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Investigations of ultrafast nuclear response induced by resonant
and nonresonant laser pulses

Anand T. N. Kumar, Florin Rosca, Allan Widom, and Paul M. Championa)

Department of Physics and Center for Interdisciplinary Research on Complex Systems,
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~Received 13 November 2000; accepted 25 January 2001!

We analyze the nonstationary vibrational states prepared by ultrashort laser pulses interacting with
a two electronic level molecular system. Fully quantum mechanical expressions are derived for all
the moments of the coordinate and momentum operators for the vibrational density matrices
associated with the ground and excited electronic states. The analysis presented here provides key
information concerning the temperature and carrier frequency dependence of the moments, and
relates the moments to equilibrium absorption and dispersion line shapes in a manner analogous to
the ‘‘transform methods’’ previously used to describe resonance Raman scattering. Particular
attention is focused on the first two moments, for which simple analytical expressions are obtained
that are computationally easy to implement. The behavior of the first two moments with respect to
various parameters such as the pulse carrier~center! frequency, pulse width, mode frequency,
electron-nuclear coupling strength, and temperature is investigated in detail. Using rigorous
analytical formulas, we also discuss the laser pulse induced squeezing of the nuclear distributions as
well as the pulse induced vibrational heating/cooling in the ground and excited states. The moment
analysis of the pump induced state presented here offers a convenient starting point for the analysis
of signals measured in pump–probe spectroscopy. The moment analysis can also be used, in
general, to better understand the material response following ultrashort laser pulse excitation.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1356011#
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I. INTRODUCTION

Femtosecond laser pulses, with durations shorter t
typical nuclear vibrations, are widely used to prepare spec
molecular states and study their evolution in real time.1–22

An example is pump–probe spectroscopy, or femtosec
coherence spectroscopy, where an ultrashort pump l
pulse is used to excite the sample of interest. The subseq
nonstationary response of the medium is monitored by a
layed probe pulse. The effect of a short laser pulse incid
on a two electronic level molecular system is to induce n
stationary vibrational states~vibrational coherence! in both
the ground and excited electronic levels. Ground state co
ence, usually ascribed to impulsive stimulated Raman s
tering processes,4–6 is the dominant contribution in system
with short-lived excited states and for off-resona
excitation.2,10,11,14,16 Vibrational coherence in the excite
state is, however, the dominant contribution for systems
have long-lived excited states.1,7–9,12,13,19,22

A common description of pump–probe spectroscopy
based on the third-order susceptibility (x3) formalism, which
provides a unified view of four-wave mixing
spectroscopies.23–26 The state of the molecular system i
between the pump and probe pulse interactions is, howe
not explicit in thex3 formalism.27 It is often the case that th
most interesting part of a pump–probe signal is when
pump and probe pulses are well separated in time, a l
usually termed the well separated pulse~WSP! approxima-

a!Electronic mail: champ@neu.edu
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tion. A physical model that treats the pump and probe eve
separately is therefore very useful. An example is
doorway-window picture,26 which can be used to represe
pump and probe events in terms of Wigner phase space w
packets, and readily enables a semiclassical interpretatio
pump–probe experiments.28–30 Another approach in the
well-separated pulse limit is based on a description of
pump induced medium using nonstationary effective lin
response functions.10,25,31–33We have recently demonstrate
the application of an effective linear response approach
pump–probe spectroscopy using a displaced thermal s
representation of the pump induced~doorway! density
matrix.27 A key requirement for this representation is
knowledge of the moments of position (Q) and momentum
(P) in the doorway state. A moment analysis of the doorw
state is well justified by the fact that the vibrational sta
prepared by short pulses are highly localized in (Q,P) phase
space. We thus expect the doorway states to be descr
adequately by the first few moments. In addition, when
first moments of the doorway state are incorporated into
effective linear response functions, the resulting pum
probe signals are in excellent agreement with the predicti
of the third-order response approach,27 which implicitly in-
corporates all the moments of the doorway density matrix
addition to providing an accurate description of pump–pro
signals in the well-separated pulse limit, a knowledge of
moments allows a clear physical interpretation of the am
tude and phase profiles observed in pump–probe exp
ments of nonreactive samples.27,34
5 © 2001 American Institute of Physics
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Apart from pump–probe experiments, a fully quantit
tive understanding of the matter states prepared by shor
ser pulses can by itself serve as a fruitful exercise. For
stance, there has been an increasing interest in using s
and multiple laser pulses to control molecular dynamics
to generate optimal vibrational motion.9,35–38Numerous the-
oretical studies have addressed impulsive preparation of
lecular states in detail and are usually based on a semi
sical treatment of the laser pulse interaction.36–40 The
advantage of the semiclassical approach is that it prov
simple analytical expressions that are valid in the short pu
limit,36–38 and enables several key insights into the gene
tion and detection of coherent wave packet motion.39,40 A
fully quantum treatment, on the other hand, has usually
tailed a direct numerical solution of the Schro¨dinger
equation.35,37,41

One of the primary motivations of this work was th
interpretation of the observed amplitude and phase profile
femtosecond pump–probe experiments of myoglobin.27,34As
mentioned earlier, a fully quantum mechanical evaluation
the moments of the doorway state is key to the effect
linear response approach, which substitutes for the comp
tionally more intensive third-order response approach.27 It is
also clear that a precise determination of the first and hig
moments of the nonstationary wave packets induced by s
pulse excitation is useful in the above-mention
applications.9,35–37 In the present work, we consider a tw
electronic level system with a multimode set of linearly d
placed harmonic oscillators, and obtain general express
for the nth moments ofQ and P in the doorway density
matrix. The first two moments are studied in detail, and
directly connected to equilibrium absorption and dispers
line shape functions. Because of this connection, abso
scale calculations of the moments are made possible eve
complex multimode systems, with only a knowledge of t
measured equilibrium absorption cross sections. This
proach is analogous to ‘‘transform’’ calculations in res
nance Raman scattering.42–46In addition, the temperature de
pendence of the moments is clearly revealed in
calculations presented here, and the results are shown
in good agreement with earlier treatments based on the
pulsive ~short pulse! approximation.36–40

The general outline of the paper is as follows. In Sec.
we briefly discuss the background for the present work
discuss the basic expressions involved in a perturbative tr
ment of the laser pulse interaction. In Sec. III, we calcul
the first and second moments ofQ andP in the ground state
density matrix using the general expressions for thenth mo-
ments presented in Appendix A. In Sec. IV, we carry ou
similar analysis of the first two moments of the excited st
density matrix. In Sec. V, we present simulations to study
behavior of the first two moments ofQ andP as a function of
the laser pulse carrier frequency, pulse width, mode
quency, coupling strength, and temperature.

II. BACKGROUND

We first briefly review the basic expressions involv
in a perturbative treatment of the pump induced density m
trix. Consider the interaction of a two electronic level syste
with the pump laser pulse whose electric field is represen
Downloaded 11 May 2003 to 128.103.60.225. Redistribution subject to A
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as E(t). We write the total Hamiltonian asĤ(t)5Ĥ0

1ĤI(t), with the free HamiltonianĤ0 and the interaction
Hamiltonian ĤI having the following typical form~in the
interaction picture! for a molecular system with two elec
tronic levels:

Ĥ05S Ĥe1\Vv 0

0 Ĥg
D ,

~1!

ĤI~ t !52m̂~ t !•E~ t !52S 0 m̂ge~ t !•E~ t !

m̂eg~ t !•E~ t ! 0 D ,

where Ĥg and Ĥe5 Ĥg1V̂ are, respectively, the adiabat
Born–Oppenheimer Hamiltonians for the ground and exci
electronic states.V̂ is defined as the difference potential th
specifies the electron nuclear coupling,\Vv is the vertical
electronic energy gap at the equilibrium position of t
ground state, andm̂(t) is the electric dipole moment operato
evolving according to the free HamiltonianĤ0 . Let r̂~2`!
denote the initial density matrix of the system before t
arrival of the pump fields. The evolution of the density m
trix due to the laser pulse interaction can be described by
Liouville equation:47

i\
]r̂~ t !

]t
5@ĤI~ t !,r̂~ t !#. ~2!

Equation ~2! can be solved forr̂(t) iteratively to various
orders in the interactionĤI(t). For pump–probe calcula
tions, the second-order term is of relevance since it is
lowest order in the pump interaction that can contribute
the signals.48,49From Eq.~2!, we obtain27 the following form
for the density matrix to second-order in the pump inter
tion:

r̂~ t !5 r̂~2`!1S i

\ D 2E
2`

t

dt2E
2`

t2
dt1@m̂k~ t2!,

@m̂ l~ t1!,r̂~2`!##Ek~ t2!El~ t1!. ~3!

Note that we have omitted the first-order term as it is n
relevant for a pump–probe calculation. In Eq.~3!, the indices
k and l refer to the vector components and summation o
repeated indices is implied. Note that the second-order
turbative term is also referred to in the literature as the d
sity matrix jump50 and the doorway function.28,30,51For well-
separated pump and probe pulses, one is interested in
density matrix in Eq.~3! after the pump fieldsE(t) have
ceased to evolve. Ast→` in Eq. ~3!, the interaction picture
density matrix becomes time independent, and the time
guments will be dropped in the following development.

If we project the density matrixr̂ onto the electronic
basis, we obtain the nuclear sub-density matrices for
ground and excited electronic states. Noting that the seco
order density matrix in Eq.~3! has no electronic coherence
due to the even number of dipole interactions, we may w

r̂5 r̂eue&^eu1 r̂gug&^gu5S r̂e 0

0 r̂g
D . ~4!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In general, the nuclear subdensity matricesr̂g and r̂e may
contain off-diagonal elements~vibrational coherence! in the
number state representation due to the broad frequency s
trum of an ultrashort laser pulse. The presence of o
diagonal terms reflects the nonstationary nature ofr̂, which
in general does not commute withĤ0 . The vibrational co-
herence translates into time-dependent wave packets
semiclassical phase space (Q,P) Wigner representation o
the density matrix.26,40,52,53On the other hand, the highl
localized nature~in Q andP) of impulsively driven nonsta-
tionary states suggests that we calculate their moments in
stateu ~which representsg or e) using

X̄u~ t !5Tr@^uuX̂~ t !uu&r̂u#/Tr@ r̂u#. ~5!

With â(â†) as the mode annihilation~creation! operators,X̂
represents Q̂5(â1â†)/A2, P̂5 i (â†2â)/A2, or their
higher powers. The timet in Eq. ~5! is larger than the pulse
duration so that the density matrixr̂s is time independent
However, thet50 values54 of the first moments ofQ̂ andP̂,
i.e., Q̄u(0) andP̄u(0), respectively~for u5g or u5e), de-
termine the effective initial conditions for the subseque
nuclear dynamics on the potential surfaceu. Since Q̄u(0)
and P̄u(0) also denote shifts from thermal equilibrium, w
may represent the nonstationary nuclear density matrix
the electronic state ‘‘u’’ as a coherent-thermal state:

r̂u5D̂~lu!r̂T
(u)D̂†~lu!. ~6!

