-plane structure of the integrand of Equation 22.5 for a homogeneous diffuse medium, 
showing the simple pole singularities at ω = −iΓn and the branch points at ω µ= −iv a

x m( , ). It is assumed that 
Γn a

x mv< µ( , ). also shown is the contour for calculating Equation 22.5 using Cauchy’s theorem. the integral of 
Equation 22.5 corresponds to the contribution of the real-ω axis extended from −∞ to ∞.
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(Matthews and Walker 1970), whence U separates into a sum of two terms, the first term arising from the 
residue at the simple poles at −iΓn (which will lead to a sum of pure fluorescence decays) and the second 
term arising from the integration on either side of the branch cut (Matthews and Walker 1970) along the 
branch points in the lower imaginary axis (which will lead to a fluorescent diffuse photon density wave):

 U t a e a t es d Fn s d
t

D s d
v t

n

n a( , , ) ( , ) ( , , )rr rr rr rr rr rr= +− −∑ Γ µ  (22.7)

where aFn denote the decay amplitudes of the fluorophore with lifetime τn = 1/Γn and are readily obtained as 
the residue (Matthews & Walker 1970) of the integrand in Equation 22.5 at the simple poles at −iΓn. This 
leads to the following linear inverse problem for the yield distribution ηn(r) of the nth fluorophore:

 a d rW iFn s d n
B

s d n n
V

( , ) ( , , , ) ( )rr rr rr rr rr rr= −∫ 3 � Γ η . (22.8)

with a weight matrix �Wn
B for inverting the nth lifetime component τn simply given by the FD weight matrix 

(Equation 22.6) but evaluated at an imaginary frequency of ω = −iΓn. For this imaginary frequency, we have

 ( )( , )
( , )

( , )

( , )

k
v

D
v vx m a

x m
n

x m
a
x m

n2 =
− +

=
− −( )( )µ µΓ Γ /

DD
v
Dx m

an
x m

x m( , )

( , )

( , )
= − ′µ

 (22.9)

where we have defined a “reduced” absorption, ′ = −µ µan a n vΓ / . But Equation 22.9 is identical to the definition 
of k for the CW diffusion (Helmholtz) equation, showing that �Wn

B are sensitivity functions for the CW 
diffusion equation with a reduced absorption. If we assume that Γn a

x mv< µ( , ), that is, τ µn a
x mv>1/ ( , ), it is clear 

that the first term in Equation 22.7 dominates the long-time behavior of the net fluorescence signal. We call 
this region the asymptotic region, where t > τa. We thus see that the TD fluorescence forward problem reduces 
“asymptotically” to multiple CW forward problems with a separate effective absorption of ′µan for each lifetime. 
As can be checked easily, τa < 0.5 ns for μa > 0.1/cm (typical value for biological tissue), which means that the 
asymptotic TD decay is dominated by the fluorescence lifetimes that are longer than a few subnanoseconds. We 
will, in fact, see in the next section that the diffusive timescale from a finite volume is even shorter than τa. It is 
also possible to evaluate the second term of Equation 22.7 as the contribution of the integration on either side of 
the branch cuts. But this signal is negligible from the point of view of fluorescence lifetime, and we therefore do 
not derive it here. We will show in the next section that the multiexponential form of the first term of Equation 
22.7 also holds for the entire temporal response but with a time-dependent decay amplitude.

Although the above results were derived assuming a homogeneous infinite medium, a general 
solution for the inhomogeneous diffusion equation in a bounded volume may be written in terms of the 
homogeneous GF and its normal derivatives at the boundary (Barton 1989). It is thus plausible to assert 
that the complex plane structure in Figure 22.1 also applies to arbitrary heterogeneous media. This implies 
that Equation 22.8 can be generalized to arbitrary media by simply substituting the GF solutions of the 
heterogeneous diffusion equation with finite boundary models. In the next section, we will indeed derive 
a general time-dependent, reduced-absorption decay amplitude that smoothly goes over to Equation 22.8 
in the asymptotic limit and is valid for bounded heterogeneous media. The definition of the asymptotic 
region, when the fluorescence decay is dominant, will also be made more precise.

