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We analyze the nonstationary vibrational states prepared by ultrashort laser pulses interacting with
a two electronic level molecular system. Fully quantum mechanical expressions are derived for all
the moments of the coordinate and momentum operators for the vibrational density matrices
associated with the ground and excited electronic states. The analysis presented here provides key
information concerning the temperature and carrier frequency dependence of the moments, and
relates the moments to equilibrium absorption and dispersion line shapes in a manner analogous to
the “transform methods” previously used to describe resonance Raman scattering. Particular
attention is focused on the first two moments, for which simple analytical expressions are obtained
that are computationally easy to implement. The behavior of the first two moments with respect to
various parameters such as the pulse cariéentej frequency, pulse width, mode frequency,
electron-nuclear coupling strength, and temperature is investigated in detail. Using rigorous
analytical formulas, we also discuss the laser pulse induced squeezing of the nuclear distributions as
well as the pulse induced vibrational heating/cooling in the ground and excited states. The moment
analysis of the pump induced state presented here offers a convenient starting point for the analysis
of signals measured in pump—probe spectroscopy. The moment analysis can also be used, in
general, to better understand the material response following ultrashort laser pulse excitation.
© 2001 American Institute of Physic§DOI: 10.1063/1.135601]1

I. INTRODUCTION tion. A physical model that treats the pump and probe events

. . separately is therefore very useful. An example is the
Femtosecond laser pulses, with durations shorter tha P y Y P

. oo . ~—doorway-window picturé® which can be used to represent
typical nuclear vibrations, are widely used to prepare specific : .
molecular states and study their evolution in real tiTfe. pump and probe events in terms of Wigner phase space wave

An example is pump—probe spectroscopy, or femtoseconBaCketS’ and readily enables a semiclassical interpretation of

coherence spectroscopy, where an ultrashort pump |a38|ump—pr0be experlm.en-%é..% Another approagh n the
pulse is used to excite the sample of interest. The subsequefff!l-Separated pulse limit is based on a description of the
nonstationary response of the medium is monitored by a ddump induced .medlzlér:?l l;SIng nonstationary effective linear
layed probe pulse. The effect of a short laser pulse incided€SPONse f“f‘Ct'O”@" o 3\Ne have recently demonstrated
on a two electronic level molecular system is to induce nonthe application of an effective linear response approach to
stationary vibrational stateibrational coherendein both ~ PUmp—probe spectroscopy using a displaced thermal state
the ground and excited electronic levels. Ground state cohefeépresentation of the pump induce@oorway density
ence, usually ascribed to impulsive stimulated Raman scafMatrix>’ A key requirement for this representation is a
tering processe’;? is the dominant contribution in systems knowledge of the moments of positioQ] and momentum
with short-lived excited states and for off-resonant(P) in the doorway state. A moment analysis of the doorway
excitation®1%11.1416 vsiprational coherence in the excited state is well justified by the fact that the vibrational states
state is, however, the dominant contribution for systems thaprepared by short pulses are highly localized@R) phase
have long-lived excited statég9121319.22 space. We thus expect the doorway states to be described
A common description of pump—probe spectroscopy isadequately by the first few moments. In addition, when the
based on the third-order susceptibility®) formalism, which  first moments of the doorway state are incorporated into the
provides a unified view of four-wave mixing effective linear response functions, the resulting pump-—
spectroscopie$*® The state of the molecular system in- probe signals are in excellent agreement with the predictions
between the pump and probe pulse interactions is, howevesf the third-order response approachyhich implicitly in-
not explicit in thex® formalism?” It is often the case that the corporates all the moments of the doorway density matrix. In
most interesting part of a pump—probe signal is when thqdition to providing an accurate description of pump—probe
pump and probe pulses are well separated in time, a limi§jgnals in the well-separated pulse limit, a knowledge of the
usually termed the well separated puls&SP) approxima-  moments allows a clear physical interpretation of the ampli-

tude and phase profiles observed in pump—probe experi-
3Electronic mail: champ@neu.edu ments of nonreactive sampl@s?.’“
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Apart from pump-probe experiments, a fully quantita-as E(t). We write the total Hamiltonian a$i(t)=H,

tive understanding of the matter states prepared by short lap A,(t), with the free Hamiltoniar, and the interaction

ser pulses can by itself serve as a fruitful exercise. For N amiltonian |:|| having the following typical form(in the

stance, there has been an increasing interest in using sing| . . .
: 9 '9 SINGKeraction picturg for a molecular system with two elec-
and multiple laser pulses to control molecular dynamics an

. oo . ronic levels:
to generate optimal vibrational motidri>~*®Numerous the-

oretical studies have addressed impulsive preparation of mo- O+%0 O

lecular states in detail and are usually based on a semiclagt,= ¢ o ) ,

sical treatment of the laser pulse interactior® The Hg

advantage of the semiclassical approach is that it provides . D
simple analytical expressions that are valid in the short pulse, ()= — A(t)- E(t) = 0 Hge(t) - E(t)
limit,**~3® and enables several key insights into the genera- ' ® freg(t) - E(1) 0 ’

tion and detection of coherent wave packet moffoff. A R R L

fully quantum treatment, on the other hand, has usually erwhereHy andH.= Hy+V are, respectively, the adiabatic

tailed a direct numerical solution of the ScHimger Born—Oppenheimer Hamiltonians for the ground and excited

equatior>3741 electronic statesV is defined as the difference potential that
One of the primary motivations of this work was the specifies the electron nuclear couplirig), is the vertical

interpretation of the observed amplitude and phase profiles iglectronic energy gap at the equilibrium position of the

femtosecond pump—probe experiments of myogIdbittAs  ground state, angi(t) is the electric dipole moment operator

mentioned earlier, a fully quantum mechanical evaluation okvolving according to the free Hamiltonidth,. Let p(—o)

the moments of the doorway state is key to the effectivadenote the initial density matrix of the system before the

linear response approach, which substitutes for the computadrival of the pump fields. The evolution of the density ma-

tionally more intensive third-order response approddhis  trix due to the laser pulse interaction can be described by the

also clear that a precise determination of the first and highelriouville equation?’

moments of the nonstationary wave packets induced by short R

pulse excitation is useful in the above-mentioned ihap—(t):[ﬂ t),p(1)] %)

applications?**~3’In the present work, we consider a two ot R

electronic level system with a multimode set of linearly dis- . ~ ) ) .

placed harmonic oscillators, and obtain general expressiorfgduation(2) can be solved fop(t) iteratively to various

for the nth moments ofQ and P in the doorway density orders in the interactiord,(t). For pump-—probe calcula-

matrix. The first two moments are studied in detail, and ardions, the second-order term is of relevance since it is the

directly connected to equilibrium absorption and dispersiodowest order in the pump interaction that can contribute to

line shape functions. Because of this connection, absolutéie signals®*°From Eq.(2), we obtaif” the following form

scale calculations of the moments are made possible even fé#" the density matrix to second-order in the pump interac-

complex multimode systems, with only a knowledge of thetion:

measured equilibrium absorption cross sections. This ap- 2 t,

proach is analogous_to_ “transfo_rrn” calculations in reso- ﬁ(t)=l3(—°°)+(— f dtzf dty[ u(ts),

nance Raman scatterifi§j-*®In addition, the temperature de- A

pendence of the moments is clearly revealed in the - -

calculations presented here, and the results are shown to be [Au(t), A=) 1IE(t) By(ty). ©

in good agreement with earlier treatments based on the inNote that we have omitted the first-order term as it is not
pulsive (short pulsg approximation’®~*° relevant for a pump—probe calculation. In E8), the indices
The general outline of the paper is as follows. In Sec. I,k and| refer to the vector components and summation over
we briefly discuss the background for the present work anglepeated indices is implied. Note that the second-order per-
discuss the basic expressions involved in a perturbative treafgrbative term is also referred to in the literature as the den-
ment of the laser pulse interaction. In Sec. Ill, we calculatesity matrix jump® and the doorway functioff>*>*For well-
the first and second moments @fandP in the ground state separated pump and probe pulses, one is interested in the
density matrix using the general expressions forrithemo-  density matrix in Eq.(3) after the pump field€E(t) have
ments presented in Appendix A. In Sec. IV, we carry out aceased to evolve. As—c in Eq. (3), the interaction picture
similar analysis of the first two moments of the excited Stat%ensity matrix becomes time independent, and the time ar-
density matrix. In Sec. V, we present simulations to StUdy th@umentg will be dropped in the f0||owing deve|opment_

behavior of the first tWO moments QfandP as -annCtion of If we project the density matri)ﬁ onto the electronic

the laser pulse carrier frequency, pulse width, mode frepasis, we obtain the nuclear sub-density matrices for the
quency, coupling strength, and temperature. ground and excited electronic states. Noting that the second-
Il. BACKGROUND order density matrix in Eq(3) has no electronic coherences

We first briefly review the basic expressions involveddue to the even number of dipole interactions, we may write

in a perturbative treatment of the pump induced density ma- pe O
trix. Consider the interaction of a two electronic level system  p=pc|e)(e|+ pglg)(g| =< 0 3 ) : (4)
with the pump laser pulse whose electric field is represented P
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In general, the nuclear subdensity matriggsand pe may  1ll. NONEQUILIBRIUM GROUND STATE DENSITY
contain off-diagonal elementsibrational coherengein the ~ MATRIX

number state representation due to the broad frequency spec- E imolicit trict the di ion h i |
trum of an ultrashort laser pulse. The presence of off- or simplicity, we restrict the discussion here 1o scaiar

diagonal terms reflects the nonstationary naturg,ofvhich fields assuming that. the medium is isotropic. We makg the
. A L Condon approximation that neglects the nuclear coordinate
in general does not commute withy. The vibrational co-

. . . dependence of the dipole operator and wjite e
herence translates into time-dependent wave packets in P P P . Mg‘3|g>< |

w@,ue le)(g|. The system is assumed to be initially in the
: . ; 4 g .
tsr?emg:éi?t';arlnZR?;SI&OS’SQ%%%E)th\éV'g?ﬁ; rﬁg;?jseg:tlﬁigh?; ground electronic state with an equilibrium Boltzmann dis-

ibuti ibrati e —o0)=|a) s
localized naturdin Q andP) of impulsively driven nonsta- tribution for the vibrational states, i.63(—=)=|g)p1"(g|.