Here, D̂(lu) is the quantum mechanical displaceme
operator55

D̂~lu!5exp~luâ†2lu* â!, ~7!

with lu5(Q̄u(0)1 i P̄u(0))/A2. r̂T
(u) is the equilibrium ther-

mal density matrix corresponding to the nuclear Hamilton
of the electronic levelu:

r̂T
(u)5Z21exp~2Ĥu /kBT!. ~8!

The displaced thermal state representation in Eq.~6! has
been shown27 to provide an accurate and computationa
efficient approach to calculating pump–probe signals. T
presents us with the primary motivation for a rigorous m
ment analysis of the pump induced density matrix. As
will see in the following, the laser pulse can induce high
moment changes~also termed squeezing! in the vibrational
distributions in addition to merely displacing them. Equati
~6! is only an approximation to the full second-order dens
matrix in Eq.~3!. The higher moments ofr̂u calculated here
can be incorporated in a manner analogous to Eq.~6! using a
displaced and squeezed state representation.

In Appendix A, we derive general expressions for t
nth moments ofQ̂(t) andP̂(t) for the pump induced nuclea
density matricesr̂g and r̂e for a two level system, with a
single linearly coupled~undamped! mode. In what follows,
we discuss the effect of the pump pulse interaction on
vibrational populations and the first two moments ofQ̂ and
P̂ in the ground and excited states.
Downloaded 11 May 2003 to 128.103.60.225. Redistribution subject to A
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III. NONEQUILIBRIUM GROUND STATE DENSITY
MATRIX

For simplicity, we restrict the discussion here to sca
fields assuming that the medium is isotropic. We make
Condon approximation that neglects the nuclear coordin
dependence of the dipole operator and writem̂5mgeug&^eu
1megue&^gu. The system is assumed to be initially in th
ground electronic state with an equilibrium Boltzmann d
tribution for the vibrational states, i.e.,r̂(2`)5ug&r̂T

(g)^gu,
wherer̂T

(g) is of the form in Eq.~8! with Ĥs replaced byĤg .
The ground state density matrix to second order in the pu
fields is evaluated using Eq.~3! as r̂g5^gur̂ug&. We find

r̂g5 r̂T
~g!2

umgeu2

\2 E
2`

`

dt8E
0

`

ds E~ t8!E~ t82s!e2Gegusu

3H e2 iVvsexpS 2
i

\Et82s

t8
ds8V̂~s8! D

1

r̂T
~g!1h.c.J , ~9!

where the subscript~1! denotes time ordering and h.c. d
notes Hermitian conjugate. We have defineds5t82t9 for
convenience.V̂(s) evolves in time viaĤg in the interaction
picture. We have also introduced homogeneous broade
using the factore2Gegusu to account for electronic dephasin
processes. It is evident from Eq.~9! that the action of the
electron-nuclear coupling force~which appears through th
time-ordered exponential! on the equilibrium stater̂T

(g) re-
sembles a square wave pulse interaction that turns on an
at times separated by an intervals. The total effect of the
pulse on the ground state is obtained by a superpositio
square wave interactions for all possible time interv
within the duration of the pump pulse.

Equation ~9! is valid for arbitrary ground and excite
state nuclear Hamiltonians. In what follows we conside
model of linearly displaced harmonic oscillators for th
ground and excited states and takeV̂52(\/mv0)1/2f Q̂5

2\v0DQ̂, with dimensionlessQ̂ and relative displacemen
D. The electron-nuclear coupling forcef is expressed asf
5D(mv0

3\)1/2 where m and v0 are, respectively, the re
duced mass and frequency of the mode. With these de
tions, the ground and excited state Hamiltonians take
form

Ĥg5
\v0

2
@Q̂21 P̂2#, ~10a!

Ĥe5
\v0

2
@~Q̂2D!21 P̂2#2

\v0D2

2
. ~10b!

A. Populations

The pump pulse induces a net change in the ground
excited electronic state populations, which is reflected in
zeroth moment, i.e., the trace of the respective nuclear d
sity matrices. The electronic population in the ground st
after the pump pulse interaction is calculated asNg

5Tr@ r̂g#. Using Eq.~9!, we find,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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6798 J. Chem. Phys., Vol. 114, No. 15, 15 April 2001 Kumar et al.
Ng512
umgeu2

\2 E
2`

`

dt8E
0

`

ds E~ t8!E~ t82s!

3$e2 iV00se2g(s)e2Gegusu1c.c.%, ~11!

whereV005Vv2v0D2/2 is the zero-zero electronic trans
tion frequency andg(s) is the harmonic oscillator correlatio
function. For a single undamped mode,

g~s!5~D2/2!@~ n̄11!~12e2 iv0s!1n̄~12eiv0s!#, ~12!

with n̄5(exp(\v0 /kBT)21)21. Analytic expressions forg(s)
for the damped harmonic oscillator case at arbitrary temp
ture have been derived earlier56 and can be incorporated i
the expressions derived in this work. In terms of the Fou
transformẼ(v) of the electric field, Eq.~11! takes the form

Ng512
umgeu2

p\2 E
2`

`

dv uẼ~v!u2F I~v!, ~13!

whereF I(v) is the imaginary part of the complex equilib
rium line shape function defined as

F~v!5 i E
0

`

ds ei (v2V00)se2Gegusue2g(s). ~14!

The imaginary part of the line shape function is direc
related to the absorption cross section assA(v)
5(8pumgeu2/3\c)vF I(v). We take the electric field to be
of the form E(t)5E0G(t)cos(vct) whereG(t) is a dimen-
sionless Gaussian envelope function. The correspon
Fourier transform is thenẼ(v)5E0@G̃(v2vc)1G̃(v
1vc)#/2 where G̃(v) is the Fourier transform ofG(t).
When this definition is used in Eq.~13!, four terms result
from the expansion ofẼ2(v). Equation~13! contains contri-
butions from the line shape function at negative frequenc
i.e., F I(v,0). It is clear that the integrand in Eq.~14! is
highly nonresonant forv,0, so that the line shape functio
makes a vanishing contribution at negative frequenc
Thus, we neglect those terms in Eq.~13! that contain the
negative frequency part of the pulse envelope spectrum,
G̃(v1vc) and take only the positive frequency part of t
integral in Eq.~13!. This is a valid~‘‘rotating wave’’! ap-
proximation, given that we are concerned with pulses t
have optical carrier frequencies. We then arrive at the
lowing result:

Ng512
umgeu2E0

2

4p\2 E
0

`

dv G̃2~v2vc!F I~v!. ~15!

The depletion in the net ground electronic state popu
tion thus depends on the convolution of the laser inten
spectrum with the absorption line shape as one would exp
Since the total number of molecules must be conserved~ne-
glecting decay through other nonradiative channels du
the pump pulse!, the corresponding number of molecul
transported to the excited state by the pump is simply gi
by Ne512Ng . It should be remembered that Eq.~15! has
been derived in the weak field perturbative limit and t
number of molecules depleted from the ground state is v
small ~i.e., Ng'1).
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The line shape functionF~v! plays a central role
throughout the calculations presented in this work. While
electronic populations depend only on the imaginary par
F~v!, we will see in the following that the moments ofQ̂

and P̂ in the pump induced nonequilibrium density matr
involve both the absorptive and dispersive line shapesF I(v)
andFR(v).

B. Vibrational dynamics

The interaction with the laser pulse sets up both el
tronic and vibrational coherence in the system. However,
electronic coherence vanishes for a second-order interac
with the pump laser field, owing to the even dipole intera
tions in the second-order perturbative expression for the d
sity matrix in Eq. ~3!. We therefore focus attention on th
vibrational coherence induced in the electronic states.

1. First moment

The first moment ofQ̂(t) in the ground state is obtaine
by lettingn51 in the general expression Eq.~A10!. We find

Q̄g~ t !5
1

2iNg
(
l 50

`

(
m50

`

d1,2l 1m

~21! l 1m

l !m!
Dm~2n̄11! l

3@Cm~ t !1~21!mCm* ~ t !#, ~16!

whereCm(t) is given by Eq.~A11!. Due to the Kronecker’s
delta, we must havel 50 andm51, so that

Q̄g~ t !52~D/Ng!Im@C1~ t !#. ~17!

Using Eqs.~A11! and ~A9!, we find

C1~ t !5
umgeu2

2p\2E2`

`

dv Ẽ~v!$~ n̄T11!e2 iv0tẼ* ~v2v0!

3@F~v!2F~v2v0!#2n̄Teiv0tẼ* ~v1v0!

3@F~v!2F~v1v0!#%. ~18!

Equation~18! again involves nonresonant contributions fro
the line shape function at negative frequencies, i.e.,F~v,0!.
For pulses with optical carrier frequencies, the contribut
of the negative frequency components is negligible and
be dropped from the above integral. We then find, after m
ing a change of variablesv→v2v0 in the second part of
the above integral and using the definition ofẼ(v) following
Eq. ~12!,

Q̄g~ t !5uA1gucos~v0t1w1g!, ~19!

where A1g5Q̄g(0)1 i P̄g(0)5uA1guexp(2iw1g) is the com-
plex amplitude for first moment dynamics in the grou
state, with the effective ‘‘initial’’ position and momentum
Q̄g(0) andP̄g(0) given by:

Q̄g~0!52
umgeu2E0

2~2n̄11!D

8p\2Ng

3E
0

`

dv G̃p~v2vc ,2v0!D̂F I~v!, ~20a!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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P̄g~0!5
umgeu2E0

2D

8p\2Ng
E

0

`

dv G̃p~v2vc ,2v0!D̂FR~v!.

~20b!

Here, we have introduced the product spectral funct
G̃p(v,nv0):

G̃p~v,nv0!5G̃~v!G̃~v1nv0!, ~21!

and the difference operatorD̂ ~not to be confused with the
dimensionless couplingD) whose action is to generate di
ferences as46

D̂ F I~v!5F I~v!2F I~v2v0!, ~22a!

D̂2 F I~v!5D̂ @F I~v!2F I~v2v0!#

5F I~v!22F I~v2v0!1F I~v22v0!,

~22b!

and so on for the higher powers ofD̂.
Equations~20a! and~20b! are fully quantum mechanica

expressions for the first moments and are valid for arbitr
pulse widths, temperature, and electron-nuclear displacem
D. It is clear that the mean initial position and momentu
imparted by the pump pulse to the ground state wave pa
are related roughly to the derivatives of the imaginary a
real parts of the equilibrium line shape function, resp
tively. In Appendix B, we discuss the impulsive limit of th
above-mentioned results and also present a closed form
pression for the mean position assuming a Gaussian~semi-
classical! form for F I(v). The single mode expressions
Eqs. ~20a! and ~20b! can be readily generalized to the mu
timode case, with the same equations applying for a gi
mode with parametersv i , D i , and n̄i . The line shapes can
be obtained using the multimode form of the equilibriu
correlation function in Eq.~12!. In fact, Eqs.~20a! and~20b!
~as well as the rest of the moment expressions derived in
work! are quite general multimode expressions so long as
mode of interest is linearly coupled andF(v) is obtained
from the experimental line shape. In this case, the remain
multimode subspace resides in the experimental line sh
function, unrestricted by approximations such as linear c
pling and mode mixing.