22.2.3.2  Time domain derivation of tomographic FLIM
Consider the full TD forward problem given in Equations 22.3 and 22.4. We start with the following 
general result (Kumar et al. 2006) for the GF for the heterogeneous transport equation (Arridge 1999; 
Chandrasekhar 1960):

 G t G t ex m x m v ta
x m( , ) ( , ) ( )( , ) ( , )

( , )
rr rr rr= − µ , (22.10)
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where the functions G x m( , ) are dependent only on the gradient of the absorption coefficient, µa
x m( , )( )rr , and 

independent of µa
x m( , )( )rr  itself (note that this result is a generalization of Equation 2 in Durduran et al. 

1997, which is for a homogeneous medium). Thus, the functions G x m( , ) are invariant to constant shifts in 
the absorption. This means that under the long lifetime condition, Γn a

x mv< µ( , )( )rr , ∀r ∈ Ω, the exponential 
factor in the integrand of Equation 22.3 can be absorbed into the GFs as follows: since e e en n nt t t tΓ Γ Γ′ ′− ′′ ′′= ( ) , 
we can write, using Equation 22.4,

 W t e dt G t t eB
s d

t
t

x
s

n n( , , , ) ( , , ) (rr rr rr rr rr′ = ′′ ′ − ′′′
′

∫Γ Γ

0

′′− ′′ ′′  ′′ 
t t m

d
tG t e n) ( , , )rr rr Γ .

Using Equation 22.10 and the property that G x m( , ) are unaffected by a constant shift in the absorption, 
and defining a heterogeneous reduced absorption ′ = −µ µa

x m
a
x m

n v( , ) ( , )( ) ( )rr rr Γ / , the right-hand side of the 
above equation becomes
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rrµ
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d

t

n
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s d

) ( , , )

( , , , ).

rr rr

rr rr rr

0
 (22.11)

Here we have defined a TD sensitivity Wn
B (counterpart of the FD sensitivity �Wn

B in Equation 22.8), 
which is evaluated as in Equation 22.4 but using transport GFs, Gn

x m( , ), that are evaluated with a reduced 
absorption, ′µa

x m( , ). We finally substitute Equation 22.11 into Equation 22.3 and get the following form for 
the TD fluorescence signal when Γn a

x mv< µ( , )( )rr , ∀r ∈ Ω:

 U t e d r dt W ts d
t

n

n
B

s d

t
n( , , ) ( , , , )rr rr rr rr rr= ′ ′




−∑ ∫ ∫Γ 3

0 
ηn ( )rr . (22.12)

The above equation reduces to an elegant multiexponential form:

 U t A t es d n s d
t

n

n( , , ) ( , , )rr rr rr rr= −∑ Γ  (22.13)

but with time-dependent decay amplitudes An, given by

 A t d r dt W tn s d n
B

s d

t

n( , , ) ( , , , ) (rr rr rr rr rr rr= ′ ′




∫ ∫3

0
η )). (22.14)

The time dependence of the decay amplitudes An reflects the evolution of the background diffusive 
response. In Figure 22.2, the simulated temporal evolution of A(t) is shown for diffusive slabs of thicknesses 
2 and 10 cm, with a 2 mm3 fluorophore inclusion of 1 ns lifetime embedded at the center of the slab. The 
net fluorescence signal calculated using tomo-FLIM model in Equations 22.13 and 22.14 is compared 
with the fluorescence signal computed directly using Equations 22.3 and 22.4 and confirms the accuracy 
of tomo-FLIM model over a wide range of medium thicknesses that includes small animal to human 
imaging applications. Note that A(t) rapidly reaches a constant value, beyond which the temporal evolution 
of U(rs,rd,t) is purely exponential. Indeed, it is clear that Equation 22.14 approaches Equation 22.8 in 
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the asymptotic limit, since �Wn
B is just the CW (or time integrated) version of Wn

B, so that An(rs,rd,t) → 
an(rs,rd) in the asymptotic limit. The time constant for the rise of A(t) toward an (see the next section) 
will depend on the intrinsic tissue absorption, scattering, and size of the imaging volume. We define the 
“asymptotic regime” for times when the time average of Wn

B (which is the integrand of A(t)) in Equation 
22.14 will become nearly time independent and approach the CW sensitivity function, which we denote by 
W W in

B
n
B

n= −( )� ( )Γ . We thus have

 U t e d rWs d
t t

n

n
B

s d n

a

D n( , , ) ( , , ) ( )rr rr rr rr rr rr> − → ∑ ∫τ ηΓ 3

FFn s d( , )rr rr
� ���������� ����������

. (22.15)

In other words, Equation 22.14 approaches Equation 22.8 in the asymptotic limit. Equation 22.13 
therefore constitutes a generalized multiexponential forward problem for tomographic FLIM that includes 
both early and late arriving photons and is rigorous within the radiative transport model of photon 
propagation in turbid media.

