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The Resolution Matrix in Tomographic
Multiplexing: Optimization of Inter-Parameter

Cross-Talk, Relative Quantitation,
and Localization

Steven S. Hou, Brian J. Bacskai , and Anand T. N. Kumar

Abstract—Objective: We use a resolution matrix-based
Bayesian framework to compare inversion methods for to-
mographic fluorescence lifetime multiplexing in a diffuse
medium, such as biological tissue. Methods: We consider
three inversion methods; an asymptotic time domain (ATD)
approach, based on a multiexponential analysis of time do-
main data, a direct time domain (DTD) approach, which is a
minimum error solution, and a cross-talk constrained time
domain (CCTD) inversion, which is a solution to an opti-
mization problem that minimizes both error and cross-talk.
We compare these methods using Monte Carlo simulations
and time domain fluorescence measurements with tissue-
mimicking phantoms. Results: The ATD approach provides
high accuracy of relative quantitation and spatial localiza-
tion of two fluorophores embedded in a 18-mm thick turbid
medium, with concentration ratios of up to 1:4.25. DTD leads
to significant errors in relative quantitation and localization.
CCTD provides improved quantitation accuracy over DTD,
and better spatial resolution compared to ATD. We present
a rigorous theoretical basis for these results and provide a
complete derivation of the CCTD estimator. The Bayesian
analysis also leads to a formula for rapid computation of
the DTD inverse operator for large-scale tomography mea-
surements. Conclusion: The ATD and CCTD inversion meth-
ods provide significant advantages over DTD for accurately
estimating multiple overlapping fluorophores. Significance:
Time domain fluorescence tomography, using zero cross-
talk estimators, can serve as a powerful tool for quantify-
ing multiple fluorescently labeled biological processes. The
Bayesian framework presented here can be applied to gen-
eral multiparameter inverse problems for the quantitative
estimation of multiple overlapping parameters.
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I. INTRODUCTION

THE simultaneous, non-invasive detection of multiple bio-
logical components or processes (such as receptor expres-

sion, tumor growth, angiogenesis) through multiplexing can
deepen our understanding about how these processes interact
in a living complex biological system. Optical imaging offers
the unique opportunity for multiplexing using a wide range of
near infrared (NIR) fluorophores that can be conjugated with
disease-specific molecular markers. Several NIR probes ex-
hibit distinct fluorescence lifetimes and absorption and emission
spectra, thereby allowing the capability for multiplexing using
either spectral or fluorescence lifetime contrast.

Tomographic lifetime multiplexing (TFLM) belongs to a
larger class of linear multi-parameter inverse problems (MPIPs)
and can be solved with standard inversion techniques, such as
the Tikhonov method. The Tikhonov approach produces a least
squares solution with a constraint on the energy of the solu-
tion. In the more general Bayesian approach, prior information
about the unknowns is described using a probability distribu-
tion. Through application of Bayes’ rule, optimal solutions can
be derived based on the posterior probability distribution for the
unknowns [1].

While standard inversion techniques can minimize recon-
struction error, they are not ideal for multi-parameter problems,
since they do not directly account for inter-parameter cross-
talk, an important source of error specific to MPIPs. Cross-talk
refers to the interference among different parameters. Its effect
can be illustrated most easily in TFLM by considering a medium
where fluorophores with different lifetimes are separated spa-
tially. When image reconstruction is performed, spatial regions
which should only reconstruct for a single lifetime component
will reconstruct for other lifetimes as well. The amount of cross-
talk varies depending on the inherent non-uniqueness of the data
with respect to different parameter distributions. For example,
early time points on the time-domain (TD) fluorescence profile
result in significantly higher cross-talk than late time points [2],
[3], since early TD data are less sensitive to typical fluorescence
lifetimes than late TD data. Similarly, continuous-wave (CW)
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fluorescence reconstructions result in 100% cross-talk since CW
data cannot distinguish fluorescence lifetime from concentration
[3], [4].

Cross-talk is important for TFLM since it directly leads to
errors in localization and relative quantitation. Previously, we
have shown using simulations [5] that the asymptotic time do-
main (ATD) approach, which is based on a multi-exponential
analysis of the asymptotic (or decay) portion of TD data, pro-
vides minimal cross-talk and superior localization compared to
the standard inversion of TD data (DTD), which is a minimum
error solution. We also presented a cross-talk constrained TD
(CCTD) approach for TFLM as a minimum error solution with
zero cross-talk constraints on the resolution matrix. The CCTD
estimator was shown to be identical in form to ATD, except
for a diagonal covariance matrix of decay amplitudes. In this
paper, we present a full analytical derivation of the CCTD es-
timator. We also present the first experimental comparison of
the relative quantitation performance of the DTD, CCTD and
ATD methods. The results demonstrate that the ATD approach
provides the best relative quantitation performance among the
three methods, and can accurately recover concentration ratios
of up to 1:4.25. ATD can accurately localize inclusions as close
as 1.5 mm, which is several-fold smaller than DTD. DTD re-
sults in large errors in quantitation and localization, but provides
better spatial resolution. The CCTD method provides improved
relative quantitation compared to DTD, while also providing
better spatial resolution than the ATD method.

We show that a resolution matrix-based formalism provides
a rigorous explanation for these experimental results. The off-
diagonal terms of the resolution matrix provide a complete de-
scription of cross-talk between multiple lifetime components.
The ATD approach produces a resolution matrix that is zero
for off-diagonal terms and is ideal when relative quantitation
is of importance, while CCTD is more appropriate when spa-
tial resolution and localization are important. We also present a
statistical, Bayesian interpretation of the ATD and DTD estima-
tors, by expressing them in alternate forms. A by-product of this
analysis is a formula for DTD inversion that allows rapid com-
putation of the DTD solution, which is currently infeasible to
compute for more than a few time gates and large tomographic
data sets. The formula allows comparison of the DTD and ATD
inversion problems for an arbitrary number of time gates and a
dense set of measurements.