2. Second moment

In addition to the first moments of the nuclear positi
and momentum, it is also of interest to calculate the pu
induced changes in the variances~or the uncertainties! of the
position and momentum distributions. Before the interact
with the laser fields, the position and momentum uncerta
ties ~defined in terms of the variancessA

25A2̄2Ā2, with A
5Q,P) have equal values at temperatureT:

sQ5sP5An̄11/2. ~23!

The effect of the pump pulse is to distort the equilibriu
nuclear distributions and modify the above-given varianc
To see what is involved, we expressQ̂ and P̂ in terms ofâ
andâ† using the definitions following Eq.~5! and obtain the
second moment ofQ̂(t) in the pump induced ground state a
Downloaded 11 May 2003 to 128.103.60.225. Redistribution subject to A
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Qg
2̄~ t !5~1/2Ng!Tr@ r̂g~ â2~ t !1â†2~ t !1â†â1ââ†!#

5n̄g11/21uA2gucos~2v0t1w2g!, ~24!

where we have also usedâ(t)5âe2 iv0t. The quantitiesn̄g

andA2g5uA2guexp(2iw2g) are, respectively, the mean valu
of the number operatorn̂5â†â and the mean value ofâ2, for
the state described byr̂g . It is clear from Eq.~24! that
the second moment in the pump induced state consist
both vibrational coherence at frequency 2v0 and the mean
occupation number of the ground state. The amplitude
the second moment dynamics at frequency 2v0 is given

by uA2gu. If Qg
2̄(t)2Qḡ(t)2 is time-dependent, the nuclea

distribution has been squeezed by the laser pu

interaction.57–60 In what follows, we evaluateQg
2̄(t) using

the general result Eq.~A10!, which assumes the second-ord
perturbative expression forr̂g given in Eq.~9!. A direct com-
parison of the results with the identity in Eq.~24! subse-
quently leads to expressions forn̄g andA2g to second-order
in the fields.

If we setn52 in Eq.~A10!, the allowed sets of values o
( l ,m) are (1,0) and (0,2) and we find

Qg
2̄~ t !5

2n̄11

2Ng
~112 Re@C0~ t !# !2

D2

2Ng
Re@C2~ t !#. ~25!

Using Eqs.~A11! and ~15! we have Re@C0(t)#5(Ng21)/2.
The quantityC2(t) is also readily evaluated using Eq.~A11!.
On comparing the final result with Eq.~24! and ignoring
nonresonant contributions, the second-order expressions
mean occupation number and the oscillatory amplitude of
second moment are found as

n̄g5n̄2
umgeu2E0

2D2n̄~ n̄11!

8p\2Ng

3E
0

`

dv G̃2~v2vc!D̂
2F I~v1v0!, ~26!

A2g52
umgeu2E0

2D2

8p\2Ng
E

0

`

dv G̃p~v2vc ,22v0!

3@~ n̄21n̄11/2!D̂2F I~v!2 i ~ n̄11/2!D̂2FR~v!#.

~27!

As discussed in Appendix A, the second moment of

momentum operator is obtained asPg
2̄(t)5Qg

2̄(t1p/2v0),
so that

Pg
2̄~ t !5n̄g11/22uA2gucos~2v0t1w2g!. ~28!

The variances ofQ̂ and P̂ in the pump induced ground stat
can be directly obtained using Eqs.~24! and~28! along with
the first momentsQ̄g(t) andP̄g(t) given by Eq.~19!. For the
time-dependent uncertainty product, we find

sQg~ t !sPg~ t !>n̄g1
1

2
~12uA1gu2!2

uA2gu2

~2n̄g11!

3cos2~2v0t1w2g!. ~29!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In obtaining Eq.~29!, small terms involving higher power
of the electric field strength have been ignored, since we
in the weak field limit. Furthermore, in typical weak co
pling situations,uA2gu is much smaller thanuA1gu since it
scales with the square of the coupling strengthD. Thus, the
time-dependent term of Eq.~29! is very small and the uncer
tainty product is nearly time independent.

A direct inspection of Eqs.~26! and ~27! reveals an ap-
parent contradiction. When the system is initially atT50,
we haven̄g50, i.e., there is no change in the vibration
populations due to the pump–pulse interaction. The osc
tory amplitudesA1g and A2g that describe the ground sta
coherence are, however, not necessarily vanishing atT50,
as evident from Eqs.~27! and ~20a! and ~20b!. The number
basis elements ofr̂g therefore obey the following relations

~ r̂g!0 jÞ0, ~ r̂g!0051, ~ r̂g! j j 50, ; j Þ0, ~30!

in violation of the density matrix inequality condition61

ur i j u2<r i i r j j for any given pair of vibrational levelsi and j.
Thus, strictly speaking,r̂g is not a complete vibrationa
density matrix.40 Furthermore, we have from Eqs.~26!
to ~29!, at T50,

sQg~0!sPg~0!> 1
2~12uA1gu2!, ~31!

which is always less than the zero point limit of 1/2. The
apparent discrepancies are due to the second-order pert
tive approximation to the full density matrix employed he
as well as elsewhere.29,30,32,37,38,50A genuine change in the
vibrational populations in the ground state can only oc
due to a fourth-order interaction, via stimulated Raman s
tering processes. Thus, the complete expressions for the
ond moments of the pump induced density matrix wo
necessitate the inclusion of fourth-order terms in the per
bation expansion. This is beyond the scope of the pre
paper. However, we can estimate the magnitude of the e
in the calculation to be roughlyuA1gu2 @from Eq.~31!#, which
goes as the fourth power of the electric field strength an
typically very small for weak fields. We will return to
discussion of this issue in Sec. V, where we also prese
quantitative estimate for the error made in a second-o
perturbative treatment for a simple model system.

IV. NONEQUILIBRIUM EXCITED STATE DENSITY
MATRIX

The excited state density matrix is obtained from Eq.~3!
as r̂e5^eur̂ue&. Here, the terms with a single dipole intera
tion on either side ofr̂T in the expression forr̂ will contrib-
ute. For the linear displaced Hamiltonians in Eqs.~10a! and
~10b!, we find

r̂e5
umgeu2

\2 E
2`

`

dt8E
2`

t8
dt9 E~ t8!E~ t9!

3H exp~ iVvs2Gegusu!S expS 2 iv0DE
0

t8
ds8 Q̂~s8! D D

2

3 r̂T
~g!S expS iv0DE

0

t9
ds8 Q̂(s8) D D

1

1h.c.J , ~32!

where the subscript2 denotes anti-time ordering.
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A. Populations

The fraction of excited state moleculesNe is simply
Ne512Ng as the sum of the ground and excited state po
lations must be conserved~ignoring other channels for the
decay of the excited state!. We thus have from Eq.~15!,

Ne5~ umgeu2E0
2/4p\2!E

0

`

dv G̃2~v2vc!F I~v!. ~33!

In the weak field approximation assumed here,Ne!1. Thus,
only a small fraction of the ground state is transported to
excited state by the pump interaction.

B. Vibrational dynamics

1. First moment

In Appendix B, we calculate the moments of the shift
coordinate operatorQ̂e8(t)5 Q̂e(t)2D for the excited state
density matrix~the subscripte indicates time evolution due
to Ĥe). The first moment is obtained by lettingn51 in Eq.
~A21!. Only the term with (l 50,m51) contributes and we
find

Qe8̄~ t !52~D/Ne!Im@D1~ t !#. ~34!

From Eqs.~A22! and ~A19!, we find after neglecting non
resonant contributions,

Qe8̄~ t !5uA1eucos~v0t1w1e!, ~35!

whereA1e5Q̄e8(0)1 i P̄e(0)5uA1euexp(2iw1e) is the ampli-
tude for the first moment dynamics~about the equilibrium
position D) in the excited state, with the effective initia
position and momentum given by

Q̄e8~0!52
umgeu2E0

2D

4p\2Ne
E

0

`

dv G̃p~v2vc ,2v0!

3@F I~v2v0!2n̄D̂F I~v!#, ~36a!

P̄e~0!50. ~36b!

Thus, the excited state wave packet receives no initial m
mentum. Correspondingly, the initial phasew1e can only
take the values 0 orp. Note that Eq.~35! gives the time-
dependent mean position with respect to the excited s
equilibrium positionD. To revert to the ground state equilib
rium as the origin, we simply write

Qē~ t !5D1uA1eucos~v0t1w1e!. ~37!

The absence of initial momentum on the excited st
wave packet might be expected on intuitive grounds. T
vibrational modes that are formed in the excited electro
state are subject to the electron-nuclear coupling force
turns on ~during the pump interaction! and thereafter, re-
mains a constant. Thus, the forces on excited state nucle
step function-like. In contrast, the ground state nuclei feel
electron-nuclear coupling force only for a short time duri
the pulse interaction, so that the forces on the ground s
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



sic
ls
th

m
nc
nd
I

io
ap

b
s

s

c

e-

lts
n
a

nd

ob-

d to

ct,

ers
k.

rst
lear
nt,

the

tate

ic

nd-
is
his
ra-
in-
rast
ons
ter-

ns-
pe

s.
used
pu-
o-
the
ent

lse

6801J. Chem. Phys., Vol. 114, No. 15, 15 April 2001 Ultrafast nuclear response
are impulsive in nature. It is interesting to note that Eq.~36b!
is predicted by earlier treatments that use the semiclas
Franck approximation,51,62 where more general potentia
were treated than the harmonic approximation made in
present case. It is also notable from Eq.~36a! that in sharp
contrast to the ground state case, the excited state first
ment involves only the imaginary part of the line shape fu
tion F I(v). This difference reflects the fact that the grou
state coherence is created by Raman-type processes.
well known42,43,46 that the resonance Raman cross sect
involves both the real and imaginary parts of the line sh
function. The excited state coherence is created solely
absorption-like events occurring on the bra and ket side
the density matrix as expressed in Eq.~32!.

2. Second moment

From the definitions in Eqs.~A13! and ~A12!, we have
Q̂e8(t)5(âee

2 iv0t1âe
†eiv0t)/A2 so that the following gen-

eral relation holds analogous to Eq.~24!:

Qe8
2̄~ t !5n̄e11/21uA2eucos~2v0t1w2e!, ~38!

where n̄e is the mean value of the occupation numbern̂e

5âe
†âe , andA2e5uA2eue2 iw2e is the mean value ofâ2 in the

pump induced excited state. If we letn52 in the general
expression derived in Eq.~A21!, the allowed sets of value
for ( l ,m) are (1,0) and (0,2) and we get

Qe8
2̄~ t !5

2n̄11

Ne
Re@D0~ t !#2

D2

2Ne
Re@D2~ t !#. ~39!