22.2.4  CONDITIONS FOR RECOVERY OF IN VIVO FLUORESCENCE LIFETIMES

The natural question in the mind of any researcher interested in whole-body FLIM is, under what 
conditions can intrinsic fluorescence lifetimes reliably be measured on the surface of a living subject? As 
mentioned in Section 22.1, the intrinsic fluorescence lifetime of a fluorophore can be altered in vivo either 
because of (a) the tissue environment or (b) light scattering and absorption in tissue. This chapter concerns 
the latter phenomenon, with the understanding that the “intrinsic” lifetime refers to the lifetime of the 
fluorophore in the biological environment, which can be separately characterized in advance (Raymond 
et al. 2010). There are two timescales involved. Firstly, τa = 1/vμa is the asymptotic decay time of the 
intrinsic diffuse temporal response in the limit of homogenous semi-infinite media (Patterson et al. 1989). 
The second is the actual decay time, τD, for the intrinsic photon diffusion in a finite-sized object (which 
is also related to the rise-time constant of the TD decay amplitude, A(t); Figure 22.2). The time constant 
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Figure 22.2 Simulations to elucidate the diffuse and pure fluorescent decay components as revealed by the time 
domain fluorescence model presented in Equation 22.13. the medium was an infinite slab of thickness 2 cm (a) and 
10 cm (b), with optical properties µ µ µ µs

x
s
m

a
x

a
m= = = =10/cm, 0.1/cm. the fluorescence signal was calculated 

for a single source detector pair, with a small fluorescent inclusion at the center. the signal calculated using 
the conventional approach in Equation 22.3 (+ symbol) is compared with that calculated using an effective-
absorption-based model, viz., Equation 22.13 (solid black line). the decay amplitude, A(t) (dotted blue line) and 
pure fluorescence decay (dashed red line) are also delineated for both cases.
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τD is always shorter than τa due to the presence of boundaries (Haselgrove et al. 1992; Patterson et al. 
1989), that is, τD < τa (a numerical evaluation of τD for a range of tissue optical properties can be found in 
Kumar et al. 2005). Since the net fluorescence signal is a convolution of the pure fluorescence decay with 
intrinsic diffusive response, the condition τn > τa guarantees that the intrinsic lifetimes within tissue can 
be measured asymptotically from surface fluorescence decays,* irrespective of scattering and medium size. 
Furthermore, the tomo-FLIM model presented in Equation 22.13 is valid.

The condition τn > τa is easily satisfied for approximately nanosecond lifetime fluorophores in biomedical 
applications (μa = 0.1/cm corresponds to τa = 0.5 ns). The simple rule that τn > τa with τa denoting the 
average absorption for a heterogeneous medium dictates the condition for measuring intrinsic lifetimes 
from whole animals and for the applicability of the tomographic FLIM model. For heterogeneous media, 
care should be exercised in using the reduced absorption model in Equation 22.13 in avoiding regions with 
a negative value for ′µa. The exact influence of low absorption regions on the reduced absorption model will 
be studied in future work.

22.2.5  INVERSE PROBLEM

The previous sections were concerned with the forward problem for time domain fluorescence tomography. 
The inverse problem consists of determining the fluorescence yield and lifetime distributions (and the 
background tissue optical properties, if they are not known) from measured fluorescence and excitation 
data. In the tomo-FLIM approach, the lifetimes are first obtained as discrete values by fitting the decay 
(asymptotic) portion of the TD data (which constitutes an inversion problem itself, via the inverse Laplace 
transform; Kumar et al. 2001). We only need to determine the fluorescence yield distributions, η(r). We 
refer the reader to standard texts for a general treatment of linear inverse problems (Bertero and Boccacci 
1998). Here, we present a simple approach that illustrates what is involved. Equation 22.8 is in the form 
of an underdetermined problem of the form y = Wx, where W is a general sensitivity matrix. The pseudo-
inverse Ws