II. BACKGROUND

A. Linear MMSE Estimator

A general multi-parameter linear inverse problem can be de-
scribed by the matrix equation:

y = Wx + n, (1)

where y is a (M × 1) data vector, W is a (M × NP ) matrix
representing the forward model, x is a (NP × 1) model vector
containing P physical parameters, each evaluated at N spatial
locations and n is a (M × 1) additive noise vector. A com-
mon approach for solving this inverse problem is by adopting
a Bayesian approach where both the noise and model vectors

Fig. 1. Schematic showing the three components of fluorescent light
transport in a scattering medium: propagation of the excitation light at λx ,
response of the fluorophore to excitation (exp(−t/τ )), and propagation
of the fluorescence light at λm . Also shown is the broadening of the
temporal response due to the medium compared to the excitation pulse.

terms are assumed to be random variables with known first and
second order moments: E[n] = 0, cov[n] = Cn and E[x] = μx ,
cov[x] = Cx . It is further assumed that the model and noise
vectors are uncorrelated: E[nxT ] = 0. When estimators are re-
stricted to be linear with respect to the data, the estimated model
vector x̂ can be written in the form:

x̂ = ̂Wy + b, (2)

where ̂W is a (NP × M) matrix operator and b is a (NP × 1)
vector.

Among the class of linear estimators, the linear minimum
mean square error (LMMSE) estimator seeks to find the W and
b which minimize the mean square error (MSE) given by:

Ω = E
[‖x − x̂‖2] . (3)

By setting ∂Ω/∂W = 0 and ∂Ω/∂b = 0 and solving for both
̂W and b, we find the LMMSE solution is given by:

x̂ = μx + ̂WLM M SE (y − Wμx) (4)

̂WLM M SE = CxWT (WCxWT + Cn )−1 . (5)

In the case when x and n can be modeled as jointly Gaus-
sian distributed and independent then the LMMSE estimator is
equivalent to the mean of the posterior probability distribution
p(x|y) [1]. The solution in (4) and (5) corresponds to the com-
monly used generalized least squares solution in diffuse optical
tomography image reconstruction [6] and is equivalent to the
Wiener filter solution when μx = 0 [1].

B. The Forward Problem for TFLM

Light transport in a turbid medium filled with an arbitrary
distribution of fluorophores can be modeled (Fig. 1) as the se-
quential propagation of excitation light from source locations
(rs) on the boundary of the medium to fluorophores within the
medium volume, followed by fluorescence emission and the
propagation of the emitted fluorescence from the fluorophore to
detectors (rd ) on the boundary [7], [8]. The propagation of light
through tissue is most rigorously described by coupled radiative



HOU et al.: RESOLUTION MATRIX IN TOMOGRAPHIC MULTIPLEXING 2343

transport equations (RTEs) at the excitation and emission wave-
lengths [8]. Using the Green’s functions of the coupled RTEs
and neglecting the re-emission of fluorescence (first order ap-
proximation), the fluorescence intensity at rd due to a source at
rs can be expressed as a weighted sum of fluorophore-dependent
weight function for N fluorophores:

y(rs, rd , t) =
N

∑

n=1

∫

Ω
Wn (rs, rd , r, t)ηn (r)d3r, (6)

where Wn = Gx(rs, r, t) ∗ exp(−t/τn ) ∗ Gm (r, rd , t) is a
temporal-double convolution of transport Green’s functions at
the excitation (Gx ) and emission (Gm ) wavelengths and an ex-
ponential decay with a time constant equal to the fluorescence
lifetime, τn . The fluorescence yield of the n′th fluorophore is
expressed as ηn (r) = Qnεncn (r) where Qn , εn and cn are the
quantum yield, extinction coefficient and concentration of the
fluorophore, respectively. The integral equation in (6) can be
discretized into a linear matrix equation for L time gates and M
source-detector pairs:

y = Wη (7)

where y is a ML × 1 vector of the measured fluorescence data,
W = [W1 , . . . WN ] is a (ML × V N) matrix of TD sensitivity
functions, and η = [η1 , . . . ηN ]T is a V N × 1 vector of yield
distributions corresponding to lifetimes τ1 , τ2 , . . . τN .

C. The Inverse Problem for TFLM

The goal of tomography is to recover the 3D yield distribu-
tions, ηn (r) for all distinct lifetimes τn present in the medium
from the set of tomographic measurements y as expressed in (7).
We assume that the τn ’s are known a priori from independent
measurements [9]. The standard method [10], [11] for solving
for η from TD measurements, y, is to directly invert the entire
TD weight matrix, W , using Tikhonov regularization. In this
approach, which we label as the direct TD (DTD) approach, the
reconstructed yield distribution η̂DT D is given by:

η̂DT D = ̂WDT D y, (8)

where ̂WDT D is the Tikhonov inverse operator, given by:

̂WDT D = WT (WWT + λI)−1 . (9)

The Tikhonov solution can be made equivalent to the LMMSE
solution in the Bayesian formulation of the TFLM inverse prob-
lem when the commonly made statistical assumptions that y
and η are white Gaussian distributed are made and for appro-
priate choice of λ. For the remainder of this paper it is assumed
that these assumptions are met and that the DTD solution and
LMMSE solution can be used interchangeably. The DTD ap-
proach in the form of (9) is computationally intensive for more
than a few time gates (L) and does not optimally exploit the
information content in the TD data. Further, we will show be-
low that DTD results in significant cross-talk between yield
distributions ηn .

An alternate approach is made possible for tomographic life-
time multiplexing that uses time points in the “asymptotic”
regime (defined by t � τD ), under the condition that the in-
trinsic lifetimes are greater than the diffusive time scale, viz.,

τn > τD . Under these two widely applicable conditions [12],
we have shown that the TD weight matrix in (7) factorizes into
temporal and spatial matrices as [2]:

W
t�τD= AW, (10)

where A =
[

exp(−t/τ1) ⊗ I . . . exp(−t/τN ) ⊗ I
]

is a
ML × MN dimensional basis matrix containing Kronecker
products of exponential decay terms and M × M identitiy ma-
trices, I and W = diag(W 1 , . . . ,WN ) is a (MN × V N ) time-
independent block diagonal matrix containing (M × M ) CW
weight matrices Wn , which are evaluated using a reduced ab-
sorption of μa(r) − Γn/v (see [3] for a detailed derivation).
The factorization of W from (10) allows a two-step approach
for lifetime tomography, as can be seen by writing the forward
problem in (7) as:

y = AWη. (11)

In the first step, the well conditioned matrix A is inverted using
its Moore-Penrose pseudoinverse and applied on the measure-
ments y:

A†y(= a) = Wη. (12)