Using Eq. ~A22! we have Re@D0(t)#5Ne/2. The quantity
Re@D2(t)# is also evaluated readily using Eq.~A22!. Com-
paring the final result with Eq.~38!, we find that the mean
occupation number of the pump induced excited state os
lator n̄e is given by

n̄e5n̄2n̄~ n̄11!D21
umgeu2E0

2D2

8p\2Ne
E

0

`

dv G̃2~v2vc!

3@~ n̄11!2F I~v2v0!1n̄2F I~v1v0!#. ~40!

The oscillatory amplitude is given by

A2e5~ umgeu2E0
2D2/8p\2Ne!

3E
0

`

dv G̃~v2vc1v0!G̃~v2vc2v0!F8~v!,

~41!

where we have defined the function

F8~v!5@F I~v2v0!22n̄D̂F I~v!

1n̄2D̂2F I~v1v0!#. ~42!

The amplitudeA2e for the second moment dynamics at fr
quency 2v0 is real so that the phasew2e can take on only the
values 0 orp. This is in contrast to the ground state resu
derived in Sec. III B 2. Both the first and the second mome
in the excited state depend only on the absorptive line sh
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function F I(v) whereas the ground state moments depe
on bothF I(v) andFR(v).

The second moment of the momentum operator is

tained as before by lettingt→t1p/2v0 in Qe8
2̄(t). The first

moment and the second moment results can be combine
obtain the uncertainties inQ̂ and P̂. For the position uncer-
tainty, we find

sQe~ t !5@ n̄e1~12A1e
2 !/21~A2e2A1e

2 /2!cos~2v0t !#1/2.
~43!

The momentum uncertainty is obtained assPe(t)5sQe(t
1p/2v0). For the time-dependent uncertainty produ
we get

sQe~ t !sPe~ t !>n̄e1
1

2
~12A1e

2 !2
A2e~A2e2A1e

2 !

~2n̄e11!

3cos2~2v0t !, ~44!

where we have neglected terms that contain powers ofA1e

andA2e larger than second, since they involve higher pow
of the field strengthE0 , which is assumed to be very wea
Equation~44! is simpler than Eq.~29! for the ground state
due to the lack of an initial phase for the excited state fi
and second moments. Once again, for weak electron-nuc
coupling, the uncertainty product is nearly time independe
sinceA2e is typically much smaller thanA1e .

We note from the above-given expressions that
second-order density matrixr̂e is not in explicit violation of
the uncertainty principle as is the pump induced ground s
densityr̂g . To see this clearly, we first note from Eqs.~36a!
and ~33! that at T50, uA1eu<D since G̃p(v2vc ,2v0)
<G̃(v2vc). Also, from Eq.~40!, we haven̄e>D2/2 , pro-
vided the vibrational frequency can be neglected inF I(v
6v0) ~a condition known as ultrafast electron
dephasing26!. It then follows from Eq.~44! that atT50,

sQe~ t !sPe~ t !*1/2, ~45!

where the error in Eq.~45! is to fourth order in the field
strength and is very small for weak fields. Thus, the seco
order approximation to the excited state density matrix
more accurate than for the ground state density matrix. T
difference is not surprising, given that a change in the vib
tional populations of the excited state can be effectively
duced by a second-order interaction. This stands in cont
to the ground state vibrational levels, where the populati
change due to scattering processes via a fourth-order in
action.

V. SIMULATIONS AND DISCUSSION

For the simulations reported here, fast Fourier tra
forms were employed to calculate the complex line sha
function in Eq. ~14!, for a given set of model parameter
The precalculated line shape functions are subsequently
in all the moment calculations, thereby reducing the com
tation time significantly. The single integration in the m
ment expressions is computationally straightforward, as
integrands are smooth functions that are highly converg
~owing to the Gaussian spectral envelope of the laser pu!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In this section, we investigate the behavior of the ground
excited state moments as a function of various parame
such as the pulse carrier frequency, temperature, mode
quency, coupling strength, and pulse duration.

One attractive feature of the moment expressions
rived in this work is that apart from parameters specific
the mode under consideration, all other information about
rest of the modes~and the bath! is carried through in the
equilibrium line shape functionsF I andFR . These are not
independent quantities but are rather connected by
Kramers–Kronig relations. One can therefore obtainF I(v)
directly from the measured experimental absorption cr
section ~on an absolute scale!. The Kramers–Kronig rela-
tions can then be used to obtainFR(v) from F I(v). Thus,
given a molecule in the condensed phase whose absor
spectrum is known experimentally~and is possibly broad an
asymmetric!, one can use the results derived here to calcu
the moments of the pulse induced nonequilibrium state on
absolute scale, for any given mode of the system. Furt
more, since the relation between moments andF I(v),
FR(v) is linear, we can also extend the main results deriv
in this paper to account for inhomogeneous broadening
to a distribution of electronic 0–0 transition frequencies.63

A. First moments

1. Ground state

Consider the ground state first moments ofQ̂ and P̂
derived in Eqs.~20a! and ~20b!. Several interesting feature
are evident from a direct inspection of these expressio
When the carrier frequency of the pump pulsevc is tuned
across the resonant maximum (Vv), Q̄g(0) changes sign
owing to its dependence on the derivative-like functi
D̂F I(v). It is also clear from Eq.~20a! that for detuning to
the red of the absorption band,Q̄g(0) has a sign opposite t
that of D, while it has the same sign asD for blue detuning.
The dependence ofP̄g(0) on D̂FR(v) implies that in the
region of resonance, the momentum impulse is opposi
directed with respect to the electron-nuclear coupling forcf.
Also, the sign ofP̄g(0) changes as we tune away from res
nance on either side ofVv . When the pulse carrier fre
quency is detuned far from the resonant transition~but ne-
glect of the nonresonant terms remains valid!, D̂F I(v) drops
more rapidly to zero when compared withD̂FR(v) so that
Q̄g(0) is much smaller thanP̄g(0). Thus, for off-resonant
excitation, the ground state coherence is dominated by a
mentum impulse. Under off-resonant excitation, Eq.~20b!
implies that P̄g(0) has the same sign asD and therefore
points in the same direction as the electron-nuclear coup
force. The well known off-resonant impulsive limit15 is thus
seen to arise from the dependence of the momentum imp
on the derivative of the real part of the line shape function39

The fully quantum mechanical treatment further shows t
the approach to the off-resonant limit depends strongly
the temperature and mode frequency, as we will see in
following. The distinct dependence ofQ̄g(0) andP̄g(0) on
temperature (T) is also noted from Eqs.~20a!–~20b!. While
the T dependence ofQ̄g(0) is determined both by the facto
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(2n̄11) and the line shapeF I(v), P̄g(0) depends onT
solely through the real part of the line shape functi
FR(v).

In order to illustrate the above-mentioned aspects of
ground state first moments, we consider two model l
shapes. In the first example, shown in the left panel of Fig
a low frequency mode@v0550 cm21, S5(D2/2)50.1] is
coupled to a homogeneously broadened (Geg5300 cm21)
two level system. Figure 1~a! shows the imaginary part o
line shape function at two different temperatures. The co
sponding mean position and momentum for the 50 cm21

mode are shown in the panels directly below, for a range
vc values across the resonance maximum. The pulse wid
chosen to be 50 fs. The second example, shown in the r
panel of Fig. 1, consists of a line shape that is strongly te
perature dependent due to the presence of a strongly cou
overdamped bath mode in addition to the 50 cm21 mode.
Vibrational damping was incorporated64 using a rigorous
theory presented previously.56

FIG. 1. Temperature and carrier frequency dependence of the mean nu
position and momentum in the pump induced ground state.~a! Absorption
line shape functionF I(v) for a homogeneously broadened system (Geg

5300 cm21) consisting of a single linearly coupled mode (v0550
cm21,S50.1). The solid line showsF I(v) for T50 K and the dashed line
for T5300 K. ~b! Same as in~a! but with an additional overdamped bat
mode (vb510 cm21,Sb520,gb550 cm21) included in the line shape.~c!
and~d! The pump pulse induced effective initial position and momentum
the ground state~in dimensionless units! for the 50 cm21 mode, for both line
shapes in~a!. ~e! and~f! The mean position and momentum for the strong
temperature-dependent line shape in~b!. For all the simulations, a Gaussia
with full width at half maximum of 50 fs was used for the electric field, a
the total pulse energy was fixed at 1 nJ.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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From the simulations, it is seen that some of the gen
features evident from a direct inspection of Eqs.~20a! and
~20b! are borne out; note in particular, the behavior of t
position and momentum as roughly the derivatives of
absorptive and dispersive line shapes. Thus, the momen
increment is peaked at absorption maximumVv and is di-
rected opposite to the excited state equilibrium shift, wh
in the present case is positive. The position incremen
peaked at roughly the full width at half maximum of th
absorption, and changes sign as the carrier frequency is t
acrossVv . The difference in the temperature dependence
the position and momentum increments is also clear. I
seen that for the weakly temperature-dependent line sh
the momentum increment is nearly unaffected by tempe
ture changes, while the position increment increases dram
cally owing to the Bose–Einstein factor. The situation is d
ferent for the strongly temperature-dependent line shape
which case, it is seen that the momentum imparted to
wave packet changes significantly with temperature, wit
decreased value at theVv @corresponding to the fact tha
FR(v) is broader at higher temperature, which in turn im
plies that the derivative is smaller#. It is also interesting to
note the behavior asvc is tuned away from resonance, whe
it is seen thatQ̄g(0) approaches zero whileP̄g(0) still has a
nonzero value.

The relative magnitudes ofQ̄g(0) and P̄g(0) are best
understood by plotting the amplitude and phase of the w
packet motion defined in Eq.~19!. In Fig. 2, we plot the
initial amplitude and phase of the pump induced wave pac
as a function of the pulse carrier frequency for both examp
considered in Fig. 1. It is seen from the phase plot~lower

FIG. 2. The first moment amplitudeuA1gu and phasew1g for the 50 cm21

mode in the pump induced ground state, plotted for both line shapes
sidered in Fig. 1.~a! and~b! uA1gu andw1g for the Lorentzian line shape in
Fig. 1~a! and ~c! and ~d! for the phonon broadened line shape in Fig. 1~b!.
The solid lines correspond toT51 K and the dashed lines correspond
T5300 K.
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panels! that at high temperatures~larger n̄) the phase re-
mains close to 0 orp. When the temperature is lowered, th
phase varies more continuously over a range of 2p. This
corresponds to the fact that the position increment@real part
of the complex displacement,A1g5Q̄g(0)1 i P̄g(0)] domi-
nates the momentum increment~imaginary part! at high tem-
peratures, except at resonant maximumVv . Furthermore,
when the pump is tuned toVv , the purely impulsive
(Q̄g(0)50⇒wg5p/2) nature of the ground state coheren
is evident. As the pump carrier frequency is tuned toward
off-resonance limit, the phase is again seen to approach
impulsive limit (wg52p/2), and this approach occurs muc
more rapidly at lower temperatures than high. This is ag
owing to the fact that the high temperature case is domina
by the position increment. Note that the momentum impar
to the ground state wave packet by resonant and nonreso
pulses are opposite in direction, with the momentum o
resonantly induced wave packet directed opposite to
electron nuclear coupling force.