−1 defined by x W ys= −1  is given as

 W L W WW Is
T T− − −= +1 1 1� � �( )αλ , (22.16)

where �W WL= −1, with L as a diagonal matrix whose diagonal elements are ( ( ))diag W WT , λ is the 

regularization parameter, and α = ( ( ( )))max diag WW T� � . Note that since ( )W W W WT
ij li lj

l
=∑ , we have

 L W W Wii
T

ii li

l

= = ∑( ) 2 . (22.17)

Thus, the diagonal elements of L are the column norms of the sensitivity function W or the net 
sensitivity at each voxel summed over all measurement pairs. The normalization by L therefore has 
the effect of annulling the strong spatial variations in the sensitivity function. In order to reduce the 
computational time for evaluating the inverse in Equation 22.16 for multiple regularization parameters, 
an SVD analysis can be employed. Writing �W USV T= , it can be readily shown that

 x = L−1VS(S2 + αλI)−1UT y. (22.18)

* Note that for heterogeneous media, it is known that the intrinsic diffusive decay time τa is relatively constant on the measurement 
surface (Haselgrove et al. 1992), so that we can use the average or “baseline” absorption of the tissue medium to estimate τa.
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22.3  EXPERIMENTAL METHODS
22.3.1  IMAGING SYSTEM

The imaging system for tomographic FLIM essentially consists of a light source, a fiber to deliver the light 
to the surface of the animal or subject, and a detection system that can be either wide-field-based using a 
CCD camera or point-based using fibers. In order to provide nanosecond time resolution, either a gated 
camera (Nothdurft et al. 2009; Raymond et al. 2010) or time-correlated single-photon counting (TCSPC) 
(Bloch et al. 2005) is used. These experimental methods are discussed in detail in Chapters 6 and 9. A 
detailed description of a small animal TD fluorescence tomography system can be found in Kumar et al. 
(2008b). Below we briefly discuss some experimental techniques specific to wide-field detected tomographic 
FLIM.

22.3.2  IMPULSE RESPONSE AND TIME ORIGIN

An important parameter for tomographic FLIM is the system impulse response function (IRF) as well as an 
accurate estimate t0, which is the time when the excitation pulse is incident on the surface of the imaging 
medium (we have set t0 = 0 in the derivations above). A correct estimate of the time origin t0 ensures that the 
relative amplitudes of the multiple lifetime components are correct (Kumar et al. 2006), and is crucial for 
estimating the optical properties using TD data, as well as for fluorescence reconstructions using the early 
time gates (Niedre et al. 2008). An advantage of noncontact detection is that t0 can be estimated from the 
IRF, which can, in turn, be measured directly from the source illumination. This is possible since the position 
of the CCD camera (i.e., the detectors) is unchanged before and after the sample is placed on the imaging 
plate, unlike in contact geometries with fiber-based detection. Note that the time t0 measured from the IRF 
includes the time for free space propagation of light from the source to the camera. However, the propagation 
time for the fluorescence emitted from the imaging surface to the detector will be slightly shorter than t0, due 
to the finite thickness of the mouse. Before analyzing the fluorescence data, t0 should therefore be offset by 
the sample thickness, for example, ≈50 ps for a mouse of thickness 2 cm. The measured IRF can be directly 
forward-convolved into the model before tomographic inversion. This procedure is superior to a deconvolution 
of the IRF from the raw fluorescence data, which is a highly ill-posed problem. For the asymptotic 
reconstructions, the effect of the IRF on the forward model can be calculated analytically for a square IRF. 
Using Equation 22.15, the influence of a square IRF of width T is given as

 

lim ( , , ) lim ( , , )
t

U t
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e
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1 −− −( )∑ T
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n

n na e/τ ( , ) .rr rr Γ
 (22.19)

Thus, the effect of the system IRF on the measured decay amplitudes is a scaling factor that depends 
on the lifetime and the width of the IRF. The decay amplitudes aFn need to be scaled by the coefficient 
τ τ

n
Te n1−( )− /  before being inverted using Equation 22.18. This scaling factor is essentially the result of a 

partial averaging of the exponential decay in Equation 22.19 and approaches the CW signal in the limit 
T → ∞.