A~ (g) . . . 7~ ~
tionary states suggests that we calculate their moments in tf’_(l_?é::erepT Ids of thedform n Eq.(8) with H, rcei:ple:jceq b}lr-]lg.
stateu (which represents or €) using e ground state density matrix to second order in the pump

fields is evaluated using E€B) aspy=(g|p|g). We find
Xy(O) =Tr[(ulX()|u)p 1/ T By 5

2 rw o
with a(a") as the mode annihilatiofcreation operatorsX — pg=pi?'— @J dt’j ds Et')E(t' —s)e leds
represents O=(a+a")/\2, P=i(a’—a)/\2, or their Rt dme o
higher powers. The timein Eq. (5) is larger than the pulse
duration so that the density matrpg is time independent. x{e

However, the =0 values* of the first moments o® andP,

i.e., Q,(0) andP,(0), respectively(for u=g or u=e), de- . . . )
termine the effective initial conditions for the subsequentWhere the s_u_bscnp(tﬂ denotes time Ordef'”g a’nd ,b'c' de
notes Hermitian conjugate. We have defiredt’ —t" for

nuclear dynamics on the potential surfaceSince Q,(0 . ~ S P . .
y P Qu(0) convenienceV(s) evolves in time viaH g in the interaction

and P,(0) also denote shifts from thermal equilibrium, we oy re We have also introduced homogeneous broadening
may represc_ant the r“\g)nstatlonary nuclear density matrix fo[lsing the factoe~Ted% to account for electronic dephasing
the electronic state " as a coherent-thermal state: processes. It is evident from E¢Q) that the action of the
electron-nuclear coupling forc@vhich appears through the
time-ordered exponentiabn the equilibrium stat${® re-
sembles a square wave pulse interaction that turns on and off

_ i (v .
'stexp(—— t ds’V(s’)) f)(Tg)Jrh.c.], (9

hilv-
t'-s .

pu=D(A)pMDT(N,). (6)

Here, D()\u) is the quantum mechanical displacement

operatof® at times separated by an inten&l The total effect of the
pulse on the ground state is obtained by a superposition of
D(\,)=exp A AT —\*4) (7 square wave interactions for all possible time intervals
! ! ! within the duration of the pump pulse.
with X ,=(Q,(0)+iP,(0))/\2. p{) is the equilibrium ther- Equation(9) is _vali<_j for arbitrary ground and exc_ited
mal density matrix corresponding to the nuclear HamiltoniarState nuclear Hamiltonians. In what follows we consider a
of the electronic level: model of linearly displaced harmonic oscillators for the
ground and excited states and tale — (A/mwo) Y4 Q=
P\ =Z"texp(—H,/kgT) (8) A with di i & ive di
Pt u/Kgl). —hweAQ, with dimensionles®) and relative displacement

The displaced thermal state representation in has A. The electron-nuclear coupling fordeis expressed a$
'SP P lon in @&. =A(mw3t)Y? where m and w, are, respectively, the re-

been showdf to provide an accurate and computationally;uced mass and frequency of the mode. With these defini-

efficient approach to calculating pump—probe signals. Thig; o ground and excited state Hamiltonians take the
presents us with the primary motivation for a rigorous mo—form’

ment analysis of the pump induced density matrix. As we
will see in the following, the laser pulse can induce higher

moment changegalso termed squeezipgn the vibrational g :@[Qer |52] (109
distributions in addition to merely displacing them. Equation 9 2 '

(6) is only an approximation to the full second-order density

matrix in Eq.(3). The higher moments gf, calculated here . hoy . ) f w2

can be incorporated in a manner analogous to(&ausing a He:T (Q—A)*+P?]— — (10b)

displaced and squeezed state representation.
In Appendix A, we derive general expressions for theA. Populations
nth moments of)(t) andP(t) for the pump induced nuclear The pump pulse induces a net change in the ground and

density matricesyg and p, for a two level system, with a gy cjted electronic state populations, which is reflected in the
single linearly coupledundampegimode. In what follows, ;aroth moment, i.e., the trace of the respective nuclear den-

we di§cuss the effect of the pump pulse interaction on thejr, matrices. The electronic population in the ground state
Ylbratlonal populations and the first two moments@fand  after the pump pulse interaction is calculated E1S
P in the ground and excited states. =Tr[pg]. Using Eq.(9), we find,
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| adl? [ o The line shape functiond(w) plays a central role
Ng=1- Lzej dt’J’ ds Ht')E(t'—5s) throughout the calculations presented in this work. While the
h *°° 0 electronic populations depend only on the imaginary part of
X{e—iﬂoose—g(s)e—Feglsl+C_C_}, (1D ®(w), we will see in the following that the moments &f

and P in the pump induced nonequilibrium density matrix
involve both the absorptive and dispersive line shapgsv)
andPg(w).

where Qgo=Q,— wyA?/2 is the zero-zero electronic transi-
tion frequency and(s) is the harmonic oscillator correlation
function. For a single undamped mode,
9(s)=(AZ2)[(n+1)(1—e '*o)+n(1-e“>)], (12) B. Vibrational dynamics
with n=(expiwo/ksT)—1)"*. Analytic expressions fog(s) The interaction with the laser pulse sets up both elec-
for the damped harmonic oscillator case at arbitrary temperaronic and vibrational coherence in the system. However, the
ture have been derived garﬁ&and can be incorporated in electronic coherence vanishes for a second-order interaction
the expressions derived in this work. In terms of the Fouriekyith the pump laser field, owing to the even dipole interac-
transformE(w) of the electric field, Eq(11) takes the form  tions in the second-order perturbative expression for the den-
2 - sity matrix in Eq.(3). We therefore focus attention on the
/\/g= 1— |M3;l f dw |E(w)|2¢|(w), (13 vibrational coherence induced in the electronic states.
e — 00

1. First t
where®,(w) is the imaginary part of the complex equilib- st momen

rium line shape function defined as The first moment of)(t) in the ground state is obtained
. by lettingn=1 in the general expression E@10). We find
<I>(w)=if ds d(@~Q00se~Tegslg=9(s), (14) ® Cem
0 Qq(t)= ! > > s ﬁm(zﬁu 1)
g _ZiNg|=o m=0 1.2+m [Tm!

The imaginary part of the line shape function is directly
related to2 the absorption cross sectiqn .a&(w) X[Co(1) + (= 1)™CH(D)], (16)
= (87| ugel */31C) 0P (w). We take the electric field to be o ,
of the form E(t) = E,G(t)cos(t) where G(t) is a dimen- whereCp(t) is given by Eq.(A11). Due to the Kronecker’s
sionless Gaussian envelope function. The corresponding€!ta, we must have=0 andm=1, so that

Fourier transform is thenE(w)=E[G(w—w)+G(w Qq(1)=— (AN IM[Cy(D)]. 17)
+w.)]/2 where G(w) is the Fourier transform of3(t).
When this definition is used in Eq13), four terms result
from the expansion dE?(w). Equation(13) contains contri- lwgel® (=, = — o

butions from the line shape function at negative frequencies, Ci(t)= 27_rﬁzfocdw E(w){(nt+1)e '“0'E* (w— wq)
i.e., ®(w<0). It is clear that the integrand in E(l4) is

Using Egs.(A11l) and(A9), we find

highly nonresonant fow<<0, so that the line shape function X[®(w)—P(w—wg)]— N “E* (w+ wp)
makes a vanishing contribution at negative frequencies.
Thus, we neglect those terms in E@.3) that contain the X[®(w)—P(w+ wo) ]} (18

negative frequency part of the pulse envelope spectrum, i.egquation(18) again involves nonresonant contributions from
G(w+ w:) and take only the positive frequency part of the the line shape function at negative frequencies, ®€w<0).
integral in Eq.(13). This is a valid(“rotating wave”) ap-  For pulses with optical carrier frequencies, the contribution
proximation, given that we are concerned with pulses thabf the negative frequency components is negligible and can
have optical carrier frequencies. We then arrive at the folbe dropped from the above integral. We then find, after mak-

lowing result: ing a change of variables— w— wg in the second part of
| oo 2E2 (= the above integral and using the definitiorEfw) following
O ~
Ngzl—#fo dw GXw—w)®, (o). (15  Eq.(12),
Qq(t)=|Arglcog wot + @1g), (19

The depletion in the net ground electronic state popula- _ _
tion thus depends on the convolution of the laser intensityvhere Ajg=Qq4(0)+iP4(0)=|A4|exp(-i¢gyy) is the com-
spectrum with the absorption line shape as one would expedglex amplitude for first moment dynamics in the ground
Since the total number of molecules must be consefsed  State, with the effective “initial” position and momentum
glecting decay through other nonradiative channels durin@,(0) andP4(0) given by:
the pump pulsg the corresponding number of molecules
transported to the excited state by the pump is simply given Q,(0)=
by Ne=1—ANj. It should be remembered that E35) has g
been derived in the weak field perturbative limit and the
numbgr of molecules depleted from the ground state is very > jwdw ép(w—wc,—wo)ﬁqﬂw), (209
small (i.e., Ng=1). 0

|ugd’Ej(2n+1)A
871'ﬁ2./\/'g
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— ZEZA o0 - R 2 — ~ a2 +AT2 +ATA+,\,\T
Pg(o): |/;QGL/2A(;—JO do Gp(w—wc,_wO)Aq)R(w). Qg(t) (_1/2/\/9)Tr[pg(a (Hy+a's(t)+ata+aah)]
e (20b) =Ng+ 1/2+|Azg|cOL 20t + @pg), (24)
5 — Aap—liowgt e —
Here, we have introduced the product spectral functiofVhere we have also use(t)=ae'“. The quantities,
Gp(@,Nwp): andA,,=|Ay4lexp(—ig,,) are, respectively, the mean value
p(@,Nwo):

of the number operatdr=2a'a and the mean value éf, for
ép(w,nwo)=é(w)é(w+ Nwg), (21)  the state described by. It is clear from Eq.(24) that
. the second moment in the pump induced state consists of
and the difference operatadr (not to be confused with the poth vibrational coherence at frequencyg@and the mean
dimensionless couplind) whose action is to generate dif- occupation number of the ground state. The amplitude of

ferences d8 the second moment dynamics at frequenay,2s given
Ad|(0)=D(0)— D (0—wp), 228 by [Ayl. If Q5(1)—Qq(1)? is time-dependent, the nuclear
. A distribution has been squeezed by the laser pulse
A?®(0)=A[P(0)~ P |(0—wg)] interaction®’~ In what follows, we evaluat®}(t) using
=B ()~ 20, (0— wp) + D (0 2awy), the general result EGA10), which assumes the second-order

perturbative expression f@g given in Eq.(9). A direct com-
(22D parison of the results with the identity in E¢R4) subse-
quently leads to expressions fog and A, to second-order

and so on for the higher powers Af . ,
in the fields.

Equationg20g and(20b) are fully quantum mechanical )
expressions for the first moments and are valid for arbitrary | We Setn=2in Eq.(A10), the allowed sets of values of
pulse widths, temperature, and electron-nuclear displacemekly™ aré (1,0) and (0,2) and we find
A. It is clear that the mean initial position and momentum _ on+1 2
imparted by the pump pulse to the ground state wave packet Qg(t)z W(1+2 Re Co(t)]) — WRe[Cz(t)]. (25
are related roughly to the derivatives of the imaginary and 9 g
real parts of the equilibrium line shape function, respecUsing Eqs.(A11) and(15) we have RECO(I)]=(/\/'9—1)/2.
tively. In Appendix B, we discuss the impulsive limit of the The quantityC,(t) is also readily evaluated using E@\11).
above-mentioned results and also present a closed form e®n comparing the final result with Eq424) and ignoring
pression for the mean position assuming a Gaus&ami-  nonresonant contributions, the second-order expressions for
classical form for ®,(w). The single mode expressions in mean occupation number and the oscillatory amplitude of the
Egs. (209 and (20b) can be readily generalized to the mul- second moment are found as
timode case, with the same equations applying for a given _
mode with parameters;, A;, andn;. The line shapes can o |gd *EgA%N(N+1)
be obtained using the multimode form of the equilibrium 9 377152/\/9
correlation function in Eq(12). In fact, Eqs.(209 and(20b)

(as well as the rest of the mgment express!ons derived in this « fwdw Gl w- wc)A2¢|(w+ ®o), (26)
work) are quite general multimode expressions so long as the 0

mode of interest is linearly coupled aml(w) is obtained

from the experimental line shape. In this case, the remaining I,LLge|2ESA2 ~

multimode subspace resides in the experimental line shape 29~ — mjo do Gp(w—we, ~2wo)
function, unrestricted by approximations such as linear cou- g

pling and mode mixing. X[(N?+n+1/2)A%® (0)—i(n+1/2) AP g(w)].
2. Second moment (27)

In addition to the first moments of the nuclear positionAs discussed in Appendix A, the second moment of the
and momentum, it is also of interest to calculate the pumpnomentum operator is obtained Q%(I)ZQS(I'F 72w¢),
induced changes in the variandes the uncertaintiesof the  so that
position and momentum distributions. Before the interacton
with the laser fields, the position and momentum uncertain- P;(t)=ng+ 1/2—|Agglcod 2wt + @pg). (28
ties (defined in terms of the varianceg =A%—A?, with A

—Q,P) have equal values at temperatde The variances of) and P in the pump induced ground state

can be directly oEtained us_ing Ed24) and(28) along with
og=0p=\n+1/2, (23)  the first momentQ(t) andPy(t) given by Eq.(19). For the

The effect of the pump pulse is to distort the equilibriumtlme_dePendent uncertainty product, we find

nuclear distributions and modify the above-given variances. L |A2g|2

To see what is involved, we expre§sand P in terms ofa Tog(t) opg(t)=ng+ 5(1- |AglH) = ——

anda' using the definitions following Eq5) and obtain the (2ng+1)

second moment d(t) in the pump induced ground state as: X coF(2wot + ®2g)- (29
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In obtaining Eq.(29), small terms involving higher powers A. Populations
of the electric field strength have been ignored, since we are
in the weak field limit. Furthermore, in typical weak cou-
pling situations,|A,| is much smaller thanA,4| since it
scales with the square of the coupling strengthThus, the
time-dependent term of EQR9) is very small and the uncer-
tainty product is nearly time independent.