Several of the above-mentioned aspects of detuning
pendence ofQ̄g(0) and P̄g(0) have been noted in earlie
semiclassical treatments.36–40 The results for the excitation
frequency dependence of the ground state first moments
in qualitative agreement with the predictions of Cina a
co-workers,37 who have used semiclassical pulse propaga
to study the impulsive preparation of ground state nucl
motion due to single and multiple laser pulse excitatio
Their calculations suggest that excitation in the prereson
region induces much larger increments in the nuclear p
tion than excitation directly on resonance. From the pres
work, this aspect directly follows from the dependence of
position increment on the derivative of the absorption li
shape function as expressed in Eq.~20a!. We also note that
semiclassical models have been used to show that the gr
state momentum impulse depends on the derivative of
real part of polarizability.39 The present fully quantum me
chanical treatment clearly exposes the distinct tempera
dependence of the pulse induced position and momentum
the ground state. While the temperature dependence is
included explicitly in prior treatments, more complicated p
tential surfaces have been analyzed. But the general natu
the pump induced position and momentum predicted here
harmonic potentials remains valid.

2. Excited state

Turning to the excited state first moment, recall fro
Sec. IV that the wave packet created in the excited s
receives no initial momentum. As mentioned earlier, the la
of initial momentum for the excited state wave packet can
attributed to the step function-like nature of the forces felt
the nuclei of excited state molecules. This argument is
pected to be valid for more complicated potentials than
harmonic model considered here. This is indeed the cas
shown by earlier treatments.51 On the other hand, the groun
state nuclei are subject to an impulsive square wave fo
This results in a nonzero average initial momentum of
ground state wave packet.

n-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Consider the initial displacement of the excited st

wave packetQ̄e8(0) in Eq. ~36a!. The temperature depen

dence ofQ̄e8(0) is mainly determined by the factorn̄, which

appears as the coefficient of the derivative-likeD̂F I(v). At

zero temperature, or for temperatures low enough so thn̄
!1, all the terms in the integrand of Eq.~36a! are positive.

Thus, the overall sign ofQ̄e8(0) is always opposite to that o
D, irrespective of other parameters such as the laser p
width and carrier frequency. This leads us to the followi
interesting conclusion: when the laser pulse interacts wi
system that is initially atT50 ~or with negligible thermal

populationn̄), the wave packet created in the excited state
always placed initially on the side of the excited state pot
tial well that lies toward the ground state equilibrium.
other words, the initial phasew1e of the excited state firs
moment dynamics is always fixed at 0 orp, depending only
on the sign potential displacementD. As the temperature is

increased, the difference termD̂F I(v) that appears as th

coefficient ofn̄ in Eq. ~36a! begins to remove the positivity
of the integrand, since the differenceF I(v)2F I(v2v0)
can take on either positive or negative values. However,
line shapes that are broad compared to the vibrational

quency,D̂F I(v) is still quite small compared toF I(v) and
the derivative term dominates only at very high temperatu

~when n̄@1).
We take the model line shape treated in Fig. 1~a! to

illustrate key aspects of the excited state first moment
Fig. 3, we plot the excited state first moments for the
cm21 mode. In addition to the amplitude of oscillation

uA1eu5uQ̄e8(0)u about the excited state equilibrium, the initi
value of the first moment with respect to the ground st
equilibrium Qē(0) @see Eq.~37!# is also plotted for clarity.
We note that in contrast to the ground state amplitude@Fig.
2~a!#, the sign of the temperature-dependent changes in
excited state amplitude depends on the direction of the
rier frequency detuning from the absorption maximum. It
seen that for red detuning from absorption maximum,uA1eu
decreases with increase in temperature, whereas for blue
tuning, the amplitude increases with temperature. This op
site behavior on the red and blue sides of the absorp
maximum can be understood from the ‘‘particle-like’’ aspe
of the excited state coherence, which is complementar
the ‘‘holelike’’ nature of the ground state coherence.40,52We
will return to this point briefly. As is clear from Fig. 3
Qē(0) changes its sign with respect to the ground state e
librium position asvc is tuned across resonance, but its a
solute magnitude remains less thanuDu. As the temperature
is increased, the derivative line shape in Eq.~36a! becomes
more significant due to largern̄. The antisymmetry of the
amplitude profile with respect toVv becomes more pro
nounced so that excitation toward the blue side indu
larger displacements than red excitation.

We note from Figs. 1~c! and 3~a! that the mean position
for the ground and excited state are oppositely signed w
respect to the ground state equilibrium. This behavior is
lated to the particle- versus hole-like nature of the exci
and ground state nuclear wave packets. In Fig. 4, we s
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matically depict the impulsively excited nuclear wave pac
in the ground and excited states, for the carrier freque
tuned to three different values across the absorption m
mum Vv . Consider the case when the laser pulse car
frequency is

FIG. 3. Temperature and carrier frequency dependence of excited state
moment for the 50 cm21 mode of the example in Fig. 1~a!. The effective

initial ( t50) mean positionQ̄e(0)5D1Q̄e8(0) is plotted in~a!. The mo-
mentum in the excited state is vanishing and is not shown.~b! The ampli-

tude uA1eu5uQ̄e8(0)u of the oscillatory motion about the excited state equ
librium positionD.

FIG. 4. Schematic of the initial conditions prepared in the ground and
cited states of a two-electronic level system, by an impulsive pump inte
tion. The ground and excited state wave packets are depicted for three
ferent values of the pump carrier frequency as it is tuned across the reso
maximumVv and for off-resonant excitation (vNR). The dotted line indi-
cates the carrier frequency of the laser pulse. The arrows above the gr

state wave packets indicate the direction of the initial momentumP̄g(0).
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tuned toward the red side of the absorption maximum (vR).
The pump creates a hole in the ground state near the re
of resonance, which is toward positive displacements.
nuclear distribution is therefore effectively centered at ne
tive displacements@i.e., Q̄g(0),0] with respect to equilib-
rium. The excited state nuclear distribution is, however, c
ated directly near the region of resonance, and is centere
positive displacements. It should be remembered that
normalized mean position of the excited state wave pac
@Eq. ~36a!# is much bigger than that of the ground state wa
packet @Eq. ~24!#, since Ne512Ng!1. The schematic
drawn in Fig. 4 merely expresses the opposite signage o
ground and excited state first moments, but does not re
sent their magnitudes.

It is important to recognize that the schematic shown
Fig. 4 is strictly validonly in the impulsive approximation
i.e., when the pulses are much shorter than a vibrational
riod. In this case, the nuclei of the ground and excited s
molecules do not have the time to evolve in their respec
surfaces within the duration of the pulse. Thus, one can
ture the particle in the excited state as being instantaneo
created on the same side of the well where the correspon
hole is created in the ground state. However, when the pu
have a duration that is not too short compared to the vib
tional period, the wave packets evolve during the pulse
teraction. The centroids of the ground and excited state w
packets are thus no longer expected to be located on o
sites sides of the ground state equilibrium. In order to qu
tify the impulsive limit, it is useful to calculate the popula
tion weighted sum of the ground and excited state fi
moments. Using Eqs.~19! and ~37!, we arrive at

NeQ̄e~0!1NgQ̄g~0!52
umgeu2E0

2D

8p\2 E
0

`

dv F I~v!

3G̃~v2vc!~D̂2G̃~v2vc1v0!!.

~46!

The right-hand side of Eq.~46! is an integral over the secon
difference of the pulse spectrum. It can be taken to be a s
quantity in the impulsive limit, where the spectral bandwid
of the pulse is broad compared to the vibrational frequen
Thus, we may set the right-hand side of Eq.~46! to zero
in the impulsive limit. This in turn implies thatQ̄e(0)
}2Q̄g(0); i.e., the mean position of the ground and excit
state nuclear wave packets are situated on opposite sid
the ground state equilibrium position. This situation ho
only for modes with vibrational period much longer than t
pulse duration. For longer pulses, the right-hand side of
~46! becomes appreciable. In Fig. 5, we plot the ground a
excited state first moments for the 50 cm21 mode of the
previous example, and the sum defined in Eq.~46!, for three
different pulse widths. It is seen that the ground and exc
state first moments are oppositely signed for the impuls
excitation. However,Q̄e(0) andQ̄g(0) are no longer sym-
metric when the pulse duration approaches three quarte
the vibrational period. In this case,Q̄e(0) is positive, i.e., the
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excited state wave packet is situated to the right of
ground state equilibrium position for the entire range of c
rier frequencies plotted.

The relationshipQ̄e(0)}2Q̄g(0), which is valid in
the impulsive limit, can be used to understand the incre
in the asymmetry of the excited state amplitude profile w
temperature, as observed in Fig. 3~b!. As we have seen
earlier, Q̄g(0) approaches zero as the temperature is lo
ered. This means that according to the inverse rela
Q̄e(0)}2Q̄g(0), thedisplacement of the excited state wa
packet also approaches 0, but from the opposite side of
equilibrium position as the ground state wave packet.
example, consider the schematic depicted in Fig. 4, wh
Q̄e(0).0 for excitation toward the red (vc5vR). The cor-
responding approach ofQ̄e(0) toward zero at low tempera
tures implies an increase in the amplitude of oscillatio
about the shifted equilibrium positionD. This is shown by
the dashed wave packet in Fig. 4. On the other hand,
clear that for excitation toward the blue (vc5vB), the cen-
troid of the excited state wave packet approaches zero f
the negative side of the ground state equilibrium as the t
perature is lowered. This corresponds to a wave packet w
decreased amplitude of oscillations about the excited s
equilibrium, as shown by the dashed wave packet in Fig
Thus the ground and excited state first moments exhib

FIG. 5. Study of the symmetry of the ground and excited state mean p
tions as a function of the pulse width. The population weighted ground

the excited state first momentsNgQ̄g(0) and NeQ̄e(0) for the 50 cm21

mode~with periodTvib;666 fs! of the example in Fig. 1~a! are plotted along
with their sum, for three different pulse widths. The top panel correspo
to a pulse widthtp550 fs, middle paneltp5200 fs, and the bottom panel i
with tp5500 fs.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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striking contrast in the temperature dependence that can
tentially be used to assign the origin of vibrational cohere
in pump–probe spectroscopy.27

It is clear from the above-mentioned illustrative e
amples that the analytic expressions for the first mome
presented in Eqs.~20a! and~20b! and~36a! expose the tem-
perature and carrier frequency dependence of the first
ments. They also offer a physically intuitive picture of th
initial conditions prepared by the pump pulse. The accur
of the first moment expressions is verified by calculations
the pump–probe signals using these expressions in the
placed state representation of the doorway state in Eq.~3!.
The resulting signals agree well with those calculated us
the full third-order response approach.27 We also note that
the depiction of pump induced wave packets in Fig. 4 c
tradicts prior predictions arising from time-dependent wa
packet pictures of impulsive stimulated light scatterin
These pictures suggest that the ground state wave pack
always created toward decreasing energy gaps.10,65,66How-
ever, the analysis presented here as well as in o
works37,38,62 shows that the ground state wave packet
duced by impulsive excitation is strongly sensitive to t
carrier frequency of the laser pulse.