22.3.3  MULTIEXPONENTIAL FITS USING GLOBAL LIFETIME ANALYSIS

An important step in the asymptotic approach is the extraction of the decay amplitudes for all the lifetimes 
present in the medium. The recovery of lifetimes and decay amplitudes from multiexponential fits to 
decay data is a nonlinear problem, which is further complicated by the presence of noise. However, the 
tomographic-FLIM model (Equation 22.8) allows for a significant simplification of the fitting process. Since 
the set of discretized lifetime components, τn, are independent of the measurement locations (i.e., the S–D 
coordinates (rs,rd)), the multiexponential analysis can be performed in two stages. First, the total fluorescence 
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decay is calculated as a sum over all S–D pairs to obtain a high signal-to-noise ratio temporal data set. This 
“global” signal is composed of all the lifetime components present in the system and allows a more robust 
determination of the lifetimes through a nonlinear analysis. In the second step, the lifetimes determined 
from the S–D-integrated decays are used in a linear fit of the decays for each individual S–D pair. Besides 
improving the robustness of the fitting procedure for the lifetimes and decay amplitudes, the global analysis 
is computationally much less cumbersome than performing a nonlinear fit for every S–D measurement. 
Chapters 10 through 12 present a detailed review of existing methods for FLIM data analysis, which can be 
directly incorporated for tomographic FLIM in turbid media using Equation 22.8.

22.3.4  SINGLE VS. MULTIEXPONENTIAL ANALYSIS

When two or more fluorophores are present simultaneously in an animal, the measured fluorescence is a 
sum of photons from the respective fluorophores. Monoexponential analysis of a mixed signal provides an 
average lifetime for each detector or pixel, but can be misleading given the contribution of the fluorophores 
at different concentrations and quantum efficiencies. In contrast, a multiexponential analysis based on 
expected lifetime components can produce a quantitative measure of multiple fluorophores. Moreover, 
a monoexponential analysis does not exploit the full power of lifetime-based tomographic separability 
as afforded by Equation 22.8. As an example, consider multiplexing Osteosense 750 (PerkinElmer), a 
bone-targeted NIR probe, with X-Sight 761 (Kodak), a NIR probe that remains in the blood stream and 
accumulates slowly in the liver. When just Osteosense 750 is present in the animal, the monoexponential 
lifetime map exhibits a narrow lifetime distribution with mean τ = 835 ps (Figure 22.3b). Administration 
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Figure 22.3 Planar FLIM of Osteosense 750 and Kodak X-Sight 761. a nude mouse received 2 nmol Osteosense 
24 h prior to imaging; planar fluorescence time-resolved images were collected immediately before (a–e) and 
after (f–j) administration of Kodak X-Sight 761 (3 nmol). Image pixels were fit for the amplitude and lifetime 
of a monoexponential function or were fit with a linear biexponential function. (a, f) Continuous wave (CW) 
images. (b, g) Lifetime maps from monoexponential fit; color bar indicates the lifetime in picoseconds. the 
decay amplitude distributions from a biexponential fit to the composite probe data are shown for Osteosense 
(τ1 = 835 ps) in (c, h) and for Kodak X-Sight 761 (τ2 = 1343 ps) in (d, i). (e, j) Merged amplitude distribution map 
shown as rGB images with amplitudes of Osteosense (blue) and X-Sight (red). (reproduced from raymond, S. B. 
et al., Journal of Biomedical Optics 15(4), 046011, 2010. With permission.)
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of Kodak X-Sight results in a lifetime map with a large distribution of lifetimes, ranging from 1000 to 
1500 ps (Figure 22.3g). Average lifetime at bony structures is significantly higher than with Osteosense 
alone, due to the contribution of vascular Kodak X-Sight. Biexponential fitting using average lifetimes for 
Osteosense (τ = 835 ps) and Kodak X-Sight (τ = 1343 ps) components results in clear anatomical separation 
of the two probes (Figure 22.3c–e, h–j). The Osteosense components before and after Kodak X-Sight 
administration are qualitatively similar (compare Figure 22.3c, h), and no Kodak X-Sight is detected by the 
biexponential fit before administration (Figure 22.3d).