A direct inspection of Eqs(26) and (27) reveals an ap-

parent contradiction. When the system is initially Tat 0, i o
In the weak field approximation assumed heyg<1. Thus,

we haveny=0, i.e., there is no change in the vibrational . :
. . . . only a small fraction of the ground state is transported to the
populations due to the pump—pulse interaction. The oscilla-

tory amplitudesA,4 and A,4 that describe the ground state excited state by the pump interaction,
coherence are, however, not necessarily vanishing=ad,

as evident from Eq927) and (209 and(20b). The number o _

basis elements g, therefore obey the following relations: B. Vibrational dynamics

(Pg)oj#0, (Pgloo=1, (pg)jj=0, V|j#0, (30)
in violation of the density matrix inequality conditidh
|Pij|2$piip” for any given pair of vibrational levelsandj. In Appendix B, we calculate the moments of the shifted
Thus, strictly sopeakingi)g is not a complete vibrational coordinate operato,(t)= Q(t)—A for the excited state
density matrix° Furthermore, we have from EQ$26)  density matrix(the subscripe indicates time evolution due
to (29, atT=0, to I:|e). The first moment is obtained by lettimg=1 in Eq.

an(o)ng(o);%(l—|Alg|2), (31) (A21). Only the term with [=0,m=1) contributes and we

The fraction of excited state moleculgé, is simply
Ne=1- N as the sum of the ground and excited state popu-
lations must be conserve@gnoring other channels for the
decay of the excited stgteWe thus have from Eql5),

Ne= (| el *ES/4H?) Fdw Glw—w)®(w). (33
0

1. First moment

which is always less than the zero point limit of 1/2. TheseI

apparent discrepancies are due to the second-order perturba- QL(t)=— (A/N)IM[Dy(t)]. (34)
tive approximation to the full density matrix employed here ] )

as well as elsewhefd:30:3237.3850 ganyine change in the From Eqs.(AZ?) a_nd (A19), we find after neglecting non-
vibrational populations in the ground state can only occuf€Sonant contributions,

due to a fourth-order interaction, via stimulated Raman scat- ;
tering processes. Thus, the complete expressions for the sec- Qe(t)=|Ae|cod wot + 1), (39

ond moments of the pump induced density matrix W0U|dwhereA1e=6g(0)+ise(0)=|A1e|exp(—i<ple) is the ampli-
necessitate the inclusion of fourth-order terms in the perturtyde for the first moment dynamidabout the equilibrium

bation expansion. This is beyond the scope of the presemjosition A) in the excited state, with the effective initial
paper. However, we can estimate the magnitude of the errqfosition and momentum given by

in the calculation to be roughly4|? [from Eq.(31)], which

goes as the fourth power of the electric field strength andis —, = |Mge|2|5§A °°d ~
typically very small for weak fields. We will return to a Qe(0)=~ amh2N, Jo @ Gp(w—w¢, — w)
discussion of this issue in Sec. V, where we also present a -
quantitative estimate for the error made in a second-order X[®(0— wo)—nNAD ()], (36a
perturbative treatment for a simple model system. _
P.(0)=0. (36b
IV. NONEQUILIBRIUM EXCITED STATE DENSITY Thus, the excited sta';e wave pa.cl_«'at receives no initial mo-
MATRIX mentum. Correspondingly, the initial phagg. can only

take the values O otr. Note that Eq.(35) gives the time-
The excited state density matrix is obtained from 8).  dependent mean position with respect to the excited state
aspe=(€|p|e). Here, the terms with a single dipole interac- equilibrium positionA. To revert to the ground state equilib-
tion on either side op+ in the expression fop will contrib-  rium as the origin, we simply write
ute. For the linear displaced Hamiltonians in E(0g and -

(10b), we find Qe(t) = A+[Ase|cog ot + @1e). (37)
| ieqel? (= v The absence of initial momentum on the excited state
A ge ’ " ’ " . . .
Pe="% | dt J_ dt” E(t")E(t") wave packet might be expected on intuitive grounds. The
, vibrational modes that are formed in the excited electronic
% exp(iQUs—Feg|s|)(exp< —inAft ds’ Q(s’))) state are supject to the eIec;tron—nu_cIear coupling force that
0 turns on(during the pump interactionand thereafter, re-
R _ o R mains a constant. Thus, the forces on excited state nuclei are
xpi® EXP( fwoA fo ds’ Q(s') || + h-C-] : (32 step function-like. In contrast, the ground state nuclei feel the
+ electron-nuclear coupling force only for a short time during
where the subscript denotes anti-time ordering. the pulse interaction, so that the forces on the ground state
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are impulsive in nature. It is interesting to note that &b function ®,(w) whereas the ground state moments depend
is predicted by earlier treatments that use the semiclassicah both®,(w) and®g(w).

Franck approximation'®?> where more general potentials The second moment of the momentum operator is ob-
were treated than the harmonic approximation made in thgained as before by letting—t+ 7/2w, in QéZ(t)_ The first
present case. It is also notable from E8&6a that in sharp  moment and the second moment results can be combined to

contrast to the ground state case, the excited state first M@piain the uncertainties i andP. For the position uncer-
ment involves only the imaginary part of the line shape f“nc'tainty we find

tion ®|(w). This difference reflects the fact that the ground -

state coherence is created by Raman-type processes. Itd@e(t)z[ne+(1—A§e)/2+(AZE—Aie/Z)cos(Zwot)]l’Z.
well knowrf>4346that the resonance Raman cross section (43)
involves both the real and imaginary parts of the line shapehe momentum uncertainty is obtained @g(t) = oqq(t

function. The excited state coherence is created solely by 7l20,). For the time-dependent uncertainty product
absorption-like events occurring on the bra and ket sides qf;q get

the density matrix as expressed in E82).
Age(Aze— Afe)

~ 1 2
O'Qe(t)o'Pe(t)zne"—E(l_Ale)_ (Zﬁe-i-l)

2. Second moment

From the definitions in Eq4A13) and (A12), we have
QL(t)=(a.e '“o'+alel“)/\2 so that the following gen-
eral relation holds analogous to EQ4):

X coS(2wot), (44)

where we have neglected terms that contain power&,f
andA,,. larger than second, since they involve higher powers
of the field strengttE,, which is assumed to be very weak.

éz(t):HeJF 1/24 | Age| COS 200t + @0, (39) Equation(44) is simplgr _than Eq(29) for the grpund statg

_ R due to the lack of an initial phase for the excited state first
where ng is the mean value of the occupation numipgr  and second moments. Once again, for weak electron-nuclear
=ala,, andA,.=|A.le '¢2¢ is the mean value ai? in the  coupling, the uncertainty product is nearly time independent,
pump induced excited state. If we lat=2 in the general sinceA, is typically much smaller thad,.

expression derived in EqA21), the allowed sets of values We note from the above-given expressions that the
for (I,m) are (1,0) and (0,2) and we get second-order density matrpx is not in explicit violation of
i1 A2 the uncertainty principle as is the pump induced ground state
n-+ ity i :
Qéz(t)= o R Dy(t)]— WRe[Dz(t)]- (39) densityp, . To see this clearly, we f|rst rlote from Eq363
e e and (33 that at T=0, |A¢|<A since Gy(w— w.,— wg)

Using Eq.(A22) we have RED,(t)]=Ny/2. The quantity <G(w—w). Also, from Eq.(40), we haven,=A?/2, pro-
Rd D,(t)] is also evaluated readily using EGp22). Com-  vided the vibrational frequency can be neglected®i(w
paring the final result with Eq(38), we find that the mean *wg) (a conditon known as ultrafast electronic
occupation number of the pump induced excited state oscidephasing). It then follows from Eq.(44) that atT=0,

lator ng is given by oout) ope(t)=1/2, (45
I o gd®EGAZ (= where the error in Eq(45) is to fourth order in the field
ne=n-n(n+1)A%+ Y fo do G0~ wc) strength and is very small for weak fields. Thus, the second-

€ order approximation to the excited state density matrix is
X[(N+1)2D,(w— wg) + NP, (w+ wg) ]. (400  more accurate than for the ground state density matrix. This

difference is not surprising, given that a change in the vibra-

The oscillatory amplitude is given by tional populations of the excited state can be effectively in-

A2e:(|,“ge|2EgA2/877h2Ne) duced by a second-o_rder_interaction. This stands in con_trast
to the ground state vibrational levels, where the populations
XJ do G(0— 0t 0g)B(0— we— wg) D' (), chgnge due to scattering processes via a fourth-order inter-
action.
(41)

. . V. SIMULATIONS AND DISCUSSION
where we have defined the function

. For the simulations reported here, fast Fourier trans-
@' (0)=[P|(0—wg) —2nNAD(w) forms were employed to calculate the complex line shape
—a function in Eq.(14), for a given set of model parameters.
+N*AP (0 + wp)]. (42 The precalculated line shape functions are subsequently used
The amplitudeA,, for the second moment dynamics at fre- in all the moment calculations, thereby reducing the compu-
guency v is real so that the phags,, can take on only the tation time significantly. The single integration in the mo-
values 0 orsr. This is in contrast to the ground state resultsment expressions is computationally straightforward, as the
derived in Sec. 11l B 2. Both the first and the second momentsntegrands are smooth functions that are highly convergent
in the excited state depend only on the absorptive line shap@wing to the Gaussian spectral envelope of the laser pulse
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In this section, we investigate the behavior of the ground and ——T=0K; -----T=300K
excited state moments as a function of various parameter. @ 0,=50cm”,8=0.1| (b) ©,=10 cm™
such as the pulse carrier frequency, temperature, mode fre s Putlse (50 £5) ¥,=50 em™
guency, coupling strength, and pulse duration. 206
One attractive feature of the moment expressions de- @
rived in this work is that apart from parameters specific to ]
the mode under consideration, all other information about the
rest of the modegand the bathis carried through in the
equilibrium line shape function®, and®g. These are not
independent quantities but are rather connected by the
Kramers—Kronig relations. One can therefore obi®ifw) 5x10°
directly from the measured experimental absorption cross
section (on an absolute scgleThe Kramers—Kronig rela-
tions can then be used to obtalrz(w) from ®@,(w). Thus,
given a molecule in the condensed phase whose absorptio
spectrum is known experimentalignd is possibly broad and
asymmetri¢, one can use the results derived here to calculate
the moments of the pulse induced nonequilibrium state on ar @
absolute scale, for any given mode of the system. Further: 0
more, since the relation between moments abdw),
Pr(w) is linear, we can also extend the main results derived P,®
in this paper to account for inhomogeneous broadening due