Note that the first equality in (12) is essentially the normal
equations in linear regression [13], which in the present case
is a multi-exponential fit of the decay portion of the TD data
and leads to decay amplitudes a. In the second step, the weight
matrix W is inverted using the standard Tikhonov regularization
(as in (9)) and applied to the decay amplitudes. The two-step
procedure can be written as a single linear inverse operator by
combining (12) with the Tikhonov inversion of W . The resulting
asymptotic TD (ATD) solution is then given by:

η̂AT D = W
−1

A†y = ̂WAT D y, (13)

where W
−1

is the Tikhonov inverse of W and ̂WAT D is the
ATD inverse operator incorporating both steps and given by:

̂WAT D = W
T
(WW

T
+ λI)−1A†. (14)

Due to the block diagonal form of W , the yield distributions for
each lifetime can be solved separately in the ATD approach. As
we have shown previously, this property of ATD provides a much
lower cross-talk compared to the DTD approach, thereby signifi-
cantly improving localization accuracy when resolving multiple
yield distributions with distinct lifetimes [2]. The separation of
inverse problems also allows us to individually normalize the
CW weight matrices (Wn ) (divide Wn by its maximum matrix
entry) while keeping the regularization, λ the same for all n. We
have found such a scheme can result in some minor improve-
ments in relative quantitation as lifetime separation is increased.

While it can be inferred from the separation of the inverse
problem for different lifetime components in (14) that ATD
provides reduced cross-talk between lifetime components, the
fundamental distinction between the ATD and DTD methods, in
terms of cross-talk performance, is not yet apparent. It is clear
that DTD results in higher cross-talk. However DTD can provide
a MMSE solution (for proper selection of λ), while ATD will
lead to higher reconstruction error. A natural question, there-
fore, is whether there exist more general linear estimators that
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can provide the improved cross-talk performance of ATD while
providing minimum reconstruction error. In the next sections,
we precisely address this question from the point of view of gen-
eral multi-parameter inverse problems. We also recast the ATD
and DTD inverse problems in a form that provides a clear sta-
tistical interpretation (in a Bayesian sense) of the performance
advantages of ATD. In order to do this we next provide a formal
definition of cross-talk in terms of the model resolution matrix
of a linear inverse operator.

D. Model Resolution Matrix

A useful tool to evaluate the performance of a linear inverse
operator, ̂W , is the model resolution matrix, R defined as:

R = ̂WW. (15)

By substitution of (1) into (4) and assuming for simplicity b = 0
(μx = 0), the optimal solution can be written in terms of R as:

x̂ = Rx + ̂Wn. (16)

This solution can be divided into two parts: the noise amplifica-
tion term ̂Wn represents the effect of the noise on the solution
while the bias term Rx can be interpreted as the model resolu-
tion matrix acting as an averaging filter between the estimated
model vector x̂ and the true model vector x. The columns of R
have simple interpretations in the case of a single parameter in-
verse problem [14]. The c’th column of R contains the estimate
at every voxel due to a unit inclusion at the c’th voxel. Hence,
each column contains a point spread function of the imaging
process. While the model resolution matrix for a single parame-
ter is straightforward to interpret, we will see in the next section
that for multi-parameter inverse problems, the model resolution
matrix contains the complete information about the cross-talk
between parameters.

III. RESULTS

A. Resolution Matrix Definition of Inter-Parameter
Cross-Talk

The resolution matrix provides a transparent way to analyze
inter-parameter cross-talk when dealing with multiple parameter
problems. For simplicity, we consider inverse problems with two
parameter types, although the statistical analysis and proposed
methods can be readily generalized to any number of parameters.
We first write the true (x) and estimated (x̂) model vectors as:

x =

[

x1

x2

]

, x̂ =

[

x̂1

x̂2

]

. (17)

The forward matrix, W and inverse operator, ̂W can also be
divided into sub-matrices corresponding to each parameter:

W =
[

W1 W2
]

, ̂W =

[

̂W1

̂W2

]

. (18)

The model resolution matrix from (15) for the two-parameter
case, R(2) , thus takes the form:

R(2) =

[

̂W1W1 ̂W1W2

̂W2W1 ̂W2W2

]

≡
[

R11 R12

R21 R22

]

. (19)

R(2) can be divided into four quadrants. The diagonal quad-
rants (1, 1) and (2, 2) (corresponding to the terms R11 and
R22 in (19)) contain the individual point spread functions for
parameters x1 and x2 , respectively. However, the off-diagonal
quadrants represent a different type of point spread function
involving the cross-talk between the parameters. Specifically,
columns in quadrant (1, 2) (corresponding to ̂W1W2) represent
the cross-talk at all voxels for parameter x1 due to a point in-
clusion for parameter x2 , and vice versa for quadrant (2, 1).
The off-diagonal blocks of the model resolution matrix, R12
and R21 , allow direct quantification of cross-talk for general
linear MPIPs, and provide a systematic and complete measure
of cross-talk for all possible combinations of true and image
voxels. Since the terms in R are independent of the data y and
only depend on W and the a priori assumptions about the noise
and model, (19) can be used to design and evaluate the perfor-
mance of a linear inverse operator without generating data from
the forward problem. In the following sections we will derive
an estimator for TFLM based on an LMMSE estimator with a
direct constraint placed on the off diagonal blocks of R(2) .

B. Bayesian Interpretation of Direct and Asymptotic
TD Methods

Before we derive the optimal estimator for TFLM based on
a cross-talk constraint, we present alternate formulations for
the DTD and ATD inverse operators that can provide insights
into the statistical properties of the solutions from a Bayesian
perspective, and also reveal the connection between the two
approaches. The ATD inverse operator from (14) can be ex-
pressed as follows by using the factorization in (10) (derivation
is provided in supplemental materials):

̂WAT D = WT (WWT + λAAT )†. (20)

Next, the DTD inverse operator from (9) can also be written
in an alternate form in terms of the block diagonal CW weight
matrix, W (see supplemental materials) as follows:

̂WDT D = W
T
(WW

T
+ λ(AT A)−1)−1A†. (21)

These substitutions can be used to understand the key differences
between the ATD over the DTD (MMSE) solution. We first recall
that the DTD solution is the optimal solution in a Bayesian sense,
assuming λ = (σn/ση )2 , where σn and ση are the variances
of the measurement noise and model, which are assumed to
obey white Gaussian distributions, i.e., η ∼ N(0, σ2

η I) and n ∼
N(0, σ2

nI). The alternate forms of ATD (20) and DTD (21)
show that the ATD approach is equivalent to the DTD approach
(MMSE) under two conditions:

1) Comparing (20) with (9), we see that the key difference
between ATD and DTD is that the ATD inverse includes
a measurement covariance of the form AAT in the under-
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determined form of the DTD inverse operator. Thus, the
ATD method can be viewed as a Tikhonov technique
where the regularization parameter is varied based on in-
dex of the fluorescence data. This is analogous to other
Tikhonov techniques such as previously described spa-
tially variant regularization (SVR) [15], in which the reg-
ularization parameter is based on spatial location inside
the medium. While in SVR, the voxel-based regulariza-
tion matrix (λJT J) is to provide spatially uniform resolu-
tion and contrast, with the ATD approach, the data-based
regularization matrix (λAAT ) is to effect a reduction in
cross-talk.