22.3.5  NOISE CONSIDERATIONS FOR LIFETIME MULTIPLEXING

In the global analysis approach, we employ a linear fit with a priori lifetimes (estimated from separate 
measurements) to determine the amplitudes. The uncertainty (variance) in the decay amplitudes recovered 
from the linear fit, σa, depends on both the measurement noise and the separation (Δτ) of the lifetimes 
involved. To estimate σa, we analyze the propagation of noise from the measurement (time domain 
image) to the recovered amplitudes using linear regression theory (Press et al. 1992). The time-dependent 
measurement, y, is linearly related to the amplitudes of the individual decay components as y = Xa, where 
the columns of X are normalized single-exponential decays, and a are the component amplitudes. The 
uncertainty in the recovered amplitudes, σa, is dependent upon the measurement noise at each time point, 

expressed as a diagonal matrix Σ, where =∑ 1 2/σ yi
ii

, and the respective basis functions X:

 σaj
T

jj
X X2

1
= ( )



∑

−

. (22.20)

Equation 22.20 allows calculation of recovered amplitude uncertainty given known system noise 
parameters (which determine Σ) and fluorophore lifetimes (which dictate the basis functions, X ). Figure 
22.4 shows the relative amplitude uncertainty (σa/a) simulated assuming a specific noise model for Σ 
relevant to a time-gated imaging system. It is seen that σa/a increases as the lifetime separation between 
probes, Δτ, decreases (Figure 22.4a). For a given lifetime separation, the relative amplitude uncertainty 
for one component increases as the amplitude of the other component increases (Figure 22.4b). This 
means that if one component is much weaker than the other, it will have increased relative uncertainty. 
Fluorophore separability, defined arbitrarily as the conditions under which relative uncertainty is 
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Figure 22.4 Influence of noise on the amplitude uncertainty for biexponential fits. Simulated biexponential 
fluorescence decays were generated for a noise model, σ β σy ry2 2= + , with β = 6.53 and a dynamic range of 214 
(4 × 4 hardware and 2 × 2 software binning) for the time-gated intensifier camera (Kumar et al. 2008a). (a) relative 
amplitude uncertainty for equal amplitude probes of varying lifetimes τ1 and τ2. (b) relative amplitude uncertainty 
of the first amplitude component for varying amplitudes, a1 and a2, over the dynamic range of the instrument, 
with fixed lifetimes, τ1 = 1 ns, τ2 = 1.2 ns. the white lines in (a, b) indicate the 30% relative uncertainty contours. 
(reproduced from raymond, S. B. et al., Journal of Biomedical Optics 15(4), 046011, 2010. With permission.)
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<30%, can be estimated directly as described above. For example, assuming one fluorophore with 
lifetime τ1 = 1000 ps, quantitative unmixing is possible for Δτ ≥ 200 ps at relative concentrations as low 
as 1:5 (Figure 22.4b). Measurement noise also affects the determination of the lifetime, τ, from a 
monoexponential fit, for example, when measuring the in vivo lifetime characteristics of a fluorophore. We 
estimated the propagation of measurement noise by simulating a fluorophore that has a fixed τ and realistic 
amplitude distribution (chosen from the mean lifetime and amplitude distribution of a similar in vivo 
measurement) and noise according to a conservative empirical model; the simulated measurement was then 
fit at each pixel for τ. As shown in Figure 22.5, the uncertainty in τ due to noise is ≈20%, which shows that 
a majority of the apparent in vivo lifetime heterogeneity is due to noise. This sets a limit on the number of 
fluorophores that may be multiplexed. Figure 22.6 shows the amplitude uncertainty with a simulation of 
lifetime multiplexing using up to five lifetimes using the shot noise model. This indicates that under the 
noise statistics used here, the maximum number of fluorophores that can be multiplexed reasonably (less 
than 30% relative amplitude uncertainty) is three.
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Figure 22.5 Influence of noise on lifetime uncertainty for monoexponential fits. the effects of measurement 
noise on estimation of τ for a single fluorophore were determined by simulating a measurement of Kodak X-Sight 
in vivo, using the mean lifetime and amplitude distribution of an actual Kodak X-Sight measurement. Noise was 
added according to an empirical noise model, σ β σy ry2 2= + , with β = 6.53; each pixel was fit for τ and then plotted 
as a histogram. the measurement is shown above in black and the simulation in gray. the standard deviation for 
the measurement was 157 and the simulation was 193, which reflects the conservative noise model (adds slightly 
more noise than needed). (reproduced from raymond, S. B. et al., Journal of Biomedical Optics 15(4), 046011, 
2010. With permission.)
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Figure 22.6 amplitude uncertainty for multiple lifetime components was tested by simulating n = 2–5 lifetimes, 
with the initial lifetime τ1 = 600 ps and each additional lifetime 1.5× the previous; amplitudes were split evenly 
between the components as 4096 × 4/n. Noise was added according to the conservative noise model for 4 × 4 
hardware binning and 2 × 2 software binning. the relative uncertainty was calculated for each lifetime component 
as additional components were added. the 30% uncertainty cutoff is shown as a dotted line. (reproduced from 
raymond, S. B. et al., Journal of Biomedical Optics 15(4), 046011, 2010. With permission.)
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22.4  IN VIVO TOMOGRAPHIC FLIM
As a demonstration of tomographic FLIM in living mice, we show lifetime multiplexing of Kodak X-Sight 
and Osteosense simultaneously injected in living nude mice (n = 3), using a time-resolved free-space 
tomographic imaging system (Kumar et al. 2008b; Raymond et al. 2010). Excitation and fluorescence 
measurements were collected 1 h after Kodak X-Sight administration from a grid (~3 × 3 mm separation) 
of 44 sources and ~100 detectors (Figure 22.7b). The asymptotic region was approximated as times t 
such that the quantity e U dtt