10™

0.0 -

Q,0 0+

-5x10° -

. : . e -1x10°
to a distribution of electronic 0—0 transition frequendis.
A. First moments : : : : , : , :
1. Ground state -1500 (oc-Qvo(cm'l) 1500 -1500 R _QO (cm'l) 1500

Consider the ground state first moments @fand P ,

. . . . FIG. 1. Temperature and carrier frequency dependence of the mean nuclear
de“Veq in Eqs(20a ar_1d (20_b). Sev_eral Interesting featur_es position and momentum in the pump induced ground stajeAbsorption
are evident from a direct inspection of these expressionsine shape function®,(w) for a homogeneously broadened systefi
When the carrier frequency of the pump pulsgis tuned =300 cm') consisting of a single linearly coupled modesy=50

: ~ : cm %,S=0.1). The solid line show®,(w) for T=0 K and the dashed line
acr.oss the. rezonantd maXImurmh”O’ SQ(IO) .Chalhkgesf Slgn for T=300 K. (b) Same as ir(@) but with an additional overdamped bath
9W|ng to its dependence on the derivative-like UnCtIOﬂmode (@y=10 cn't,S,=20,y,=50 cm %) included in the line shapéc)
Ad,(w). Itis also clear from Eq(20g that for detuning to  and(d) The pump pulse induced effective initial position and momentum in

E e ) . - .
the red of the absorption barQ,(0) has a sign opposie to 1% NP dmansonless e s o ot bt e
that of A, while it ha_s the same sign dsfor blue detuning.  temperature-dependent line shapétin For all the simulations, a Gaussian
The dependence d:’Pg(O) on ACDR(U’) implies that in the  with full width at half maximqm of 50 fs was used for the electric field, and
region of resonance, the momentum impulse is oppositel{f'® 1©t@! Pulse energy was fixed at 1 nJ.

directed with respect to the electron-nuclear coupling férce

Also, the sign ofP4(0) changes as we tune away from reso- __ _

nance on either side of),. When the pulse carrier fre- (2n+1) and the line shapé,(w), P4(0) depends onT
quency is detuned far from the resonant transitiout ne-  solely through the real part of the line shape function

glect of the nonresonant terms remains valp, (o) drops ~ Pr(®). _ _
more rapidly to zero when compared WMR((D) so that In order to illustrate the above-mentioned aspects of the

— . — s ground state first moments, we consider two model line
Qg(p) s much smaller thaiPy(0). Thug, for qff resonant shapes. In the first example, shown in the left panel of Fig. 1,
excitation, the ground state coherence is dominated by a mg- 1 S=(A%/2)=0.1] is

. o a low frequency mod¢wy=50 cm”
mentum impulse. Under off-resonant excitation, E20b) coupled tqo a h)émoge?\eoously broadendi = 300 e h)

implies thatP,4(0) has the same sign as and therefore 1, |evel system. Figure (&) shows the imaginary part of
points in the same direction as the electron-nuclear couplingy,q shape function at two different temperatures. The corre-
force. The well known off-resonant impulsive lirfitis thus sponding mean position and momentum for the 50 tm
seen to arise from the dependence of the momentum impul$gsqe are shown in the panels directly below, for a range of
on the derivative of the real part of the line shape function. . values across the resonance maximum. The pulse width is
The fully quantum mechanical treatment further shows thathosen to be 50 fs. The second example, shown in the right
the approach to the off-resonant limit depends strongly omyane of Fig. 1, consists of a line shape that is strongly tem-
the temperature and mode frequency, as we will see in thgerature dependent due to the presence of a strongly coupled
following. The distinct dependence @f;(0) andPy4(0) on  overdamped bath mode in addition to the 50 ¢mmode.
temperature ) is also noted from Eqg20a—(20b). While  vibrational damping was incorporat¥dusing a rigorous
the T dependence a@(0) is determined both by the factor theory presented previousty.
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— T=0K; -—---T=300K panel$ that at high temperaturedarger n) the phase re-
(a) o =50cm™ |© ©,=10 em’ mains close to 0 ofr. When the temperature is lowered, the
0.01 SO=O.1 ¥,=50 em” | phase varies more continuously over a range of Zhis
8,=20 corresponds to the fact that the position increnjeeal part
of the complex displacement;y=Qy(0)+iP4(0)] domi-
nates the momentum incremeirhaginary partat high tem-
\ < - peratures, except at resonant maximfy. Furthermore,
| SN N when the pump is tuned td),, the purely impulsive
S N it » AN (Qg(0)=0=¢4= m/2) nature of the ground state coherence
0.00- === - N P : is evident. As the pump carrier frequency is tuned toward the
(b) off-Resonant d) .. . .
impulse (-r/2) off-resonance limit, the phase is again seen to approach the
impulsive limit (pg= — 7/2), and this approach occurs much
more rapidly at lower temperatures than high. This is again
owing to the fact that the high temperature case is dominated
by the position increment. Note that the momentum imparted
to the ground state wave packet by resonant and nonresonant
pulses are opposite in direction, with the momentum of a
resonantly induced wave packet directed opposite to the
1500 ) 1500 1800 P 1500 electron nuclear coupling force.
©-Q (em™) ©.-0_(em™ Several of the above-mentioned aspects of detuning de-

pendence 0fQ,(0) and P4(0) have been noted in earlier
FIG. 2. The first moment amplitudé;¢| and phasepyq for the 50 cm™  semjclassical treatment&:*° The results for the excitation
mode in the pump induced ground state, plotted for both line shapes co .
sidered in Fig. 1(a) and(b) |Alg| and ¢, 4 for the Lorentzian line shape in r_ﬁequency.dependence of the ground St_at.e first mor_nents are
Fig. 1(a) and(c) and (d) for the phonon broadened line shape in Figya 1N qualitative agreement with the predictions of Cina and
The solid lines correspond =1 K and the dashed lines correspond to co-workers®’ who have used semiclassical pulse propagators
T=300 K. to study the impulsive preparation of ground state nuclear
motion due to single and multiple laser pulse excitation.
. . - heir calculations suggest that excitation in the preresonant
From the simulations, it is seen that some of the generaT T 99 : . P .
: . : ! region induces much larger increments in the nuclear posi-
features evident from a direct inspection of E¢&0a and . L :
tion than excitation directly on resonance. From the present

(20t.)). are borne out; note in particular, the bghaymr of thework, this aspect directly follows from the dependence of the
position and momentum as roughly the derivatives of the

. . o osition increment on the derivative of the absorption line
absorptive and dispersive line shapes. Thus, the momentu : :
) . ) . o shape function as expressed in E20a. We also note that
increment is peaked at absorption maximély and is di- . .
: : B : .. semiclassical models have been used to show that the ground
rected opposite to the excited state equilibrium shift, which

: : o I .state momentum impulse depends on the derivative of the
in the present case is positive. The position increment i$

peaked at roughly the full width at half maximum of the teal part of polarizability® The present fully quantum me-

. . . . chanical treatment clearly exposes the distinct temperature
absorption, and changes sign as the carrier frequency is tun€
h

i . ependence of the pulse induced position and momentum in
across), . The difference in the temperature dependence o . .
v . . .the ground state. While the temperature dependence is not
the position and momentum increments is also clear. It is

. included explicitly in prior treatments, more complicated po-
seen that for the weakly temperature-dependent line Sh"j‘pﬁéntial surfaces have been analyzed. But the general nature of

the momentum increment is nearly unaffected by temperat- . o :
. o . he pump induced position and momentum predicted here for

ture changes, while the position increment increases drama I-armonic otentials remains valid

cally owing to the Bose—Einstein factor. The situation is dif- P '

ferent for the strongly temperature-dependent line shape, in

which case, it is seen that the momentum imparted to the

wave packet changes significantly with temperature, with &- Excited state
decreased value at th@, [corresponding to the fact that Turning to the excited state first moment, recall from
®g(w) is broader at higher temperature, which in turn im-gec v that the wave packet created in the excited state
plies that the derivative is smallerit is also interesting 10 (gcejves no initial momentum. As mentioned earlier, the lack
note the behavior as. is tuned away from resonance, where o injtial momentum for the excited state wave packet can be
it is seen thaQy(0) approaches zero whil,(0) stillhas a  attributed to the step function-like nature of the forces felt by
nonzero value. o - the nuclei of excited state molecules. This argument is ex-
The relative magnitudes dQ4(0) andPg4(0) are best pected to be valid for more complicated potentials than the
understood by plotting the amplitude and phase of the wavlarmonic model considered here. This is indeed the case as
packet motion defined in Eq19). In Fig. 2, we plot the shown by earlier treatmentsOn the other hand, the ground
initial amplitude and phase of the pump induced wave packedtate nuclei are subject to an impulsive square wave force.
as a function of the pulse carrier frequency for both example3his results in a nonzero average initial momentum of the
considered in Fig. 1. It is seen from the phase glowver  ground state wave packet.

1Al /

1g

Resonant
impulse (7/2)
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Consider_the initial displacement of the excited state @ — T-0K
wave packetQ/(0) in Eq. (368. The temperature depen- ] - ——-T=300K
dence ofQ/(0) is mainly determined by the factar which
appears as the coefficient of the derivative-lﬁ@,(w). At

zero temperature, or for temperatures low enough sorthat _ ] R
<1, all the terms in the integrand of E(B6a are positive.  Q,(0) -7 \

Thus, the overall sign oﬁg(O) is always opposite to that of 0- —~—
A, irrespective of other parameters such as the laser puls N

width and carrier frequency. This leads us to the following ) N -7
interesting conclusion: when the laser pulse interacts with &
system that is initially aff=0 (or with negligible thermal 1.0 - T : . :
populationﬁ), the wave packet created in the excited state is (b)

always placed initially on the side of the excited state poten-
tial well that lies toward the ground state equilibrium. In -~
other words, the initial phase,. of the excited state first / ~.
moment dynamics is always fixed at 0 oy depending only 05 ’
on the sign potential displacemeft As the temperature is l
increased, the difference terd,(w) that appears as the R !
coefficient ofn in Eq. (363 begins to remove the positivity ~. ’
of the integrand, since the difference,(w)—®(w— wq)
can take on either positive or negative values. However, for 0

line shapes that are broad compared to the vibrational fre- 2000 1000 0 " 4000 2000
quency,A®, () is still quite small compared t®,(w) and

the derivative term dominates only at very high temperatures
(WhenF> 1)_ FIG. 3. Temperature and carrier frequency dependence of excited state first

We take the model line shape treated in Figa) 1to moment for the 50 cm! moge of the eiample in Fig.(d. The effective
illustrate key aspects of the excited state first moment. il (t=0) mean positiorQe(0)=A4+Q¢(0) is plotted in(@). The mo-

mentum in the excited state is vanishing and is not shanThe ampli-

Flg;13, we plot the excited state first moments for the 50tude|Ale|=|6;(0)| of the oscillatory motion about the excited state equi-
cm

mode. In addition to the amplitude of oscillations jiiym positionA.

|A1e| =|QL(0)| about the excited state equilibrium, the initial

value of the first moment with respect to the ground state . . . .
S —— . . matically depict the impulsively excited nuclear wave packet
equilibrium Q.(0) [see Eq.37)] is also plotted for clarity.