2) Comparing (21) with (14), it is clear that DTD includes
a covariance matrix (AT A)−1 in the inverse operator,
whereas in ATD, this term is set to an identity matrix I .
The term (AT A)−1 is recognized from linear regression
theory [13] as the covariance matrix for the parameters,
or unknowns (which in the present case are the decay am-
plitudes) in a multi-exponential analysis of the raw TD
data. The ATD solution thus directly excludes the influ-
ence of inter-amplitude covariance (resulting from multi-
exponential fitting) during the inversion for the yield dis-
tributions. The alternate form of the DTD inverse in (21)
shows that this approach implicitly contains the inter-
amplitude covariance, thereby explaining the increased
cross-talk in the DTD yield reconstructions.

The alternate form for DTD derived in (21) allows us to
compare the resolution matrices for DTD and ATD in a clear
fashion. Using (21), (14), and the definition of R in (15), the
resolution matrices for the DTD (RDT D ) and ATD (RAT D )
inverse operators take the form:

RDT D = W
T
(WW

T
+ λ(AT A)−1)−1W (22)

RAT D = W
T
(WW

T
+ λI)−1W (23)

It can be seen that (22) and (23) differ by the presence of the
decay amplitude covariance matrix (AT A)−1 in the DTD res-
olution matrix. Since every term in the RHS of (23) is block
diagonal, the resolution matrix RAT D is also a block diagonal
matrix. Therefore, ATD reconstructions contain zero cross-talk.
On the other hand, RDT D is generally not block diagonal since
the covariance term (AT A)−1 is not block-diagonal. From these
observations it is clear that although the DTD solution provides
a MMSE solution, it suffers from inter-parameter cross-talk
when fitting multiple parameters as in the lifetime multiplex-
ing case. The ATD reconstruction provides reduced cross-talk,
which leads to improved localization of closely separated fluo-
rescent targets [2], [3]. We will numerically illustrate the reso-
lution matrices in Section IV.

C. Cross-Talk-Constrained-MMSE Estimator for TFLM

We next address the question of whether optimal estimators
exist that provide MMSE solutions while also providing zero
cross-talk, thereby providing better error performance than the
ATD approach. To address this question, we propose a novel,
Bayesian inversion algorithm for cross-talk reduction in MPIPs,

by seeking an MMSE solution with an imposed zero cross-
talk constraint. The basic idea of our new estimator is to pro-
vide optimal separation between parameters at the expense of
higher total MSE than the DTD approach, while providing bet-
ter MSE than the ATD approach. We begin by assuming that
both E[x] = E[n] = 0. In our approach, the mean square error
cost function in (3) is minimized while linear constraints are
placed on the cross-talk matrices defined in (19). We refer to
the new estimator as a cross-talk constrained-minimum mean
square error estimator (CCMMSE). With the inverse operator
defined as in (2) (with b = 0), the optimization problem takes
the form:

̂WC C M M SE = arg min
̂W

E
[‖x − x̂‖2] (24)

with the constraints:

R12 = 0 and R21 = 0. (25)

Note that the constraint is on the model resolution matrix it-
self as opposed to other constrained MMSE approaches which
have focused on the moments of x̂ [16]. The optimization prob-
lem can be described as finding the estimator with the lowest
error rate among all estimators that produce resolution matri-
ces of a particular form (block diagonal in the present case).
The minimization in (24) and (25) is an example of a quadratic
programming problem and can be solved by standard methods
[17]. An expression for the CCMMSE estimator is derived in
Appendix A. Briefly, we transform the quadratic programming
problem with linear constraints into an unconstrained optimiza-
tion problem using a change of variables [18]. The final solution
for the optimal estimator is given by:

̂W1 = Cx1 1 W
T
1 N1(NT

1 (W1Cx1 1 W
T
1 + Cn )N1)−1NT

1 (26)

̂W2 = Cx2 2 W
T
2 N2(NT

2 (W2Cx2 2 W
T
2 + Cn )N2)−1NT

2 (27)

where N1 = null(WT
2 ), N2 = null(WT

1 ) and Cx =
[Cx 1 1
Cx 1 2

Cx 1 2
Cx 2 2

]. It is clear that the constraints in (25) can

only result in a nontrivial solution for the estimator when
nullity(WT

1 ) > 0 and nullity(WT
2 ) > 0. By the rank-nullity

theorem, this is only satisfied when W1 and W2 do not have full
row rank. While this condition is generally satisfied for over-
determined systems, it only holds for certain under-determined
systems. Due to redundancy from the spatial-temporal factor-
ization, the TFLM forward matrix does satisfy this condition
and does not have full row rank, even for the under-determined
case [5]. For other multi-parameter inverse problems, this
condition will need to be evaluated to determine if a nontrivial
solution can be found. We discuss less restrictive constraints
for cross-talk reduction which allow nontrivial solutions even
in the full row rank case in Section VI.

We now apply this new CCMMSE estimator to the TFLM
inverse problem. We use the same implicit assumptions as
Tikhonov regularization for the model and data covariance ma-
trices (Cx = σ2

η I and Cn = σ2
nI). We then substitute the TFLM

weight matrix and covariance matrices in (26) and (27). The full
derivation is presented in Appendix B. The optimal inverse op-
erator with constraints on cross-talk, which we term the CCTD
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estimator, was found to be:

̂WC C T D = W
T
(WW

T
+ λDIAG

(

(AT A)−1))†A†, (28)

where DIAG(X) converts the matrix X to block diagonal form
by setting all elements of the off-diagonal block to 0 and keeping
all other elements the same.