exc

t
′ ′∫ /τ    

0
, where Uexc is the excitation measurement, approached 99% of 

its maximum value (Figure 22.4a; this is an experimental approximation for the quantity τD discussed 
in Section 22.2.4). The decays for all S–D pairs were fit in the asymptotic region for a priori lifetimes, 
τ1 = 844 ps and τ2 = 1242 ps, which were the mean in vivo lifetimes of X-sight and Osteosense injected 
separately in mice. Note that the scale for the Kodak X-Sight amplitude component is approximately 
fivefold greater than the Osteosense amplitude scale. The decay amplitudes for the two lifetimes at all 
S–D pairs (Figure 22.7f) were employed in Equation 22.8 to recover the full 3D yield distributions for 
Osteosense and X-sight. The 3D tomographic images shown in Figure 22.7g through j indicate that 
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Figure 22.7 In vivo lifetime tomography of two anatomically targeted NIr fluorophores. anesthetized nude mice 
were administered Osteosense (24 h prior) and Kodak X-Sight (1 h prior), and tomographic data were acquired for 
44 sources and 107 detectors. reconstructions used excitation (750/40 nm BP filter), emission (800 nm LP filter), 
and 3D-surface measurements using a 3D camera (Kumar et al. 2008b). (a) representative time-resolved data 
for tomographic reconstructions. (b) Bright field image of with source (black “x”) and detector locations (white 
“o”). the reconstructed rOI is indicated with the dashed white rectangle. (c, d) Dual color, lifetime-unmixed, 
planar fluorescence images showing the amplitudes of Osteosense (blue) and Kodak X-Sight (red). (e) Postmortem 
organs (liver, L; amputated lower extremity, LE). (f) recovered amplitude components for 44 × 107 SD pairs. 
(g) 3D rendering of surface (grid) and the Osteosense and Kodak X-Sight distributions. the location of slices in 
g–i are shown in bold black lines. (h–j) Slices from lifetime-separated reconstruction. Surface boundaries are 
indicated as solid white lines. (reproduced from raymond, S. B. et al., Journal of Biomedical Optics 15(4), 046011, 
2010. With permission.)
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Osteosense is confined to bony structures, including the spinal column, pelvis, skull, and long bones, 
whereas Kodak X-Sight has localized to the liver, with residual Kodak X-Sight in the vascular compartment 
(Figure 22.7c, d). These findings are consistent with the expected behavior of these two fluorophores and 
were confirmed by postmortem imaging of the organs and bones (Figure 22.7e). Thus, the tomographic-
FLIM model separates and correctly localizes the spatial distribution of two lifetime components 
simultaneously present in a living animal.