W hat | h q i in the ground and excited states, for the carrier frequency
€ note that in contrast to the ground state amplitifg. tuned to three different values across the absorption maxi-

2(3)], the sign of the temperature-dependent changes in thr?\um Q,. Consider the case when the laser pulse carrier
excited state amplitude depends on the direction of the Ca'f'requenl():y is

rier frequency detuning from the absorption maximum. It is
seen that for red detuning from absorption maximiin,|
decreases with increase in temperature, whereas for blue dt T T=300K
tuning, the amplitude increases with temperature. This oppo:
site behavior on the red and blue sides of the absorptior
maximum can be understood from the “particle-like” aspect
of the excited state coherence, which is complementary tc
the “holelike” nature of the ground state cohererff&?Wwe

will return to this point briefly. As is clear from Fig. 3, 4 .
Q<(0) changes its sign with respect to the ground state equi- o ® o
librium position asw, is tuned across resonance, but its ab- : '
solute magnitude remains less thdy]. As the temperature
is increased, the derivative line shape in E86a becomes

more significant due to larger. The antisymmetry of the
amplitude profile with respect té), becomes more pro- s
nounced so that excitation toward the blue side induces 0
larger displacements than red excitation. FIG. 4. Schematic of the initial conditions prepared in the ground and ex-
We note from Figs. (c) and 3a) that the mean positions cited states of a two-electronic level system, by an impulsive pump interac-
for the ground and excited state are oppositely signed Witlﬁon' The ground and excited _state wave pack_et_s are depicted for three dif-
e . .. erent values of the pump carrier frequency as it is tuned across the resonant
respect to the grpund state eqU|||b!'|Um- This behavior IS Tefaximum, and for off-resonant excitationuyg). The dotted line indi-
lated to the particle- versus hole-like nature of the excitectates the carrier frequency of the laser pulse. The arrows above the ground

and ground state nuclear wave packets. In Fig. 4, we scheatate wave packets indicate the direction of the initial momerfayt®).

®-Q (cm™)

b hQ

N
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tuned toward the red side of the absorption maximusg)( [—~aw

The pump creates a hole in the ground state near the regio ---N. QO /T, =0.075
of resonance, which is toward positive displacements. The 0014 N, Q0+N, Q0 JU

nuclear distribution is therefore effectively centered at nega- 1 ,/ Teell

tive displacementsi.e., Q4(0)<0] with respect to equilib- 00 F==7 - //\/;
rium. The excited state nuclear distribution is, however, cre- 1 IR

ated directly near the region of resonance, and is centered ¢0.01 -
positive displacements. It should be remembered that the
normalized mean position of the excited state wave packe
[Eq. (36a] is much bigger than that of the ground state wave 0.01 -
packet [EqQ. (24)], since No=1—Ny<1. The schematic
drawn in Fig. 4 merely expresses the opposite signage of th
ground and excited state first moments, but does not repre 0-99
sent their magnitudes.

It is important to recognize that the schematic shown in
Fig. 4 is strictly validonly in the impulsive approximation,
i.e., when the pulses are much shorter than a vibrational pe 0.02
riod. In this case, the nuclei of the ground and excited state
molecules do not have the time to evolve in their respective
surfaces within the duration of the pulse. Thus, one can pic-
ture the particle in the excited state as being instantaneousl
created on the same side of the well where the correspondin ¢ ¢¢ |
hole is created in the ground state. However, when the pulse
have a duration that is not too short compared to the vibra-  -1000
tional period, the wave packets evolve during the pulse in-
teraction. The centroids of the ground and excited state wave
packets are thus no longer expected to be located on opp IG. 5. Study of the symmetry of the ground and excited state mean posi-

it id fth d stat ilibri | der t lons as a function of the pulse width. The population weighted ground and
SItes sides o € ground state equilibrium. 1n order to quant_he excited state first moment$,Q4(0) and N.Q¢(0) for the 50 cm?t

t|fy the i_mpU|5ive limit, it is useful to Calcumt? the pODUI"?" mode(with periodT,;,~ 666 f9 of the example in Fig. (&) are plotted along
tion weighted sum of the ground and excited state firstith their sum, for three different pulse widths. The top panel corresponds

moments. Using Eq€19) and(37), we arrive at to a pulse widthr,=50 fs, middle panet,=200 fs, and the bottom panel is
with 7,=500 fs.

— — | |2E2A o
NeQe(O)+NgQg(O):_ge—}i;)f do ®(w) excited state wave packet is situated to the right of the
8w 0 ground state equilibrium position for the entire range of car-
Xé(w_wc)(ﬁz@(w_wCJr o)) rier frequencies plotted.

The relationshipQc(0)= —Q4(0), which is valid in
the impulsive limit, can be used to understand the increase
in the asymmetry of the excited state amplitude profile with
The right-hand side of Eq46) is an integral over the second temperature, as observed in FigbB3 As we have seen
difference of the pulse spectrum. It can be taken to be a smadlarlier, Qy(0) approaches zero as the temperature is low-
quantity in the impulsive limit, where the spectral bandwidthered. This means that according to the inverse relation
of the pulse is broad compared to the vibrational frequency5 (0)x _6 (0), thedisplacement of the excited state wave
Thus, we may set the right-hand side of E46) to zero p;cket alsogapproaches 0, but from the opposite side of the
in the impulsive limit. This in turn implies thaQe(0)  equilibrium position as the ground state wave packet. For
«—Qq(0); i.e., the mean position of the ground and excitedexample, consider the schematic depicted in Fig. 4, where
state nuclear wave packets are situated on opposite sides Qf(0)>0 for excitation toward the reds(;= wg). The cor-

the ground state equilibrium position. This situation h°|d5responding approach @E(O) toward zero at low tempera-
only for modes with vibrational period much longer than theyres implies an increase in the amplitude of oscillations

pulse duration. For longer pulses, the right-hand side of Edapqout the shifted equilibrium positioA. This is shown by

(46) becomes appreciable. In Fig. 5, we plot the ground andne gashed wave packet in Fig. 4. On the other hand, it is
excited state first moments for the 50 clmode of the  cjear that for excitation toward the blue{=ws), the cen-

previous example, and the sum defined in &), for three  15iq of the excited state wave packet approaches zero from
different pulse widths. It is seen that the ground and exciteghe pegative side of the ground state equilibrium as the tem-
state first moments are oppositely signed for the impulsiveyeratyre is lowered. This corresponds to a wave packet with
excitation. HoweverQ¢(0) andQgy(0) are no longer sym- decreased amplitude of oscillations about the excited state
metric when the pulse duration approaches three quarters gfuilibrium, as shown by the dashed wave packet in Fig. 4.
the vibrational period. In this cas@,(0) is positive, i.e., the Thus the ground and excited state first moments exhibit a

(46)
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striking contrast in the temperature dependence that can pc ()T=800 K1 =10 em” m Pulse (50%)
tentially be used to assign the origin of vibrational coherence S,,=8,,,=0.1
in pump—probe spectroscopy. 0] ©,=10 cm
It is clear from the above-mentioned illustrative ex- ®(e)| 8,=20y,=50 cm’
amples that the analytic expressions for the first moments o
presented in Eq$203 and(20b) and (369 expose the tem-
perature and carrier frequency dependence of the first mo & 1000 500
ments. They also offer a physically intuitive picture of the
initial conditions prepared by the pump pulse. The accuracy 50 0
of the first moment expressions is verified by calculations of B 2.0

the pump—probe signals using these expressions in the disoo1/
placed state representation of the doorway state in(8q.
The resulting signals agree well with those calculated using
the full third-order response approachWe also note that
the depiction of pump induced wave packets in Fig. 4 con-
tradicts prior predictions arising from time-dependent wave -0ot;
packet pictures of impulsive stimulated light scattering.
These pictures suggest that the ground state wave packet
always created toward decreasing energy daps® How-

ever, the analysis presented here as well as in othe *
works’ 3862 shows that the ground state wave packet in-
duced by impulsive excitation is strongly sensitive to the
carrier frequency of the laser pulse.

— —qump)(o) R

(e) I o

014

0.00

0 T T
-1500 1500

o
3. Multimode case ©-Q_ (cm™)

The above'?onSid?red eX_ampleS illustrate some of the|g. 6. (a) Absorption line shape &F =300 K for a three-mode system
key aspects of impulsively driven ground and excited stateonsisting of a strongly coupled overdamped bath made<10 cnm %, S,
coherence for simple systems with a bath and a single opti=20,y,=50 cn*) and two other modes with parametets, 50 cn ™,

; ; iong=0-1) and @,=220 cm?!, S,=0.1). The homogeneous damping is
cally coupled mode. As discussed earlier, the expressio o : R
derived for th inal d b dil tended ;=10 cm . (b) and(c) The pulse induced mean positisolid line) and
e”\(e or the single-moade case can be rea. lly extende ttﬂe mean momentur(dashed ling along with the analytic expression for
multimode systems. As an example, we consider a two-modgean position calculated in the impulsive approximation in EB7)
system consisting of a low frequency mode at 50 ¢rand a  (circles. (d) and (¢) The amplitude and phase of the 50 and 220 &m
high frequency mode at 220 crh coupled to a homoge- ™Modes.
neously broadened two electronic level system. An over-
damped low frequency bath mode is also included to broaden
the line shapes. The absorption line shapd &t300 K is . . .
A . . i mode. While much of the earlier work on this
lotted in Fig. ®a), and is nearly a Gaussian owing to the . . . . .
P 9. 62 y g subject®*867:58nas been carried out assuming vibrationally

semiclassical limit of strong coupling and high temperature: brunt pul w that a mor mplete treatment that
In the lower panels of Fig. 6, we plotthefirstmomentsofthea upt puises, we see that a more complete treatme a

50 and 220 cm® modes in the ground state, assuming aaccounts for the finite pulse width is essential in a multimode

pulse width of 50 fs. Along with the fully quantum mechani- situation.
cal results for the mean position and momentum, amplitud®&. Second moments
and phase for the two modes, we also fffor comparisoh

the analytic result for the mean position in EB7), valid in Apart from inducing vibrational coherengaff-diagonal

the impulsive and semiclassicéGaussiaji approximations terms, t.he laser pulse also induces changes in the vibrational

From the simulations, we once again see the role pIéyeBPpwatlon& In Secs. Il1B2 and IVB2, we presented expres-