Using the definition in (17), the corresponding resolution
matrix for CCTD takes the form:

RC C T D = W
T
(WW

T
+ λDIAG

(

(AT A)−1))†W. (29)

The inverse operator shown in (28) provides the optimal
CCMMSE estimator for lifetime multiplexing. Remarkably,
(28), which was derived by solving an optimization problem,
is essentially the same as the ATD inverse operator, which is
based on a two step inversion of the factorized TD weight ma-
trix (10) in the asymptotic region. The difference between ATD
and CCTD is the replacement of the identity matrix, λI in (14)
in ATD with a block diagonal matrix, λDIAG(AT A)−1 in
CCTD. This substitution shows that the optimal solution with
zero cross-talk is obtained by simply setting the off-diagonal
matrix elements of the covariance matrix in the DTD inverse
operator to zero, to maintain the off-diagonal structure of the
resulting model resolution matrix. The uncertainties in the in-
dividual amplitudes are still retained in the on-diagonal blocks.
The DTD inverse operator from (21) implicitly retains the full
amplitude covariance matrix into the regularization, thereby ex-
plaining the higher cross-talk between multiple yield distribu-
tions in the DTD approach.

IV. SIMULATIONS

We illustrate the key aspects of the above theoretical results
using Monte Carlo (MC) simulations, performed using tMCimg
[19], a MC computing software package. A simulation medium
was set up with dimensions 50 mm × 30 mm × 20 mm. The
optical absorption (μa ) and scattering (μs) were set to 0.1 cm−1

and 10 cm−1 , respectively, and the anisotropy (g) was set to
0.01. All MC simulations were performed for 109 photons per
source. The simulations used 21 equally spaced (5 mm) sources
and detectors in a transmission geometry. The MC software
also generated the source and detector Green’s functions (or
“2-pt functions”), Gx and Gm , which were used to calculate the
weight functions W , Wn and W . The DTD, CCTD and ATD
inversions were performed using (9), (14) and (28), with 40 time
gates in the asymptotic regime, which was chosen to start 1.2 ns
from the peak of the TD fluorescence data. 2% shot noise was
added to the simulated TD data.

A. Resolution Matrix

Figure 2 shows the resolution matrices for DTD, CCTD and
ATD, RDT D , RC C T D and RAT D , respectively, computed us-
ing (22), (29) and (23). To aid with visualization, the rows and
columns of the matrices were binned down by a factor of 300 and
normalized to the maximum value of the matrix. It can be seen
that the off-diagonal blocks of RDT D contain non-zero terms,
while all the elements in the off-diagonal blocks of RC C T D

Fig. 2. Resolution matrices, RD T D , RC C T D , and RA T D for tomo-
graphic inversion of two fluorophores with distinct lifetimes of 0.75 ns
and 1 ns in a turbid slab medium (parameters discussed in text). The
matrices are binned down by factor of 300 and normalized to their
maximum values.

and RAT D are identically zero. The resolution matrix therefore
shows in the most general form, that CCTD and ATD inversions
have zero cross-talk across all voxels of the imaging medium.
It should also be noted that corresponding elements within the
two block matrices on the main diagonal (R11 and R22 in (19))
of RDT D are significantly different. The two diagonal blocks
represent the point-spread functions for the two lifetime com-
ponents. As such, this difference contributes to the inaccurate
recovery of the relative concentrations of the two lifetimes us-
ing DTD. In contrast, the relative magnitudes of corresponding
elements on the diagonal blocks of both RC C T D and RAT D

are much closer, with corresponding elements for RAT D being
nearly identical. This implies improved relative quantitation for
both CCTD and ATD. These results will be confirmed using
simulations and experiments below.

B. Relative Quantitation

To compare the relative quantitation performance of the DTD,
CCTD and ATD inversions, we performed simulations with two
overlapping fluorophores (lifetimes of τ1 = 0.75 ns, and τ2 =
1 ns) located at the same 1 mm3 voxel at a height of 10 mm in the
slab medium. Reconstructions were performed for five ratios of
the yields, η1 and η2 , of the two lifetime components, namely
η1/η2 = 1 : 1, 2 : 1, 3 : 1, 4 : 1 and 5 : 1. To calculate the stan-
dard deviation of the yield estimates, simulations were repeated
with 100 different realizations of shot noise (2%). Fig. 3 shows
the recovered yield ratios (obtained as the ratio of maximum of
the reconstructed yields) using DTD (blue), CCTD (green) and
ATD (red) along with the true ratio in black, with the standard
deviations shown as error bars. It is clear that ATD recovers the
true yield ratios accurately for all ratios considered,
while the DTD results in a significant error, vastly underestimat-
ing the short lifetime component. CCTD also underestimates the
short lifetime component but results in improved relative quan-
titation as compared to DTD. It can be noted that the standard
deviation for the reconstructed ratio was highest for ATD fol-
lowed by CCTD and DTD. This disparity in standard deviation
among the methods was greater for higher values of true ratios
and can at least partly be attributed to the increased uncertainty
inherent for larger recovered ratios. The smaller uncertainty for
DTD could also be the result of the MMSE nature of the DTD
solution which provides improved noise sensitivity.



HOU et al.: RESOLUTION MATRIX IN TOMOGRAPHIC MULTIPLEXING 2347

Fig. 3. Relative quantitation performance of DTD (blue), CCTD (green),
and ATD (red) tomographic inversions of simulated data. Shown are
the tomographically recovered yield ratios, η1 /η2 , for two fluorophores
with distinct lifetimes (τ1 = 0.75 ns, and τ2 = 1 ns) at the center
of a 2 cm thick slab phantom (μa = 0.1 cm−1 and μ′

s = 10 cm−1 ).
Reconstructions were performed for five ratios of the yields, namely
η1 /η2 = 1 : 1, 2 : 1, 3 : 1, 4 : 1, and 5 : 1. Vertical error bars indicate yield
estimates obtained from simulations with 100 different realizations of
shot noise (2%). Dashed lines indicate the true ratios.