22.5  CONCLUSIONS AND FUTURE OUTLOOK
In this chapter, we have presented theoretical and experimental methods for tomographic FLIM in turbid 
media. A forward model for TD fluorescence was presented that directly translates the multiexponential 
approach used in microscopic FLIM to 3D tomographic reconstructions in the whole body. The basis 
of this algorithm is the experimental observation that typical fluorophore lifetimes are longer than the 
intrinsic timescales for diffusive propagation of light through biological tissue and can therefore be directly 
measured from surface fluorescence decays. Further, we presented a rigorous formalism for isolating the 
individual 3D fluorescence yield distribution of each lifetime from a mixture of fluorophores using their 
tomographic surface decay amplitudes. Several commercial NIR fluorescent dyes are already available 
with capability for targeting specific disease pathologies in small animals. By a careful selection of dyes 
with lifetime contrast, the TD lifetime technology presented here will thus create new avenues to visualize 
multiple biological processes noninvasively, accelerating the drug discovery process in preclinical imaging, 
and can potentially offer interesting applications in the clinical settings as well.

The application areas for in vivo tomographic FLIM can be broadly classified into three categories based 
on contrast mechanism. The first is based on intrinsic contrast, for instance, the tracking of fluorescent 
protein (FP) labeled cancer cells or using intrinsic tissue autofluorescence (AF) to separate tissue types. FPs 
have revolutionized biological research (Giepmans et al. 2006) by allowing the visualization of cellular 
level processes using intravital microscopy. The ability to image FPs in whole animals will open several 
new avenues for monitoring biological processes in intact environments. However, a majority of existing 
FPs excite in the visible spectral range (400–600 nm), where tissue (AF) is significant. Previous attempts 
for imaging FPs in whole animals used CW techniques (Deliolanis et al. 2008; Hoffman & Yang 2006), 
where the AF signal is indistinguishable from the FP fluorescence since it is intensity based. Recently, it 
has been shown that fluorescence lifetime allows improved detection of FPs against background tissue AF 
(Kumar et al. 2009; McCormack et al. 2007; Soloviev et al. 2007). Specially, the distinct nonexponential 
temporal response of AF decays as compared with the pure exponential decay of the fluorescence of several 
FPs in vivo has been used to enhance the imaging of GFP tumors in live mice (Kumar et al. 2009). The 
second application of preclinical whole-body lifetime imaging uses extrinsic fluorophores that are designed 
to undergo lifetime shifts in vivo due to a change in biochemical environment, such as pH (Berezin et al. 
2011), protein binding (Goiffon et al. 2009), and binding to disease targets such as tumors (Bloch et al. 
2005; Nothdurft et al. 2009).

Perhaps the most interesting and underexplored application of tomographic FLIM concerns activatable 
probes. For instance, Forster resonance energy transfer (FRET) probes have been widely used in FLIM 
(Vogel et al. 2006) and are based on nonradiative quenching of a pair of fluorophores located in close 
proximity (typically attached to a backbone such as a polymer) with overlapping absorption and emission 
spectra. Binding to a target enzyme or protein results in a conformational change or cleavage of the original 
pair, resulting in a dramatic increase in both fluorescence intensity and lifetime. While this mechanism 
has been explored for whole-body imaging using intensity-based CW techniques (Nahrendorf et al. 2007; 
Weissleder et al. 1999), lifetime-based applications of activatable probes are relatively recent (Goergen et 
al. 2012; McGinty et al. 2011; Solomon et al. 2011). Coupled with the fact that lifetime is a concentration- 
and intensity-independent functional marker of nonradiative quenching, this suggests that the future is 
bright for in vivo fluorescence lifetime tomography of activatable probes.

The central challenge for applying tomographic FLIM in the clinical setting (or whole-body human 
imaging) is the same as that for diffuse optical NIR spectroscopy, namely, the larger imaging volumes and 
the high absorption and scattering suffered by light photons in tissue. Although sophisticated algorithms 
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exist for modeling light transport through complex tissue, the limited penetration of diffuse light implies 
poor depth penetration and spatial resolution. However, recent advances in multimodality imaging have 
demonstrated the potential of NIR-diffuse optical tomography (DOT) for providing functional contrast in 
clinical applications (Fang et al. 2011). Tomographic FLIM can capitalize on these multimodal techniques 
since it relies on the same mathematical formalism as intrinsic contrast DOT. A second challenge for the 
clinical use of tomographic FLIM concerns the availability of disease-specific contrast agents and the 
subsequent long approval process for human use. With concurrent advances in lifetime-based targeted 
probe development (Berezin and Achilefu 2010), it is hoped that an increasing number of disease-specific 
fluorochromes will be available for human use, at which point tomographic FLIM is likely to play an 
important role in the clinical setting as well.
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