- T i Sions for the second moments of the coordinate and momen-

by thermal factor ) in determining the amplitude and phase y,n a5 well as the pulse induced change in the mean occu-
behavior. The high frequency modsmallern) exhibits @  pation number in the ground and excited states. It is of
larger proportion of the momentum than the low frequencyinterest to calculate the pulse induced changes in the vari-
mode (largern). Note that for the chosen pulse duration of ances of the ground and excited state nuclear distributions.
50 fs, the low frequency oscillatgperiod~ 666 f9 is driven  The variances of) andP reflect the pulse induced squeezing
by the laser pulse in the impulsive limit. The high frequencyof the vibrational wave packet, as well as the vibrational
mode(period~ 150 f9g is, however, dynamic even during the heating and cooling in the ground and excited states by the
pulse interaction and is far from being impulsively driven. laser pulse. Squeezing of the ground state and excited state
As would be expected, the agreement of the analytic resulivave packets can contribute to overtone signals in pump—
for impulsive excitation in Eq(B7) with the fully quantum  probe spectroscopy. In the present section, we discuss
expression in Eq(20a is much better for the low frequency some aspects of pulse induced position and momentum un-
50 cm ' mode than for the higher frequency 220 tm certainties for a simple model system.
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T=300K mentum uncertainties. Since the pulse induced changes in the
@ variances are very small, it is convenient to plot the differ-
ences of various quantities from the thermal equilibrium val-

ues, i.e.,00qy=0qg— VN+1/2, opg=0opy— Vn+1/2 and

(0qg0pg) = Tqg0pg—(N+1/2). We plotdoqg and dopg
for a range of carrier frequencies across the absorption spec-
. trum, at three different times during a half-peried2w of
K the second moment dynamics at frequeney 2We see that
® 5, =0 (e ' ' att=0, doqy mimics the second derivative of the absorptive
R °| 1x10° / line shape owing to its dependence M@,(w). At t
‘ ! = 7/4wq (Which is a quarter period of the overtone dynamics
£ at 2w) the dispersive termh2®x(w) dominates. The ab-
! sorptive and dispersive line shapes thus act in quadrature to
Vo determine the overall dynamics @fgg(t), which is thus
‘ strongly sensitive to the carrier frequency detuning from the
absorption maximum. According to the relatiompg(t)
=0qq(t+ 72wp), the momentum uncertainty simply
“lags” the position uncertainty by 1/4 vibrational period, as
shown in Fig. Tb). The position momentum uncertainty
| product is plotted in Fig. (¢) and is independent of time.
N\ /S o Note the small dip of the uncertainty product below the
vacuum product of one-half, which arises from the term
50 3 1500 o 3 o |Agl% in Eq. (29). As discussed following Eq(29), this
©-Q_ (em™) ®-Q (em™) unphysical behavior is attributed to the neglect of fourth-
order interactions in the present treatment. While the inclu-

FIG. 7. Temperature and carrier frequency dependence of the position ar‘gﬁOn of higher order interactions is beyond the scope of the
momentum uncertainties in the pulse induced ground state vibrational dis-

tribution. The pulse induced changésom the thermal equilibrium valugs present paper, we can rothIy say that the magn'tUde of the

in the position uncertaintyo, momentum uncertaintyopy, and their  dip, given byIAlgIZ, effectively estimates the error due to

product8(oqqopg) are plotted at times=0 (solid ling), t=m/4w, (dotted  the second-order perturbative approximation made in®g.

line), andt= 7/2w, (dashed ling (8)—(C) oy, 60py, aNdd(oguopy) at . - e

T:)O K. (d)~(f) Tﬁe( corresponﬁi;é c:u;ntit?:sﬁt:;%o K. (7as7ed At higher temperature, the mean occupation nunmhger
dominates the expression for the position and momentum
uncertainties. As discussed previously, the variance® of

) ) and P at high temperatures are mainly determined by the
We first consider the ground state second moments. As

. . ~ 2 . .
discussed following Eq24), the second moments 6f and absorptive functiom“®,(w), which is the real part ks,

@ il ot e ciagor and i cagonal densty maric [ 8 06T 1O, F0% (1 ang o, wiere ve e
elements. The diagonal elemerftghich are time indepen- play y b 9 P

dent as long as there is no coupling of the mode to an exte@bsﬁégtllvetvsgrgr(’;“:g’O?Or;eatr;ﬁu;gger:; eti\?ef Egezthuenf:vciglrtr:?s
nal bath give rise to a constant width in the coordinate and y y Y

momentum distributions. The off-diagonal terms give rise toperature case. T'he uncertamty prgduct, shown in Fﬁ@g !
squeezing dynamics at twice the vibrational frequency. Fronf o 29ain remains cons.tar'n. with time. The error th‘k@gl
Eq. (27), we note that the real and imaginary parts of thein EQ. (29) is far less significant compared tw, at high
second moment amplitudd,, are related roughly to the temperature, and we haweygopg=ng+1/2. Indeed, Fig.
second derivative of the absorptive and dispersive line shapg({) simply reflects the behavior @iny=ny—n calculated in
functionsA2®,(w) and A2®x(w). The temperature depen- Eq. (26), which is also shown in the figure for comparison.
dence of the real and imaginary parts Af; are mainly There is a spread in bottigy and opg Near the absorption
governed by the factors?+n+1/2 andn+1/2, respec- Maximum, corresponding to pulse induced heating. Near the
tively. Thus, the phase,, of the second moment dynamics Wings of the absorption spectrum, however, boif, and
is strongly dependent on temperature and carrier frequency.pg '€ narrowed from their equilibrium values, correspond-
At zero temperature, the real and imaginary parts are comind to a laser pulse induced cooling of the ground state.
parable in magnitude, whereas for high temperatures such Turning to the second moments of the excited state wave
thatn2sn. the real part ofs,, dominates. This situation is pack_et, we recall from S_ec. I_V that the excn_ed state moments
similar to the first moment, where the mean positioeal ~ ©NlY involve the absorptive line shape functién(w). From
pary dominates the momentufimaginary partat high tem- Eqg. (43) we see that the B)smon uncertainty oscillatas
peratures. frequency 2v,) between fio+1/2+Ay—A2)Y? at t=0

In Fig. 7, we consider the 50 cm mode of the model and (.+ 1/2— A,)Y? at t= 7/2w,. The momentum uncer-
system in Fig. (a), and study the temperature and carriertainty lags the position uncertainty by/2w,. In Fig. 8, we
frequency dependence of the pulse induced position and malepict the detailed behavior of the position and momentum

4x10° .
1x107

-4x10°%

4x10°{

-4x10°

©d8(c. o)
2x10° s re 5
2x10°
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T=0K T=300 K C. Dependence on pulse width

A key ingredient for the creation of nonstationary vibra-
tional states is an ultrashort laser pulse with a bandwidth
sufficiently large to excite several vibrational levels. The su-
perposition of many such levels results in a localized wave
packet. Since several time scales are involved in the prob-
lem, we first define some useful limits. The impulsive limit is
when the pulse duration is much shorter than the vibrational
period, i.e.,7p<w51, with the electronic dephasing time
scale remaining arbitrary. If, in addition, the electronic
dephasing is much more rapid than the pulse, Fg‘gl,< s
i <wp ', we obtain the “snapshot limit2® While the condi-

Vo tion Fggl< 7, is justified for many condensed phase systems
-2x10%) C with broad and featureless absorption spectra, the simula-
N tions in Fig. 6 show that the impulsive limit is not generally
applicable for all modes in a multimode system with vibra-
tional frequencies spanning the bandwidth of the pump
. 0 pulse. A more extreme ultrashort pulse limit is defined as
0y that when the pulse duration is shorter than both electronic
and vibrational time scales, i.er,<I';/<wy . This is an
interesting limit to consider from a theoretical point of view.
- It has generally been recognized that coherent vibra-
1500 3 1500 "800 5 P tional motion in the ground state vanishes both in the ul-
-, (em’) ©-0 (em’) trashort pulse limit and in the very long pulse lifiit!%:526
It is obvious that a very long pulse does not have the suffi-
FIG. 8. Temperature and carrier frequency dependence of the position andant handwidth to excite coherent motion. The vanishing of
momentum uncertainties in the pulse induced excited state vibrational dis- . S
tribution. The pulse induced changdeom thermal equilibrium valugsn (e ground state coherence in the opposite limit of very short
the position uncertaintyoqg., momentum uncertaintyope, and their ~ pulses arises due to the fact that the broad spectrum of the
productd(oqeope) are plotted at times=0 (solid ling), t= /4w, (dotted  |aser pulse bleaches all the nuclear coordinates to an equal
'}”:e)d ‘:‘('T‘:;):_%Z;’ﬁe(iisrfsdpg:gigz);(S;ri‘;i‘?ees ,ﬁag geob?(”_d AoQeTpe) At exterlg. Thus, @ moving hole cannot be induced in the ground
state.” Both these limits are clearly obtained from the
ground state first moments in Eq20a and (20b) and the
second moment amplitude in EQ7). For an infinitely long
uncertainties of the excited state wave packet and their progsulse, the pulse envelope spectr@to — w,) approaches a
uct, for three different times stretching over a half period ofdelta function and the product spectral functi@]p(w
the second moment dynamics. The uncertainty product is-,  nw) in the moment expressions is vanishingly small.
once again pracuc_:al.ly [ndependenF of time, esp_eC|aIIy at h|gr|1n the ultrashort pulse limit, we may sép(w—wc,nwo)
temperatures. This is in accord with E&4), which shows _ ~, . . : .
that the oscillatory term diminishes rapidly with increasing:G (0= wc) and remove it ouE&de the integrals in Egs.
(203, (20b) and Eq.(27), since G*(w— w,) varies much

temperatures and the product attains the limijt+ (1 _ _ _
—A2)/2 more slowly than the line shape functions. The expressions
le ' . .
o . — . then reduce to integrals over the differences of bounded
It is interesting to note from Eq40) for n, that, if we . :
Lo : : . functions®(w) and®i(w) and hence vanish. It should be
neglect the vibrational frequency in comparison with the : ; S
. : noted this occurs only in the ultrashort pulse limit; in the less
electronic dephasing rate constdiy so that®,(w=* w) . . . _ .
. . o stringent impulsive limit, the moments are given by Egs.
=®,(w), we have, using Eq(33), ne=n+A</2. This is B2a)
. . : and (B2b).
precisely the mean occupation number for the displaced the|g
mal state as expressed in ). We will see in the follow- tate moments. we note that (0) also vanishes for lon
ing that the same limit fon, is obtained in the ultrashort > o Moments, We note @ (0) also vanishes for long

pulse limit. In contrast, the mean occupation number in thdPulses because the product spectral = functiG(w

ground Staten. given by Eq.(26) does not attain a simple —w¢,wq) in Eq. (369 is negligible. However, the integral in
limit for ultrafgst clectronic dephasing Eq. (363 does not vanish when the pulse is very short. If we

The simulations of the present section serve to iIIustraté]egleCt the variation of the pulse spectrum over the absorp-

the application of simple yet rigorous expressions for thetion line shape, the second term of HG6J is simply an

second moments and their connection to the equilibrium lind"t€9ral over the derivative of the bounded functidn(w)
shapes. It is clear that the detailed behavior of the positiorzimd therefore vanishes. We are then left with the~f|rst term,
and momentum uncertainties can also be evaluated overV#hich reduces to the following result if we le6,(w
wider range of pulse widths and temperature. —we,w0)=G*(w—w,) and use Eq(33):

4x10°

4x10° Pe

(C) 6(GQQGPe) (f)

-4x1074

Turning to the pulse width dependence of the excited
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Qe(t)=—Acogwot) (7p—0). (47) @ %@
By making similar approximations in Eqgt0) and(41), we
obtain the following expressions for mean occupation num-
bern, and the second mome@é(t) in the ultrashort pulse
limit:

-3000

ne=n+A%/2, (489  (b) ®,=220cm”

2(t)=n+1/2+ A%coS(wot). (48b)

The moments oP(t) are simply obtained by substitutirtg
—t+ 72w in EQs. (483 and (48b). The position and mo-
mentum uncertainties become time independent in the ul-
trashort pulse limit and approach their thermal equilibrium
values given by Eq(23):

oqdt)=0pdt)=V(n+1/2). (49)

From Eqgs.(47) and(37), we haveQ.(0)=0. The centroid of
the excited state nuclear wave packet is thus initially located
vertically above the ground state equilibrium position and
oscillates with an amplitudad. Equationg47)—(49) together
imply that for infinitely short pulses, the excited state wave

packet is simply the thermal stajer, initially displaced
from equilibrium as in Eq(6) with a coherent displacement
Ne=A//2. Note thafA4/?=A?/2=S is the quantity usually
called the electron nuclear coupling strength, and represent
the mean number of phonons in a coherent state that ha

been displaced by, from the vacuumﬁz 0).