V. EXPERIMENTAL VALIDATION

We next validated the above simulation results using phan-
tom measurements with a TD fluorescence tomography system
[4]. Liquid phantoms were created using polystyrene cell cul-
ture dishes (100 mm diameter, Corning). The phantom was
filled with an Intralipid and nigrosin mixture to a height of 18
mm, resulting in optical properties of μa = 0.1 cm−1 and μ′

s =
10 cm−1 . Two capillary tubes (I.D.: 0.90 mm, O.D.: 1.20 mm)
were located at a depth of 9 mm with a 1.5 mm center-to-center
separation. The choice of closely spaced but non-overlapping
inclusions for the experiment was to avoid chemical interactions
between the fluorophores that could occur in a mixture. In addi-
tion, this allows comparison of the ability of the three methods to
localize closely separated targets. The tubes were filled with IR-
806 (Sigma-Aldrich, 2 uM in ethanol. τ1 = 0.74 ns) and Alexa
Fluor 750 (Invitrogen, 1 uM in ethanol. τ2 = 1.01 ns). The ratio
of the fluorescence yields of IR-806 (η1) and Alexa Fluor 750
(η2) was varied from η1/η2 = 0.85 to 4.25 in 5 steps, using se-
rial dilutions of the Alexa Fluor 750 solution. The true (in vitro)
yield ratio of the two tubes for each combination was estimated
by first directly measuring the fluorescence intensity from the
tubes in the phantom (without Intralipid) for the smallest yield
ratio (0.85), and calculating the subsequent ratios based on the
dilutions used for Alexa Fluor 750.

For tomography, 21 sources (3 rows of 7 sources across the
tubes) were used at the bottom of the dish, with detectors as-
signed as camera pixels directly above the sources (4 × 4 hard-
ware binning) on top of the dish (See Fig. 4). The full TD
tomographic data was collected using a TD imaging system
with a Ti:Sapphire laser (∼100 fs pulses) and a gated intensi-
fied CCD camera (ICCD) (LaVision:Picostar, 500 ps gatewidth,
560 V gain, 20–25 ms CCD integration time, 150 ps time step).
For each ratio of the yields, η1/η2 , 10 tomographic data sets

Fig. 4. (a) Dish phantom with capillary tubes separated by 1.5 mm.
During measurements, the dish is filled with Intralipid and nigrosin solu-
tions, the right tube is filled with IR-806 (τ = 0.74 ns, 2 μM) and the left
tube with Alexa Fluor 750 (τ = 1.01 ns, 0.2–1 μM). Also shown are the
source and detector positions (labeled with red ’x’). (b) Representative
log-normalized fluorescence intensity curves for a source-detector pair
at the center of the dish, for each yield ratio r = η1 /η2 . The dash dot-
ted black line shows the instrument response function (IRF) while the
dashed black vertical line indicates the start of the asymptotic region.

Fig. 5. Experimental comparison of the relative quantitation perfor-
mance of DTD, CCTD, and ATD tomographic inversions of TD measure-
ments. Reconstructions were performed on TD tomogaphic data with a
dish phantom (1.8 cm height, μa = 0.1 cm−1 and μ′

s = 10 cm−1 ) with
two capillary tubes (I.D.: 0.90 mm, O.D.: 1.20 mm) located at a depth
of 9 mm and separated by 1.5 mm center-to-center. The reconstructed
yield ratio η1 /η2 is shown for DTD (blue), CCTD (green) and ATD (red)
along with the true ratio of the yields (black dashed line).

were collected to allow estimation of the uncertainty in the re-
constructed ratios. The decay amplitudes for each source detec-
tor pair were obtained using the Moore-Penrose pseudoinverse
(A†y, see (12)) of the raw TD measurements y, using 55 times
gates in the asymptotic region, which was chosen to start at
1.2 ns from the peak of the TD fluorescence signal. The instru-
ment response function (IRF), measured using a white paper
placed on the imaging plate, was directly incorporated in the
linear bi-exponential fit using a forward convolution with expo-
nentials, which formed the basis functions for the fit.

Figure 5 shows the reconstructed fluorescence yield ratios
from the experimental data for a range of true ratios, using the
DTD (9), CCTD (28) and ATD (14) methods. Vertical error
bars indicate variations across the 10 measurements for a given
ratio. Fig. 6 shows the 1-D line profiles, taken along the x-axis
through the maximum of the yields, η1 and η2 , for DTD, CCTD
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Fig. 6. 1-D line profiles of the DTD (a–c), CCTD (d–f), and ATD (g–i)
yield reconstructions, η1 (blue dashed-dot line) and η2 (red dashed-dot
line), corresponding to the relative quantitation results shown in Fig. 5.
The line profiles are taken along the x-axis through the maximum of the
reconstructed yields. Also shown are the true ratios (solid rectangles),
normalized to η1 .

and ATD, reconstructed from the averaged data over all 10 trials.
Also shown are the true ratios (solid vertical rectangles), nor-
malized to η1 for convenience. The ATD approach provides ex-
cellent accuracy in both relative yield ratio and the localization,
resulting in a range of error in relative quantitation of 1.8%–
7.8% across all ratios. DTD results in significantly higher error
in relative quantitation (16.1%–80.3% across all ratios), vastly
underestimating the yield of the short lifetime dye (IR-806), and
is unable to localize the inclusions as spatially separate. CCTD
is able to accurately localize the tubes while providing a reduced
relative quantitation error over DTD of 29.4%–33.9% across all
ratios. In addition, CCTD provides a 11.0% reduction in the
full width at half maximum (FWHM) of the spatial distribution
for η2 compared to ATD, while the η1 distribution remains the
same for both methods. These observations are in agreement
with the simulations (Fig. 3). It is also noteworthy that while
DTD results in large errors in quantitation and localization, it
provides a reduction in FWHM of 23.7% for η1 and 12.7%
for η2 , compared to CCTD. Thus DTD is ideal for applica-
tions where only a single lifetime is present, when quantitative
multiplexing is not of interest. It should be noted that a center-
to-center separation of 1.5 mm is more than two-fold smaller
than the previously reported center-to-center spatial separation
using CW fluorescence tomography (∼4.7 mm center-to-center)
[20], illustrating the powerful advantage of ATD and CCTD for
accurate quantitative multiplexing.