3. Multimode case

The above-considered examples illustrate some of
key aspects of impulsively driven ground and excited st
coherence for simple systems with a bath and a single o
cally coupled mode. As discussed earlier, the express
derived for the single-mode case can be readily extende
multimode systems. As an example, we consider a two-m
system consisting of a low frequency mode at 50 cm21 and a
high frequency mode at 220 cm21 coupled to a homoge
neously broadened two electronic level system. An ov
damped low frequency bath mode is also included to broa
the line shapes. The absorption line shape atT5300 K is
plotted in Fig. 6~a!, and is nearly a Gaussian owing to th
semiclassical limit of strong coupling and high temperatu
In the lower panels of Fig. 6, we plot the first moments of t
50 and 220 cm21 modes in the ground state, assuming
pulse width of 50 fs. Along with the fully quantum mechan
cal results for the mean position and momentum, amplit
and phase for the two modes, we also plot~for comparison!
the analytic result for the mean position in Eq.~B7!, valid in
the impulsive and semiclassical~Gaussian! approximations.

From the simulations, we once again see the role pla
by thermal factor (n̄) in determining the amplitude and pha
behavior. The high frequency mode~smaller n̄) exhibits a
larger proportion of the momentum than the low frequen
mode~larger n̄). Note that for the chosen pulse duration
50 fs, the low frequency oscillator~period;666 fs! is driven
by the laser pulse in the impulsive limit. The high frequen
mode~period;150 fs! is, however, dynamic even during th
pulse interaction and is far from being impulsively drive
As would be expected, the agreement of the analytic re
for impulsive excitation in Eq.~B7! with the fully quantum
expression in Eq.~20a! is much better for the low frequenc
50 cm21 mode than for the higher frequency 220 cm21
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mode. While much of the earlier work on thi
subject36,38,67,68has been carried out assuming vibrationa
abrupt pulses, we see that a more complete treatment
accounts for the finite pulse width is essential in a multimo
situation.

B. Second moments

Apart from inducing vibrational coherence~off-diagonal
terms!, the laser pulse also induces changes in the vibratio
populations. In Secs. III B 2 and IV B 2, we presented expr
sions for the second moments of the coordinate and mom
tum, as well as the pulse induced change in the mean o
pation number in the ground and excited states. It is
interest to calculate the pulse induced changes in the v
ances of the ground and excited state nuclear distributio
The variances ofQ andP reflect the pulse induced squeezin
of the vibrational wave packet, as well as the vibration
heating and cooling in the ground and excited states by
laser pulse. Squeezing of the ground state and excited
wave packets can contribute to overtone signals in pum
probe spectroscopy.27 In the present section, we discus
some aspects of pulse induced position and momentum
certainties for a simple model system.

FIG. 6. ~a! Absorption line shape atT5300 K for a three-mode system
consisting of a strongly coupled overdamped bath mode (vb510 cm21,Sb

520,gb550 cm21) and two other modes with parameters (v1550 cm21,
S150.1) and (v25220 cm21, S250.1). The homogeneous damping
Geg510 cm21. ~b! and~c! The pulse induced mean position~solid line! and
the mean momentum~dashed line!, along with the analytic expression fo
mean position calculated in the impulsive approximation in Eq.~B7!
~circles!. ~d! and ~e! The amplitude and phase of the 50 and 220 cm21

modes.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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We first consider the ground state second moments
discussed following Eq.~24!, the second moments ofQ and
P involve both the diagonal and off-diagonal density mat
elements. The diagonal elements~which are time indepen
dent as long as there is no coupling of the mode to an ex
nal bath! give rise to a constant width in the coordinate a
momentum distributions. The off-diagonal terms give rise
squeezing dynamics at twice the vibrational frequency. Fr
Eq. ~27!, we note that the real and imaginary parts of t
second moment amplitudeA2g are related roughly to the
second derivative of the absorptive and dispersive line sh
functionsD̂2F I(v) and D̂2FR(v). The temperature depen
dence of the real and imaginary parts ofA2g are mainly
governed by the factorsn̄21n̄11/2 and n̄11/2, respec-
tively. Thus, the phasew2g of the second moment dynamic
is strongly dependent on temperature and carrier freque
At zero temperature, the real and imaginary parts are c
parable in magnitude, whereas for high temperatures s
that n̄2@n̄, the real part ofA2g dominates. This situation is
similar to the first moment, where the mean position~real
part! dominates the momentum~imaginary part! at high tem-
peratures.

In Fig. 7, we consider the 50 cm21 mode of the model
system in Fig. 1~a!, and study the temperature and carr
frequency dependence of the pulse induced position and

FIG. 7. Temperature and carrier frequency dependence of the position
momentum uncertainties in the pulse induced ground state vibrational
tribution. The pulse induced changes~from the thermal equilibrium values!
in the position uncertaintydsQ , momentum uncertaintydsPg , and their
productd(sQgsPg) are plotted at timest50 ~solid line!, t5p/4v0 ~dotted
line!, andt5p/2v0 ~dashed line!. ~a!–~c! dsQg , dsPg , andd(sQgsPg) at
T50 K. ~d!–~f! The corresponding quantities atT5300 K.
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mentum uncertainties. Since the pulse induced changes in
variances are very small, it is convenient to plot the diffe
ences of various quantities from the thermal equilibrium v

ues, i.e.,dsQg5sQg2An̄11/2, dsPg5sPg2An̄11/2 and

d(sQgsPg)5sQgsPg2(n̄11/2). We plotdsQg and dsPg

for a range of carrier frequencies across the absorption s
trum, at three different times during a half-periodp/2v0 of
the second moment dynamics at frequency 2v0 . We see that
at t50, dsQg mimics the second derivative of the absorpti

line shape owing to its dependence onD̂2F I(v). At t
5p/4v0 ~which is a quarter period of the overtone dynam

at 2v0) the dispersive termD̂2FR(v) dominates. The ab-
sorptive and dispersive line shapes thus act in quadratur
determine the overall dynamics ofsQg(t), which is thus
strongly sensitive to the carrier frequency detuning from
absorption maximum. According to the relationsPg(t)
5sQg(t1p/2v0), the momentum uncertainty simpl
‘‘lags’’ the position uncertainty by 1/4 vibrational period, a
shown in Fig. 7~b!. The position momentum uncertaint
product is plotted in Fig. 7~c! and is independent of time
Note the small dip of the uncertainty product below t
vacuum product of one-half, which arises from the te
uA1gu2 in Eq. ~29!. As discussed following Eq.~29!, this
unphysical behavior is attributed to the neglect of four
order interactions in the present treatment. While the inc
sion of higher order interactions is beyond the scope of
present paper, we can roughly say that the magnitude of
dip, given by uA1gu2, effectively estimates the error due t
the second-order perturbative approximation made in Eq.~9!.

At higher temperature, the mean occupation numbern̄g

dominates the expression for the position and momen
uncertainties. As discussed previously, the variances oQ
and P at high temperatures are mainly determined by

absorptive functionD̂2F I(v), which is the real part ofA2g .
This is evident from Figs. 7~d! and 7~e!, where the role
played by the dispersive term is insignificant compared to
absorptive part. Also, note the increase of the uncertain
by nearly two orders of magnitude relative to the low te
perature case. The uncertainty product, shown in Fig. 7~f!,
once again remains constant with time. The error termuA1gu2

in Eq. ~29! is far less significant compared ton̄g at high

temperature, and we havesQgsPg>n̄g11/2. Indeed, Fig.

7~f! simply reflects the behavior ofdn̄g5n̄g2n̄ calculated in
Eq. ~26!, which is also shown in the figure for compariso
There is a spread in bothsQg and sPg near the absorption
maximum, corresponding to pulse induced heating. Near
wings of the absorption spectrum, however, bothsQg and
sPg are narrowed from their equilibrium values, correspon
ing to a laser pulse induced cooling of the ground state.

Turning to the second moments of the excited state w
packet, we recall from Sec. IV that the excited state mome
only involve the absorptive line shape functionF I(v). From
Eq. ~43! we see that the position uncertainty oscillates~at

frequency 2v0) between (n̄e11/21A2e2A1e
2 )1/2 at t50

and (n̄e11/22A2e)
1/2 at t5p/2v0 . The momentum uncer

tainty lags the position uncertainty byp/2v0 . In Fig. 8, we
depict the detailed behavior of the position and moment
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uncertainties of the excited state wave packet and their p
uct, for three different times stretching over a half period
the second moment dynamics. The uncertainty produc
once again practically independent of time, especially at h
temperatures. This is in accord with Eq.~44!, which shows
that the oscillatory term diminishes rapidly with increasi
temperatures and the product attains the limitn̄e1(1
2A1e

2 )/2.
It is interesting to note from Eq.~40! for n̄e that, if we

neglect the vibrational frequency in comparison with t
electronic dephasing rate constantGeg so thatF I(v6v0)
5F I(v), we have, using Eq.~33!, n̄e>n̄1D2/2. This is
precisely the mean occupation number for the displaced t
mal state as expressed in Eq.~6!. We will see in the follow-
ing that the same limit forn̄e is obtained in the ultrashor
pulse limit. In contrast, the mean occupation number in
ground staten̄g given by Eq.~26! does not attain a simple
limit for ultrafast electronic dephasing.

The simulations of the present section serve to illustr
the application of simple yet rigorous expressions for
second moments and their connection to the equilibrium
shapes. It is clear that the detailed behavior of the posi
and momentum uncertainties can also be evaluated ov
wider range of pulse widths and temperature.