Since the pulse induced ground state coherence vanishes o o
FIG. 9. (a) Absorption line shape for an asymmetric inhomogeneously

both in the “m't_Of pulses that are too !ong and t9° Sh_ortbroadened system, with parameters chosen to mimic the deoxyMb absorp-
compared to vibrational and electronic dephasing timejon spectrum at room temperatur@) Three-dimensional view depicting
scales, we would expect the amplitude of the ground statéhe laser pulse width and carrier frequency dependence of the first moment
coherent motion to peak at some intermediate value of th@mPplitude|Aq| and phasep,,, for the 220 cm* mode(coupling strength
pulse width. We have also seen that the amplitude and phagg 0% ™ the ground electronic state.
of the induced vibrational motion is strongly sensitive to the
detuning of the laser frequency from the absorption maxi-
mum. It is therefore important to consider both the laserin the position of the central iron atom of the porphyrin
pulse width and the carrier frequency if, for instance, one iging.8%7%In Fig. 9a), we plot the simulated absorption line
interested in determining the conditions for generating optishape with mode coupling strengths and frequencies ob-
mal displacements in the ground st&te® The expressions tained from previous resonance Raman studies of the Mb
derived here for the ground and excited state moments argoret line shap&’* Of the numerous modes coupled to the
amenable to fast numerical computation. The computationgboret transition, we consider two modes at 50 and 220'cm
advantage offered by the analytic expressions enables multand study the pump induced initial amplitude and phase for
dimensional plots that capture the behavior of the nonequithese modes. In Fig.(8), we plot the amplitude and phase
librium moments over an entire manifold of pulse widths andfor the 220 cm?* mode in the ground electronic state, as a
carrier frequencies simultaneously. Furthermore, the expregunction of carrier frequencys. and pulse widthr,. The
sions derived here allow us to incorporate the experimentallgpproach of the ground state amplitude to zero in both the
measured absorption line shapend its Kramers—Kronig short and long pulse limits is clear from Fig. 9. It is also seen
transform, the dispersion line shap@his enables absolute that the laser pulse width for WhichAlg| is maximum is
scale calculations of the pulse induced moments for angensitive to the detuning of the pulse center frequency from
given mode in a complex multimode system. Q,. The initial amplitude for excitation on the red side of
As an example, we consider the heme protein myoglobirthe absorption maximum is much larger than for excitation
(Mb), which is an oxygen storage protein found in muscletoward the blue side of the absorption maximum. This re-
cells. Mb possesses a highly asymmetric and broad absorfiects the asymmetry of the Mb absorption spectrum with a
tion spectrum(Soret bang in its ligand-free, high spin much larger slope on the red side than on the blue side of the
(deoxy, S=2) state. In previous studies, the Soret band ofabsorption maximum. Although there are numerous optically
Mb was modeled using a non-Gaussian inhomogeneousoupled modes in the model, the mode specific nature of
distributior?® of electronic energy levels, ascribed to disorderEgs. (208 and (20b) allows us to calculate the nonequilib-

200
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®,=50 em” () o,=50cm”

(a)

(b)

0
< )

00, (em™ 3000 *
) ) o ] FIG. 11. Dependence of the effective initial position of the excited state
FIG. 10. (a) Three-dimensional plot depicting the laser pulse width and wave packeQ.(0) on laser pulse width and carrier frequency, for the model

carrier frequency dependence of the pulse induced first moment amplitude ) N " -
profile () and phase profildb) for the 50 cm! mode §=0.1) in the System considered in Fig(#. (a) The mean position for the 50 ¢ mode

i -1
ground state. The mode is coupled to the inhomogeneously broadened syasr-]d(b) the mean position of the 22em™~ mode.

tem considered in Fig.(8).

pendence of the excited state position increment is very

rium moments for a specific vibrational mode of choice, Withstrongly sensitive to the laser pulls.e widtee F'g.' > I_:or .
very short pulses, the mean position changes its sign with

the effect of the remaining modes carried through in theres ect to the ground state equilibriumasis tuned across
equilibrium line shape functions. In Fig. 10, we plot the am- P 9 q @S

plitude and phase of the 50 crhmode in the ground state. Q”' As the pulse W'dt.h becomes Ionger,. the profile Of. Fhe

. . .. first moment slowly drifts toward the excited state equilib-

Note that the optimal amplitude of the ground state motion is. . o

) : rium and stays on one side of the ground state equilibrium

attained for pulses nearly as long as 100 fs in contrast to theosition for lona enouah oulses. The three-dimensional
220 cm ! mode which attains an optimal amplitude near 40P 9 9n p :

fs. The optimal pulse widths are thus not in direct proportionS'r.nUI":mons presented n F|g§. 9-11 c_:apture the hlghly d?'
o . . . tailed behavior of the pump induced first moments in posi-
to the vibrational frequencies as one might naively expect.

We plot the initial position of the excited state wave tion and momentum as a function of pulse width and carrier

— o _ _ frequency. The simple analytical formulas presented in this
packetQ¢(0) for the 50 and 220 cm™ mode in the excited o thys enable us to make fully quantum mechanical

state in Fig. 11. The initial position approaches the exciteqy antitative predictions for the laser pulse induced nonsta-
state equilibrium in the limit of long pulses implying that the tionary vibrational states in complex multimode systems.
oscillations vanish. For very short pulses, the limit expressed

in EqQ. (4?) is clearly ob_tamed, with the posmo.n increment | SUMMARY AND CONCLUSIONS

approaching zero. As discussed previously, this corresponds

to the fact that the excited state wave packet is placed di- In this paper, we have presented a rigorous analysis of
rectly above the ground state equilibrium position and oscilthe nonstationary vibrational states prepared by a short laser
lates with an amplitudé. Also, note that the detuning de- pulse interacting with a two electronic level system with lin-
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ear electron-nuclear coupling. The chief motivation behindgenerated due to purely geometric squeezing in the context
this work is to expose the nature of the pump-induced dooref nonradiative reactior. The analysis of overtone signals
way state, using a rigorous moment analysis. A knowledggenerated by dynamical squeezing due to the laser pulse in-
of the moments of the doorway state provides a convenierteraction will be the subject of future work.

starting point for the analysis of pump—probe sigrfalin We have pointed out the consequence of the second-
the present work, we have used moment generating functiormder perturbative approximation to the doorway density ma-
to derive general expressions for arbitrary momen®aind  trix. Since a genuine change in the ground state vibrational

P in the ground and excited state density matrices to secongopPulations requires a fourth-order interactistimulated
order in the pump fields. Ram.an scatteringof the pump.pulse, the diagonal density
The fully quantum mechanical expressions for the firstMatrix elements calculated using only the second-order ap-
two moments of position and momentum reveal interestinj?rox'mat'on will be inaccurate. The neglect of higher order
behavior with respect to temperature, pump pulse carrier fr ield mteractloqs results in certain d!screpanmes in the calcu-
quency, and width. The pump pulse induced changes of thigted expectation values of the higher moments. For ex-
mean position and momentum in the ground state are foun@MPle, we showed that the ground state doortaysecond
to depend on the derivatives of the absorptive and dispersiv@'de) violates the properties of a genuine density matrix,
line shapes, respectively. This relationship enables one tgNd léads to a position-momentum uncertainty product that is
readily obtain a qualitative understanding of the dependencl Violation of the uncertainty pr|n40|ple. While these aspects
of pump induced first moment changes on the carrier frehave been noted in earlier wot vOWe have presented an
quency. The mean position of pump induced ground statgStimate of the error o_lue to truncation at second order. .
exhibits a much stronger temperature dependence than the Perhaps the mostimportant aspect of the present analysis
mean momentum. This implies a strong temperature depers the direct connection made between the laser pulse in-
dence of the initial phase of the ground state wave packeguced nonstationary states and the measurable equilibrium
and consequently the phase of the pump—probe signal is alf$operties of the system. This connection appears through
strongly temperature dependéhtWhile the ground state the dependence of the pump-induced moments on the equi-
moments depend on both the absorptive and dispersive paftrium line shape functions. A direct consequence of this
of the equilibrium line shape functions, the moments of theaspect is that the pump induced moments are highly mode
excited state wave packet are shown to depend only on th@Pecific; the only explicit parameters in the moment expres-
absorptive line shape function. This is strongly indicative ofsions are the mode frequency and coupling strength. The rest
the distinct mechanisms that induce ground and excited staf the parameters relevant to the system and the bath are
coherences; namely stimulated Raman-type processes for tagtomatically carried by the measured line shape functions.
ground state, and absorptive processes for the excited staféne practical consequence is a many-fold increase in com-
The amplitude of the ground state oscillations decreases unputational efficiency. In this respect, the present approach
formly with temperature for all pump carrier frequencies. Inmust be contrasted with earlier treatments that expressed the
contrast, the profile of the excited state first moment amplifull second-order doorway density matrix using the more
tude exhibits a striking asymmetry with change in temperacumbersome sum over vibronic eigenstates expreséiofis.
ture: For red excitation, the amplitude of the excited statélere we have shown that the individual moments of the
wave packet decreases with increased temperature, where@gorway density matrix can be calculated efficiently using a
for blue excitation, the amplitude increases with temperaturecorrelation function based approach.
This contrasting behavior can be explained based on the Apart from computational advantages, the direct connec-
particle- versus hole-like nature of the ground and excitedion with equilibrium line shape functions can potentially be
state wave packets. It can also be used to experimentaligxploited in calculating the various moments on an absolute
discriminate between the ground and excited state cohefper moleculg scale. Since absolute scale measurements of
ences. the absorption cross section are possible experimentally, one
An analysis of the second moments of the pump-inducednay use the Kramers—Kronig relations to calculate the dis-
doorway state reveals information regarding the squeezing gfersion line shape, and subsequently incorporate the line
the ground and excited state nuclear distributions by the lasehapes in the moment expressions. This would yield precise
pulse interaction. It is well known that a difference in the values for moments of the nonstationary wave packet in-
curvature of the ground and excited state vibrational potenduced by the pump pulse for any given mode in a complex
tials (quadratic coupling can induce squeezed vibrational multimode system. This approach is analogous to transform
states’’~®° Apart from this “geometric” squeezing’ the la- methods previously used to describe resonance Raman
ser pulse can by itself induce a time-dependent variance iscattering?=4672
the vibrational distributions, which is also called “dynamic We finally mention that the present work can be ex-
squeezing.®’ The present analysis exposes the nature of théended beyond the linearly coupled harmonic oscillator
dynamical squeezing and its relation to the equilibrium ab-model assumed here. Quadratic electron-nuclear coupling
sorption and dispersion line shapes. While the first momentan be treated using standard quantum field theoretic tech-
dynamics constitutes a major part of the wave-packet motiomiques. Non-Condon effects can also be readily incorporated
detected by the pro& higher moment modulations, such as by assuming an exponential dependence of the dipole mo-
squeezing, will contribute weakly to overtone signals. Wement on the nuclear coordinate’® Furthermore, a calcula-
have recently presented an analysis of the overtone signalion of the moments for multiple pulse excitatf6n®® can
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also be carried out along the same lines as the calculatiog|ation dQ(t)/dtzon(tJm-r/Zwo) that follows from Eq.

presented here. The central point is that the initial stiaée (A2). These two equations imply the operator relatfft)
fore the pulse interactionss a thermal density matrix. The — O(t+ 7/2w) S0 that thenth moments o and P obe
multitime correlation functions can therefore be evaluated 0 y

exactly using a second-order cumulant expansion. Pn(t):Qn(t+ 712w0). (A5)