VI. DISCUSSION

The resolution matrix-based framework for quantifying cross-
talk in tomographic lifetime multiplexing shows that MMSE

solutions, such as the DTD approach, may not be ideal for mul-
tiplexing problems, since they do not constrain inter-parameter
cross-talk. Using simulations and experiments, we showed that
the high cross-talk of DTD translates to a significant error in
relative quantitation and spatial localization. On the other hand,
the ATD inversion, which is not an MMSE solution but is rather
based on a two-step approach using multi-exponential analysis
of TD data, provides zero cross-talk and excellent accuracy for
relative quantitation for a wide range of concentration ratios.
The ATD reconstructions result in broader spatial point spread
functions (PSF), implying poorer spatial resolution than DTD.
Intermediate between ATD and DTD solutions is the CCTD
estimator, which is an MMSE solution with a constraint on
the off-diagonal blocks of the resolution matrix, which repre-
sent cross-talk. We showed experimentally that CCTD provides
improved relative quantitation compared to DTD while also pro-
viding narrowed spatial PSF compared to ATD. These results
suggest that ATD is the method of choice for optimal relative
quantitation and CCTD is the method for optimal spatial reso-
lution while maintaining zero cross-talk. It is conceivable that
ATD could be combined with CCTD in some manner to incor-
porate the improved spatial resolution of the CCTD approach
into ATD. The spatial resolution of both the CCTD and ATD
methods can also be further improved by combining with early
photons, as in the hybrid TD (HTD) approach [2].

Our approach for deriving the CCTD estimator was based
on shaping the model resolution matrix to minimize cross-talk.
It should be noted that in this derivation, no assumptions were
made regarding the form of the inverse operator. The solution
for the optimization problem was obtained analytically, and was
nearly identical in form to the ATD inverse operator. The key
difference between CCTD and ATD is that while the regular-
ization matrix for ATD is an identity matrix, the CCTD regu-
larization matrix has unequal diagonal elements, and is related
to the amplitude covariances, which have the effect of lower-
ing reconstruction error while maintaining zero cross-talk. This
derivation therefore rigorously establishes the relationship of the
ATD solution to the minimum error solution on the spectrum of
zero cross-talk estimators. We also presented alternate forms of
DTD and ATD inversions that revealed the distinction between
the cross-talk performance of DTD and ATD as simply related to
distinct regularization matrices in a Bayesian interpretation. In
addition, the alternate form of the DTD inverse operator allows a
computationally efficient method of performing reconstruction
of asymptotic TD data with an arbitrary number of time gates.

The framework for quantifying and reducing cross-talk in
TFLM could also be extended to other types of computational
imaging modalities. An important example in optical imaging is
diffuse optical tomography (DOT) where absorption and scatter-
ing are the parameters to be separated and cross-talk has been
shown to be a confounding factor. Applying our constrained
optimization approach to DOT would likely be more difficult
than TFLM since the factorization, which occurs naturally in
TFLM and plays a key role in the derivation, does not occur
in DOT. However, the approach employed here in deriving the
CCTD estimator, based on sacrificing reconstruction error per-
formance for better cross-talk performance, should prove useful
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in DOT and other inverse problems. Furthermore, even though
cross-talk has been the primary focus of the present study, the
general procedure of constraining the model resolution matrix
while minimizing reconstruction error could be extended to
other performance measures. For example, this approach could
help equalize the spatial resolution, which is represented by
columns in the model resolution matrix, throughout the imag-
ing medium. The spatial resolution for standard reconstruction
algorithms typically exhibits strong depth dependence, thereby
precluding comparisons of quantitation across spatial locations
in the medium.

An important issue to consider when using a constrained op-
timization approach is the increase in error due to the imposing
of constraints. For the TFLM inverse problem, the equality con-
straints in (25) still produced sufficiently regularized solutions at
practical levels of the noise. However, for other multi-parameter
problems, the equality constraints may cause the noise ampli-
fication error to dominate the solution (the solution becomes
under-regularized). While this error can be decreased by assum-
ing higher noise covariance (increasing regularization) the effect
of noise amplification can also be mitigated by considering less
restrictive constraints. In the case of cross-talk the constraint
could be placed on a subset of terms in the off diagonal blocks
instead of the entire off diagonal block. Other types of con-
straints could also be considered such as inequality constraints
instead of equality constraints. However, these are numerically
more difficult to solve.

Our experimental results highlight the ability of zero cross-
talk approaches such as ATD and to a lesser extent CCTD to
achieve highly accurate relative quantitation between multiple
parameters. In addition, we observed that the recovered relative
quantitation for ATD and CCTD was robust, and was minimally
affected by the choice of regularization parameter. Regulariza-
tion had a bigger effect on the DTD recovered ratios, with higher
regularization resulting in further underestimation of the ratios.
Although absolute quantitation is difficult to achieve both in
TFLM and optical tomography due to partial volume effects
inherent in ill-posed inverse problems, our paper demonstrates
that high accuracy for relative quantitation is possible over a
wide range of fluorophore concentration ratios.

VII. CONCLUSION

We have presented the first experimental comparison of the
ATD, DTD and CCTD methods for quantitative multiplexing
in turbid media. The ATD approach provides superior relative
quantitation and localization accuracy for recovering two flu-
orophores in a turbid medium, with true yield ratios of up to
1:4.25. While the standard DTD approach, which is a minimum
error solution, provides improved spatial resolution compared
to the ATD approach, it results in significant errors in relative
quantitation. The CCTD approach provides improved quantita-
tion compared to DTD and better spatial resolution compared
to ATD. The ability to recover accurate relative quantitation of
multiple fluorophores has important applications for biomedical
imaging, including the extension of microscopy based fluores-
cence lifetime imaging applications [21]–[23] to tomographic

whole body imaging. One application that holds particular
promise is the detection of molecular interactions using fluores-
cence resonance energy transfer (FRET) [11], [24]. The ATD
approach should prove to be a powerful approach to quantify
the ratio of the donor to acceptor concentrations (and hence
the FRET efficiency) in deep tissue. Another potentially impor-
tant application where accurate relative quantitation is critical is
the imaging of activatable probes. These probes have the prop-
erty that their lifetime shifts upon activation by disease-specific
enzymes such as proteases [25]. The ATD approach can allow
accurate determination of the ratio of probes in an activated state
to probes in the inactivated state, thereby accurately quantifying
disease-specific molecular expression in vivo. Future work will
be focused on applying ATD and CCTD for quantitative in vivo
multiplexing applications.