FIG. 8. Temperature and carrier frequency dependence of the position
momentum uncertainties in the pulse induced excited state vibrational
tribution. The pulse induced changes~from thermal equilibrium values! in
the position uncertaintydsQe , momentum uncertaintydsPe , and their
productd(sQesPe) are plotted at timest50 ~solid line!, t5p/4v0 ~dotted
line!, andt5p/2v0 ~dashed line!. ~a!–~c! dsQe , dsPe , andd(sQesPe) at
T50 K. ~d!–~f! The corresponding quantities atT5300 K.
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C. Dependence on pulse width

A key ingredient for the creation of nonstationary vibr
tional states is an ultrashort laser pulse with a bandwi
sufficiently large to excite several vibrational levels. The s
perposition of many such levels results in a localized wa
packet. Since several time scales are involved in the pr
lem, we first define some useful limits. The impulsive limit
when the pulse duration is much shorter than the vibratio
period, i.e.,tp!v0

21, with the electronic dephasing tim
scale remaining arbitrary. If, in addition, the electron
dephasing is much more rapid than the pulse, i.e.,Geg

21!tp

!v0
21 , we obtain the ‘‘snapshot limit.’’26 While the condi-

tion Geg
21!tp is justified for many condensed phase syste

with broad and featureless absorption spectra, the sim
tions in Fig. 6 show that the impulsive limit is not general
applicable for all modes in a multimode system with vibr
tional frequencies spanning the bandwidth of the pu
pulse. A more extreme ultrashort pulse limit is defined
that when the pulse duration is shorter than both electro
and vibrational time scales, i.e.,tp!Geg

21!v0
21 . This is an

interesting limit to consider from a theoretical point of view
It has generally been recognized that coherent vib

tional motion in the ground state vanishes both in the
trashort pulse limit and in the very long pulse limit.25,40,52,65

It is obvious that a very long pulse does not have the su
cient bandwidth to excite coherent motion. The vanishing
the ground state coherence in the opposite limit of very sh
pulses arises due to the fact that the broad spectrum of
laser pulse bleaches all the nuclear coordinates to an e
extent. Thus, a moving hole cannot be induced in the gro
state.40 Both these limits are clearly obtained from th
ground state first moments in Eqs.~20a! and ~20b! and the
second moment amplitude in Eq.~27!. For an infinitely long

pulse, the pulse envelope spectrumG̃(v2vc) approaches a

delta function and the product spectral functionG̃p(v
2vc ,nv0) in the moment expressions is vanishingly sma

In the ultrashort pulse limit, we may setG̃p(v2vc ,nv0)

>G̃2(v2vc) and remove it outside the integrals in Eq

~20a!, ~20b! and Eq. ~27!, since G̃2(v2vc) varies much
more slowly than the line shape functions. The expressi
then reduce to integrals over the differences of boun
functionsF I(v) andFR(v) and hence vanish. It should b
noted this occurs only in the ultrashort pulse limit; in the le
stringent impulsive limit, the moments are given by Eq
~B2a! and ~B2b!.

Turning to the pulse width dependence of the exci

state moments, we note thatQ̄e8(0) also vanishes for long

pulses because the product spectral functionG̃p(v
2vc ,v0) in Eq. ~36a! is negligible. However, the integral in
Eq. ~36a! does not vanish when the pulse is very short. If w
neglect the variation of the pulse spectrum over the abs
tion line shape, the second term of Eq.~36a! is simply an
integral over the derivative of the bounded functionF I(v)
and therefore vanishes. We are then left with the first te

which reduces to the following result if we letG̃p(v

2vc ,v0)>G̃2(v2vc) and use Eq.~33!:
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Qe8̄~ t !52Dcos~v0t ! ~tp→0!. ~47!

By making similar approximations in Eqs.~40! and~41!, we
obtain the following expressions for mean occupation nu

ber n̄e and the second momentQe
2̄(t) in the ultrashort pulse

limit:

n̄e5n̄1D2/2 , ~48a!

Qe8
2̄~ t !5n̄11/21D2cos2~v0t !. ~48b!

The moments ofP(t) are simply obtained by substitutingt
→t1p/2v0 in Eqs. ~48a! and ~48b!. The position and mo-
mentum uncertainties become time independent in the
trashort pulse limit and approach their thermal equilibriu
values given by Eq.~23!:

sQe~ t !5sPe~ t !5A~ n̄11/2!. ~49!

From Eqs.~47! and~37!, we haveQ̄e(0)50. The centroid of
the excited state nuclear wave packet is thus initially loca
vertically above the ground state equilibrium position a
oscillates with an amplitudeD. Equations~47!–~49! together
imply that for infinitely short pulses, the excited state wa
packet is simply the thermal stater̂T , initially displaced
from equilibrium as in Eq.~6! with a coherent displacemen
le5D/A2. Note thatuleu25D2/25S is the quantity usually
called the electron nuclear coupling strength, and repres
the mean number of phonons in a coherent state that
been displaced byle from the vacuum (n̄50).

Since the pulse induced ground state coherence vani
both in the limit of pulses that are too long and too sh
compared to vibrational and electronic dephasing ti
scales, we would expect the amplitude of the ground s
coherent motion to peak at some intermediate value of
pulse width. We have also seen that the amplitude and p
of the induced vibrational motion is strongly sensitive to t
detuning of the laser frequency from the absorption ma
mum. It is therefore important to consider both the la
pulse width and the carrier frequency if, for instance, one
interested in determining the conditions for generating o
mal displacements in the ground state.36–38 The expressions
derived here for the ground and excited state moments
amenable to fast numerical computation. The computatio
advantage offered by the analytic expressions enables m
dimensional plots that capture the behavior of the none
librium moments over an entire manifold of pulse widths a
carrier frequencies simultaneously. Furthermore, the exp
sions derived here allow us to incorporate the experiment
measured absorption line shape~and its Kramers–Kronig
transform, the dispersion line shape!. This enables absolut
scale calculations of the pulse induced moments for
given mode in a complex multimode system.

As an example, we consider the heme protein myoglo
~Mb!, which is an oxygen storage protein found in mus
cells. Mb possesses a highly asymmetric and broad abs
tion spectrum ~Soret band! in its ligand-free, high spin
~deoxy, S52! state. In previous studies, the Soret band
Mb was modeled using a non-Gaussian inhomogene
distribution63 of electronic energy levels, ascribed to disord
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in the position of the central iron atom of the porphyr
ring.69,70 In Fig. 9~a!, we plot the simulated absorption lin
shape with mode coupling strengths and frequencies
tained from previous resonance Raman studies of the
Soret line shape.69,71 Of the numerous modes coupled to th
Soret transition, we consider two modes at 50 and 220 cm21

and study the pump induced initial amplitude and phase
these modes. In Fig. 9~b!, we plot the amplitude and phas
for the 220 cm21 mode in the ground electronic state, as
function of carrier frequencyvc and pulse widthtp . The
approach of the ground state amplitude to zero in both
short and long pulse limits is clear from Fig. 9. It is also se
that the laser pulse width for whichuA1gu is maximum is
sensitive to the detuning of the pulse center frequency fr
Vv . The initial amplitude for excitation on the red side
the absorption maximum is much larger than for excitat
toward the blue side of the absorption maximum. This
flects the asymmetry of the Mb absorption spectrum with
much larger slope on the red side than on the blue side of
absorption maximum. Although there are numerous optica
coupled modes in the model, the mode specific nature
Eqs. ~20a! and ~20b! allows us to calculate the nonequilib

FIG. 9. ~a! Absorption line shape for an asymmetric inhomogeneou
broadened system, with parameters chosen to mimic the deoxyMb ab
tion spectrum at room temperature.~b! Three-dimensional view depicting
the laser pulse width and carrier frequency dependence of the first mo
amplitudeuA1gu and phasew1g , for the 220 cm21 mode~coupling strength
S50.05) in the ground electronic state.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ith
th
m
.
i
th

40
io
t.
e

te
e
se
nt
n
d

ci
-

ery

ith

he
b-
um
nal
de-
si-
rier
his
cal
sta-

of
aser
n-

nd
itu

s

ate

del
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rium moments for a specific vibrational mode of choice, w
the effect of the remaining modes carried through in
equilibrium line shape functions. In Fig. 10, we plot the a
plitude and phase of the 50 cm21 mode in the ground state
Note that the optimal amplitude of the ground state motion
attained for pulses nearly as long as 100 fs in contrast to
220 cm21 mode which attains an optimal amplitude near
fs. The optimal pulse widths are thus not in direct proport
to the vibrational frequencies as one might naively expec

We plot the initial position of the excited state wav
packetQ̄e(0) for the 50 and 220 cm21 mode in the excited
state in Fig. 11. The initial position approaches the exci
state equilibrium in the limit of long pulses implying that th
oscillations vanish. For very short pulses, the limit expres
in Eq. ~47! is clearly obtained, with the position increme
approaching zero. As discussed previously, this correspo
to the fact that the excited state wave packet is placed
rectly above the ground state equilibrium position and os
lates with an amplitudeD. Also, note that the detuning de

FIG. 10. ~a! Three-dimensional plot depicting the laser pulse width a
carrier frequency dependence of the pulse induced first moment ampl
profile ~a! and phase profile~b! for the 50 cm21 mode (S50.1) in the
ground state. The mode is coupled to the inhomogeneously broadened
tem considered in Fig. 9~a!.
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pendence of the excited state position increment is v
strongly sensitive to the laser pulse width~see Fig. 5!. For
very short pulses, the mean position changes its sign w
respect to the ground state equilibrium asvc is tuned across
Vv . As the pulse width becomes longer, the profile of t
first moment slowly drifts toward the excited state equili
rium and stays on one side of the ground state equilibri
position for long enough pulses. The three-dimensio
simulations presented in Figs. 9–11 capture the highly
tailed behavior of the pump induced first moments in po
tion and momentum as a function of pulse width and car
frequency. The simple analytical formulas presented in t
work thus enable us to make fully quantum mechani
quantitative predictions for the laser pulse induced non
tionary vibrational states in complex multimode systems.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented a rigorous analysis
the nonstationary vibrational states prepared by a short l
pulse interacting with a two electronic level system with li

de

ys-

FIG. 11. Dependence of the effective initial position of the excited st

wave packetQ̄e(0) on laser pulse width and carrier frequency, for the mo
system considered in Fig. 9~a!. ~a! The mean position for the 50 cm21 mode
and ~b! the mean position of the 220cm21 mode.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ear electron-nuclear coupling. The chief motivation beh
this work is to expose the nature of the pump-induced do
way state, using a rigorous moment analysis. A knowle
of the moments of the doorway state provides a conven
starting point for the analysis of pump–probe signals.27 In
the present work, we have used moment generating funct

to derive general expressions for arbitrary moments ofQ̂ and

P̂ in the ground and excited state density matrices to sec
order in the pump fields.

The fully quantum mechanical expressions for the fi
two moments of position and momentum reveal interest
behavior with respect to temperature, pump pulse carrier
quency, and width. The pump pulse induced changes of
mean position and momentum in the ground state are fo
to depend on the derivatives of the absorptive and disper
line shapes, respectively. This relationship enables on
readily obtain a qualitative understanding of the depende
of pump induced first moment changes on the carrier
quency. The mean position of pump induced ground s
exhibits a much stronger temperature dependence than
mean momentum. This implies a strong temperature dep
dence of the initial phase of the ground state wave pac
and consequently the phase of the pump–probe signal is
strongly temperature dependent.27 While the ground state
moments depend on both the absorptive and dispersive
of the equilibrium line shape functions, the moments of
excited state wave packet are shown to depend only on
absorptive line shape function. This is strongly indicative
the distinct mechanisms that induce ground and excited s
coherences; namely stimulated Raman-type processes fo
ground state, and absorptive processes for the excited s
The amplitude of the ground state oscillations decreases
formly with temperature for all pump carrier frequencies.
contrast, the profile of the excited state first moment am
tude exhibits a striking asymmetry with change in tempe
ture: For red excitation, the amplitude of the excited st
wave packet decreases with increased temperature, wh
for blue excitation, the amplitude increases with temperat
This contrasting behavior can be explained based on
particle- versus hole-like nature of the ground and exci
state wave packets. It can also be used to experimen
discriminate between the ground and excited state co
ences.