A moment analysis of the doorway state can also be
envisaged in spectroscopies that use multiply resonant pulses We now derive a fully quantum-mechanical expression
with different carrier frequencies. For instance, consider dor M §(k,t). Using Eq.(A1) and Eq.(9), we have
time domain coherent anti-Stokes Raman spectroscopy 2
experiment®’ involving two time coincident pulses with MO (k,t)= (1//\/){( KWy | el f“’ dt’fwds
wave vectorsk; and k,, which are followed by delayed h? % 0
pulse with wave vectok;. The measured signal is the total
coherent emission along the directiig=2k;—k,. In this
case, the relevant term in the third-order polarization consists
of contributions from three fields, one from each of the three x[e HSAd(t—t’,s)+ e BBt —t’ ,s)]] ,
pulses’® The first two fields (from the time coincident
pulses prepare a second-order doorway state. The corre- (A6)
sponding density matrix can be calculated by replacing the
two pump fieldsE4(t) in the second-order expression for the

doorway density matrixgiven in Eq.(3)] by the fields from o ' .
y y matrixgi q.(3)] by 9= <e'kQ<t>exp(iw Aft ds Q(S,)) >
"

XE(t)E(t' —s)e Leds

where we have defined

the two different pulses. One would then evaluate the vanoué‘k(t

moments for this density matrix, and subsequently make a T
displaced thermal state representation as in @®g. The (A7)
third-order polarization induced by the delayed pulse may ¢ ~ .

then be calculated using the effective linear respons@%(t—t',3)=<exl{—iwoAf ds’ Q(S')> 'kQ(t)> :
approact” A rigorous analysis of these experiments re- - T

quires the inclusion of the spatial dependence of the laser (A7b)
fields and will be considered in future work. The angular brackets ) denote the average with respect to
the thermal stat@(g) [see Eq(8)]. The thermal average can
APPENDIX A: MOMENTS OF NUCLEAR POSITION be evaluated exactly using a second-order cumulant expan-
AND MOMENTUM IN THE DOORWAY STATE sion (which is exact for a thermal state, according to Wick’s

5 .
1 Ground state theoren?®), with the result
. . . 90+ _ — A= 0(S) HiwgsAZ2,— (2n+1)k%/4
The moment generating function for the coordinate Ak(t—t'.s)=e 99 Flegsatizg=(2n+d)

Q(t), for the density matrip, is defined as KA
(9) kOt~ XeXF<—79(t—t',S)), (A8a)
ME (k)= (LN T e*Op], (A1) B
where\ is given by Eq.(15). The time evolution oRQ in BY(t—t’,5)=e 9" () ~iwosa®2g—(2n+1)k/4
Eqg. (Al) is governed by the ground state Hamiltoniﬁla KA
and takes the following form foI|A=Ig defined in Eq(109): xexr{ 79*(t—t’,s)). (A8b)
Q(t)=Q cog wot) + P sin(wot). (A2) " Here, we have defined the functigiit,s) [which arises from

From a knowledge off g)(k,t), we can calculate the time- the cross terms that result from the cumulant expansion in
dependent moments 6J for the pump induced density ma- EdS:(A7a) and(A7b)] as
trix by a simple differentiation of\ S’)(k,t): G(t,s)=—i[( (n+1)e iwot(1—e~ inS)_Heiwot(l_einS)],

(A9)
andg(s) is given by Eq.(12) for the undamped harmonic

Qg(t)=(—1)"(" M (k,)/ k") 0. (A3)

Also, since it follows from Eq(A1) and the definition in Eq.  .iator. If we expandy! andBY in powers ofk and sub-
(5) that stitute the resulting expression into E@\6), and compare
o (ik)® the result with Eq(A4), we get
MEkt)=2> ——Qx1), (Ad) . _ ..
n=0 N n!(2n+ 1) n!
. . - g(t E +— 2 2 On2+m
the moments can be directly obtained as the coefficients of =0 2"N (2i)"Ngy =0 m=0
the various powers ofk in the series expansion for m
M (k). The moments oP(t) are trivially obtained from XLAm(anL D'[Co(t)+(—1)C(1)],
the coordinate moments by letting-t + 7/2wg. To see this, I'm
consider the Hamilton's equatiaQ(t)/dt=woP(t) and the (A10)
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with Rttt

=exp(—ikA cos(wqt))
exp(iwoAft" ds’Q(s’)))
0

Here, 6, ; refers to the Kronecker’'s delta. The first term in Xeer(ikQ(t))(exp( _inAJ’t, ds’Q(s’)))
Eq. (A10) gives the moments of the equilibrium st . 0 _

Equations(A10) and (A11) along with Egs.(A9) and (12)

provide the complete set of expressions required to calculate (A17)
arbitrary moments of the coordinate operator in the pumprhe thermal average in EGA17) can be evaluated similar to
induced density matrix. The moments Bft) are obtained EQgs.(A7a) and(A7h), using a second-order cumulant expan-
using Eq.(A5). sion. We find

ettt =e" g* (5)~iwgsA %2~ (2n+1)k%/4

_ |Mge|2 * ’ * ’ ’
Cp(t)y=——— dt ds Et")E(t'—s)
f2 J-o 0

X
Xe—reQIS\—iﬂoos—g(S)[g(t_t’,5)]“1_ (A11) <

+

i kA
2. Excited state ><ex;< _ 7ge(t,t’,t”)), (A18)

Consider the coordinate operaf@revolving in time due

to |:|e defined in Eq(10b): whereg(s) is defined in Eq(12), and
It —i[a— iwgt iwgt’ __ A aiopt”
Ou(t) =A+(Q—A)cog wot) + P sin(wgt). (A12) Ge(t,t 1) =ile e ((n+ 1)ee —ne™s)
_ _ _ +eled((n+1)e o —ne @ty (AL9)

This has the expected form, with the constanteflecting

the oscillations about the excited state equilibrium position[Note thatGe(t,t",t")=—Gzg (t,t',t").] Expansion ofA in
In evaluating the excited state moments, it is more convePowers ofk and substituting the result in ECA16) gives us

nient to shift the origin ta\ and taked,(t) = Oq(t)— A for  the final result:
the excited state oscillator coordinate. The creatdestruc- (k)"
tion) operators for the excited state oscillator with a shifted M ge)(k,t)= 2
equilibrium position are defined as n=0

Q) (A20)

. L . L where
Q-A=(a+al)/V2;P=i(al-a.)/\2. (A13) .. .
n! (-1 —
m _ |
From Eq.(10b), the excited state Hamiltonian is given as Qe (V)= (Zi)wego mE:O On2+m [1m! A"(2n+1)
H.=7%wo(alae+ 1/2)—hwoA?/2. The moment generating i}
function is then defined analogous to EA1) but with the X[Dp(t) +(—1)™DR(1)], (A21)
substitutionQ(t) — Q.(t) andg— e with
(e — ikQa(t) 2 ro )
MG (K, = (LN TH{ V], (AL4) D)= l”;f' dr J Y gt B E)

where N\, is the excited state population given by Eg§3). ‘
Using Eq.(A2), we also haveQ.(t)= Q(t)— A cosfwgt) so xe Tedsl T 1%~ O g (t,t',t")]™.  (A22)

that Equations(A21) and (A22) along with Egs.(A19) and (12)
provide the complete set of expressions required to calculate
arbitrary moments of the coordinate operator for the pump

A ) induced excited state density matrix. Extension of the main
Analogous to Eq(A5), the moments of th® for the excited  regyits in this section to the multimode harmonic case and

state can be obtained from the coordinate moments by thgy yamped oscillators is straightforward, but is not consid-
substitutiont—t+ /2w, . For the coordinate moments, We greq here for simplicity.

have from Eqs(32) and (Al14)

ME(K,t)= (LN T kQWp Je~ka cosoa)  (A15)

2 ee] ’
ME (k)= @f dt’ ft dt” E(t")E(t")e Teds APPENDIX B: COHERENT MOTION IN THE
Nefi2) e )= IMPULSIVE LIMIT

X[/ HSAR(LE 1) + e AR )], Here we consider the impulsive limit of the first moment
(A1e)  results obtained in Secs. IlI B and IV B, by assuming that the
laser pulse duration is much shorter than the vibrational pe-
wheres=t'—t"” and we have defined riod. Consider the ground state first moments in Eg88a
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and (20b). Before we make the short pulse approximation, ~ Eo 212 (0 w)2:22
we rewrite the two equations after making a simple change ~ E(w)=—-(277) % (@m0 T2 (B4)
of variables:
2
B D ()= ml202e (0= 2207, (B5)
_ | wgel “E§(2n+1)A [= - _ _ o .
Qq(0)=— 5 f do®(0)G(w—w,) where the semiclassical linewidth is given by
8mh Ny =AkgTwg/h. Using these definitions in E¢B2a), we get
X[G(w—ws— w)—G(w—w+wy)], (Bla) a(lmp)(o):(2w)3’2w0|ﬂge|2E§T§A(2F+1)
22 g 167h203
— |/'Lge| EOA * ~
Pg(O)z—zf do Pr(w)G(o—w) ©
87h°Ny Jo Xj do(w—1Q,)
0

X[G(w—w;—wg) —G(w—w.+wg)]. (Blb) Xe_(“’_“’C)ZT,Z)e_(“’_Qv)Z/ZU‘Zr. -
If we now make the approximation-,,;l> wgo, We may re-
place the expressions within square brackets in Hga)
and (B1b) by the first derivatives of the pulse spectrum. A
subsequent integration by parts then leads to final results, CongA(wc—Qy)(ZFJr 1)

Evaluation of the above-mentioned integral gives the final
result,

Qg™ (0)= 2 2
— 1+2720%)%2
S gy oo B2+ D)o (1+2mor
g 8mh2N, 7
9 xexg — —— 55 (0.~ Q,)?|,  (B7)
© (1+27507)
X | doG(w— 0P |(w)ldw), (B2 ,
fo © GHw=wg)(901()/dw),  (B23 where we have defined the constaDt= | uqe2E§/252.
Equation(B7), valid in the impulsive limit of short pulses,
o | gel 2E2woA captures several of the features found from the general result
Py™(0)= L 2 in Eq. (20a. The initial amplitude is seen to change its phase

SWhZNg across the absorption maximufd,. The sign of the dis-
o placement is opposite to that of the excited state equilibrium
Xf do G*(w— ) (dPr(w)/dw). (B2b)  shift A for red detuning from the absorption maximum,
0 while it has the same sign for blue detuning. The ground

The only assumption made in deriving the above results ig?a_\te d|splac§ment _van!sh_es for very St‘?rt pulses. l.f! in ad-
gltlon to the impulsive limit wherevp<7, ", the condition

that the pulse duration is short compared to the vibrationa > Lis 4 tisfiedvielding th hot lin7®). E
period. The temperaturdlinear electron-nuclear coupling or>7p 1S alS0 Salls iedyielding the snapshot limit), Eq.

strength, and all other line shape parameters remain arbitrarg)?:ﬂ) reduces to

It is seen that in the impulsive limit, the position and mo- _ CworyA(we—Q,)(2n+1)

mentum increments are simply given by the convolution of ~ Q{™(0)= P -

the laser pulse spectrum with the derivatives of the absorp- \/§‘7T

tion and dispersion line shapes, respectively. Also, the effect Xexd — (w.—Q,)%202], (B8)

of the spectral bandwidth of the laser pulse enters the above - _
expressions independently of the mode frequency, in contra§@ that the mean position has a linear dependence on the

to the general expressioli20a and (20b). pulse width.
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