APPENDIX A
CCMMSE ESTIMATOR

We seek to find an expression for WC C M M SE which solves
the quadratic programming problem defined in (24) and (25).
The MSE cost function f(̂W ) is first separated into terms which
depend on ̂W1 and ̂W2 , f(̂W ) = E

[‖x − x̂‖2
]

= f1(̂W1) +
f2(̂W2),

f1( ̂W1) = tr
(−2̂W1WCx1 + ̂W1WCxWT

̂WT
1

+ ̂W1Cn
̂WT

1 + Cx1 1

)

(30)

f2( ̂W2) = tr
(−2̂W2WCx2 + ̂W2WCxWT

̂WT
2

+ ̂W2Cn
̂WT

2 + Cx2 2

)

(31)

where Cx = [Cx 1 1
Cx 1 2

Cx 1 2
Cx 2 2

], Cx1 = [Cx 1 1
Cx 1 2

], Cx2 = [Cx 1 2
Cx 2 2

].
We perform a change of variables to combine the equality

constraints in (25) and the cost function in (24) into a single
unconstrained cost function using the following procedure. We
begin by defining the null spaces for WT

1 and WT
2 as:

N1 = null(WT
2 ) (32)

N2 = null(WT
1 ) (33)

and introducing two new variables Z1 and Z2 :

̂WT
1 = N1Z1 (34)

̂WT
2 = N2Z2 . (35)

We focus on solving for ̂W1 by substituting (34) into cost func-
tion (30) to get:

f1(Z1) = tr(−2ZT
1 NT

1 WCx1

+ ZT
1 NT

1 (WCxWT + Cn )N1Z1 + Cx1 1 ).

The problem of minimizing f1(Z1) for Z1 (an unconstrained
minimization problem) is equivalent to the constrained opti-
mization problem of (24) and (25) since for any Z1 the con-
straint ̂W1W2 = 0 is satisfied. To minimize f1(Z1), we take the
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derivative with respect to Z1 :

∂f1(Z1)
∂Z1

= −2NT
1 WCx1 + 2NT

1 (WCxWT + Cn )N1Z1 .

We now set the derivative to 0 and solve for Z1 to get:

Z1 = (NT
1 (WCxWT + Cn )N1)−1NT

1 WCx1 .

Substituting Z1 back into (34) and using WT
2 N1 = 0 (from (32))

we get:

̂W1 = Cx1 1 W
T
1 N1(NT

1 (W1Cx1 1 W
T
1 + Cn )N1)−1NT

1 . (36)

̂W2 can be solved similarly to give:

̂W2 = Cx2 2 W
T
2 N2(NT

2 (W2Cx2 2 W
T
2 + Cn )N2)−1NT

2 . (37)

APPENDIX B
CCMSE APPROACH FOR TFLM

Our derivation will focus on the inverse operator for the first
parameter, τ1 as the derivation for τ2 proceeds in a similar man-
ner. We begin by listing some properties of orthogonal projection
matrices which will be useful for the subsequent derivation. The
orthogonal projection matrix for W2 is defined by:

P⊥
W 2

= I − W2(WT
2 W2)†WT

2 (38)

and can be related to the null space of its transpose (WT
2 ) using:

P⊥
W 2

= N1N
T
1 . (39)

It is also straightforward to show by substitution into (38) that:

P⊥
A 2

= P⊥
W 2

. (40)

Using the formula for pseudoinverse of a block matrix [26],
we divide the pseudoinverse of the exponential basis matrix A
from (10) into components corresponding to each lifetime:

A† =
[

A1 A2
]† =

[

(P⊥
A 2

A1)†

(P⊥
A 1

A2)†

]

=

⎡

⎣

a†
1

a†
2

⎤

⎦. (41)

From (41) and using (39) and (40), we can obtain an expression
for a1 :

a1 = N1N
T
1 A1 . (42)

Assuming Cx = σ2
η I and Cn = σ2

nI , the CCMMSE estima-
tor from (36) for τ1 becomes (NT

1 N1 = I):

̂W1 = WT
1 N1(NT

1 W1W
T
1 N1 + λI)−1NT

1 , (43)

where λ = (σn/ση )2 . We next obtain an equivalent overdeter-
mined form for ̂W1 by premultiplying (43) by (WT

1 N1N
T
1 W1 +

λI) and solving for ̂W1 to get

̂W1 = (WT
1 N1N

T
1 W1 + λI)−1WT

1 N1N
T
1 . (44)

We proceed by substituting the rightmost WT
1 term in (44) with

W1 = A1W1 and using (42)

̂W1 = (WT
1 N1N

T
1 W1 + λI)−1W1

T
aT

1

= (WT
1 N1N

T
1 W1 + λI)−1W1

T
aT

1 a1a
†
1

= (WT
1 N1N

T
1 W1 + λI)−1WT

1 N1N
T
1 A1a

†
1 , (45)

where (45) is due to the identity aT
1 = aT

1 a1a
†
1 . Terms corre-

sponding to the overdetermined form of ̂W1 (44) are then re-
placed with terms corresponding to the undetermined form (43):

̂W1 = WT
1 N1(NT

1 W1W
T
1 N1 + λI)−1NT

1 A1a
†
1

= W1
T
(NT

1 A1)T (NT
1 W1W

T
1 N1 + λI)−1(NT

1 A1)a
†
1

= W1
T
(((NT

1 A1)T )†)†((NT
1 A1)W1W1

T
(NT

1 A1)T

+ λI)†((NT
1 A1)†)†a

†
1

= W1
T
(W1W1

T
+ λ(NT

1 A1)†((NT
1 A1)T )†))−1a†

1

= W1
T
(W1W1

T
+ λ((NT

1 A1)T NT
1 A1)†)−1a†

1

= W1
T
(W1W1

T
+ λ(AT

1 P⊥
A 2

A1)−1)−1a†
1 , (46)

where (46) follows from the generalized inverse product rule
(ABC)† = C†B†A† [27].

Using a similar procedure for τ2 . the optimal estimator with
equality constraints for both lifetimes can be written as:

̂W1 = W1
T
(W1W1

T
+ λ(AT

1 P⊥
A 2

A1)−1)−1a†
1 (47)

̂W2 = W2
T
(W2W2

T
+ λ(AT

2 P⊥
A 1

A2)−1)−1a†
2 . (48)

Finally, comparing (47) and (48) with the formula for inverse of
the block matrix AT A

(AT A)−1 =

[

(AT
1 P⊥

A 2
A1)−1 f(A1 , A2)

g(A1 , A2) (AT
2 P⊥

A 1
A2)−1

]

we see that the optimal estimator ̂W can be compactly written
as:

̂W = W
T
(WW

T
+ λDIAG

(

(AT A)−1))†A†. (49)
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