An analysis of the second moments of the pump-indu
doorway state reveals information regarding the squeezin
the ground and excited state nuclear distributions by the l
pulse interaction. It is well known that a difference in th
curvature of the ground and excited state vibrational pot
tials ~quadratic coupling! can induce squeezed vibration
states.57–60Apart from this ‘‘geometric’’ squeezing,57 the la-
ser pulse can by itself induce a time-dependent varianc
the vibrational distributions, which is also called ‘‘dynam
squeezing.’’57 The present analysis exposes the nature of
dynamical squeezing and its relation to the equilibrium
sorption and dispersion line shapes. While the first mom
dynamics constitutes a major part of the wave-packet mo
detected by the probe,27 higher moment modulations, such a
squeezing, will contribute weakly to overtone signals. W
have recently presented an analysis of the overtone sig
Downloaded 11 May 2003 to 128.103.60.225. Redistribution subject to A
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generated due to purely geometric squeezing in the con
of nonradiative reactions.27 The analysis of overtone signa
generated by dynamical squeezing due to the laser puls
teraction will be the subject of future work.

We have pointed out the consequence of the seco
order perturbative approximation to the doorway density m
trix. Since a genuine change in the ground state vibratio
populations requires a fourth-order interaction~stimulated
Raman scattering! of the pump pulse, the diagonal densi
matrix elements calculated using only the second-order
proximation will be inaccurate. The neglect of higher ord
field interactions results in certain discrepancies in the ca
lated expectation values of the higher moments. For
ample, we showed that the ground state doorway~to second
order! violates the properties of a genuine density matr
and leads to a position-momentum uncertainty product tha
in violation of the uncertainty principle. While these aspe
have been noted in earlier work,37,40 we have presented a
estimate of the error due to truncation at second order.

Perhaps the most important aspect of the present ana
is the direct connection made between the laser pulse
duced nonstationary states and the measurable equilib
properties of the system. This connection appears thro
the dependence of the pump-induced moments on the e
librium line shape functions. A direct consequence of t
aspect is that the pump induced moments are highly m
specific; the only explicit parameters in the moment expr
sions are the mode frequency and coupling strength. The
of the parameters relevant to the system and the bath
automatically carried by the measured line shape functio
One practical consequence is a many-fold increase in c
putational efficiency. In this respect, the present appro
must be contrasted with earlier treatments that expressed
full second-order doorway density matrix using the mo
cumbersome sum over vibronic eigenstates expressions29,50

Here we have shown that the individual moments of
doorway density matrix can be calculated efficiently using
correlation function based approach.

Apart from computational advantages, the direct conn
tion with equilibrium line shape functions can potentially b
exploited in calculating the various moments on an abso
~per molecule! scale. Since absolute scale measurement
the absorption cross section are possible experimentally,
may use the Kramers–Kronig relations to calculate the d
persion line shape, and subsequently incorporate the
shapes in the moment expressions. This would yield pre
values for moments of the nonstationary wave packet
duced by the pump pulse for any given mode in a comp
multimode system. This approach is analogous to transf
methods previously used to describe resonance Ra
scattering.42–46,72

We finally mention that the present work can be e
tended beyond the linearly coupled harmonic oscilla
model assumed here. Quadratic electron-nuclear coup
can be treated using standard quantum field theoretic t
niques. Non-Condon effects can also be readily incorpora
by assuming an exponential dependence of the dipole
ment on the nuclear coordinate.52,73 Furthermore, a calcula
tion of the moments for multiple pulse excitation36–38 can
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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also be carried out along the same lines as the calcula
presented here. The central point is that the initial state~be-
fore the pulse interactions! is a thermal density matrix. The
multitime correlation functions can therefore be evalua
exactly using a second-order cumulant expansion.

A moment analysis of the doorway state can also
envisaged in spectroscopies that use multiply resonant pu
with different carrier frequencies. For instance, conside
time domain coherent anti-Stokes Raman spectrosc
experiment26,74 involving two time coincident pulses with
wave vectorsk1 and k2 , which are followed by delayed
pulse with wave vectork1 . The measured signal is the tot
coherent emission along the directionks52k12k2 . In this
case, the relevant term in the third-order polarization cons
of contributions from three fields, one from each of the th
pulses.26 The first two fields ~from the time coincident
pulses! prepare a second-order doorway state. The co
sponding density matrix can be calculated by replacing
two pump fieldsEa(t) in the second-order expression for th
doorway density matrix@given in Eq.~3!# by the fields from
the two different pulses. One would then evaluate the vari
moments for this density matrix, and subsequently mak
displaced thermal state representation as in Eq.~6!. The
third-order polarization induced by the delayed pulse m
then be calculated using the effective linear respo
approach.27 A rigorous analysis of these experiments r
quires the inclusion of the spatial dependence of the la
fields and will be considered in future work.

APPENDIX A: MOMENTS OF NUCLEAR POSITION
AND MOMENTUM IN THE DOORWAY STATE

1. Ground state

The moment generating function for the coordina
Q̂(t), for the density matrixr̂g is defined as

M Q
(g)~k,t !5~1/Ng!Tr@eikQ̂(t)r̂g#, ~A1!

whereNg is given by Eq.~15!. The time evolution ofQ̂ in
Eq. ~A1! is governed by the ground state HamiltonianĤg

and takes the following form forĤg defined in Eq.~10a!:

Q̂~ t !5Q̂ cos~v0t !1 P̂ sin~v0t !. ~A2!

From a knowledge ofM Q
(g)(k,t), we can calculate the time

dependent moments ofQ̂ for the pump induced density ma
trix by a simple differentiation ofM Q

(g)(k,t):

Qg
n̄~ t !5~2 i !n~]nM Q

(g)~k,t !/]kn!k50 . ~A3!

Also, since it follows from Eq.~A1! and the definition in Eq.
~5! that

M Q
(g)~k,t !5 (

n50

`
~ ik !n

n!
Qg

n̄~ t !, ~A4!

the moments can be directly obtained as the coefficient
the various powers ofk in the series expansion fo
M Q

(g)(k,t). The moments ofP̂(t) are trivially obtained from
the coordinate moments by lettingt→t1p/2v0 . To see this,
consider the Hamilton’s equationdQ̂(t)/dt5v0P̂(t) and the
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relation dQ̂(t)/dt5v0Q̂(t1p/2v0) that follows from Eq.
~A2!. These two equations imply the operator relationP̂(t)
5Q̂(t1p/2v0) so that thenth moments ofQ̂ and P̂ obey

Pg
n̄~ t !5Qg

n̄~ t1p/2v0!. ~A5!

We now derive a fully quantum-mechanical express
for M Q

(g)(k,t). Using Eq.~A1! and Eq.~9!, we have

M Q
(g)~k,t !5~1/Ng!H ^eikQ̂(t)&T2

umgeu2

\2 E
2`

`

dt8E
0

`

ds

3E~ t8!E~ t82s!e2Gegusu

3@e2 iVvsAk
g~ t2t8,s!1eiVvsBk

g~ t2t8,s!#J ,

~A6!

where we have defined

Ak
g~ t2t8,s!5K eikQ̂(t)expS iv0DE

t82s

t8
ds8 Q̂~s8! D

1
L

T

,

~A7a!

Bk
g~ t2t8,s!5K expS 2 iv0DE

t82s

t8
ds8 Q̂~s8! D

2

eikQ̂(t)L
T

.

~A7b!

The angular bracketŝ&T denote the average with respect
the thermal stater̂T

(g) @see Eq.~8!#. The thermal average ca
be evaluated exactly using a second-order cumulant ex
sion ~which is exact for a thermal state, according to Wick
theorem75!, with the result

Ak
g~ t2t8,s!5e2g(s)1 iv0sD2/2e2(2n̄11)k2/4

3expS 2
kD

2
G~ t2t8,s! D , ~A8a!

Bk
g~ t2t8,s!5e2g* (s)2 iv0sD2/2e2(2n̄11)k2/4

3expS kD

2
G* ~ t2t8,s! D . ~A8b!

Here, we have defined the functionG(t,s) @which arises from
the cross terms that result from the cumulant expansion
Eqs.~A7a! and ~A7b!# as

G~ t,s!52 i @~ n̄11!e2 iv0t~12e2 iv0s!2n̄eiv0t~12eiv0s!#,
~A9!

and g(s) is given by Eq.~12! for the undamped harmoni
oscillator. If we expandAk

g andBk
g in powers ofk and sub-

stitute the resulting expression into Eq.~A6!, and compare
the result with Eq.~A4!, we get

Qg
n̄~ t !5(

l 50

`

dn,2l

n! ~2n̄11! l

2nNg

1
n!

~2i !nNg
(
l 50

`

(
m50

`

dn,2l 1m

3
~21! l 1m

l !m!
Dm~2n̄11! l@Cm~ t !1~21!mCm* ~ t !#,

~A10!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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with

Cm~ t !52
umgeu2

\2 E
2`

`

dt8E
0

`

ds E~ t8!E~ t82s!

3e2Gegusu2 iV00s2g(s)@G~ t2t8,s!#m. ~A11!

Here,d i , j refers to the Kronecker’s delta. The first term
Eq. ~A10! gives the moments of the equilibrium stater̂T

(g) .
Equations~A10! and ~A11! along with Eqs.~A9! and ~12!
provide the complete set of expressions required to calcu
arbitrary moments of the coordinate operator in the pu
induced density matrix. The moments ofP̂(t) are obtained
using Eq.~A5!.

2. Excited state

Consider the coordinate operatorQ̂ evolving in time due
to Ĥe defined in Eq.~10b!:

Q̂e~ t !5D1~Q̂2D!cos~v0t !1 P̂ sin~v0t !. ~A12!

This has the expected form, with the constantD reflecting
the oscillations about the excited state equilibrium positi
In evaluating the excited state moments, it is more con
nient to shift the origin toD and takeQ̂e8(t)5Q̂e(t)2D for
the excited state oscillator coordinate. The creation~destruc-
tion! operators for the excited state oscillator with a shift
equilibrium position are defined as

Q̂2D5~ âe1âe
†!/A2;P̂5 i ~ âe

†2âe!/A2. ~A13!

From Eq. ~10b!, the excited state Hamiltonian is given a
Ĥe5\v0(âe

†âe11/2)2\v0D2/2. The moment generatin
function is then defined analogous to Eq.~A1! but with the
substitutionQ̂(t)→Q̂e8(t) andg→ e:

M Q
(e)~k,t !5~1/Ne!Tr@eikQ̂e8(t)r̂e#, ~A14!

whereNe is the excited state population given by Eq.~33!.
Using Eq.~A2!, we also haveQ̂e8(t)5 Q̂(t)2D cos(v0t) so
that

M Q
(e)~k,t !5~1/Ne!Tr@eikQ̂(t)r̂e#e

2 ikD cos~v0t !. ~A15!

Analogous to Eq.~A5!, the moments of theP̂ for the excited
state can be obtained from the coordinate moments by
substitutiont→t1p/2v0 . For the coordinate moments, w
have from Eqs.~32! and ~A14!

M Q
(e)~k,t !5

umgeu2

N e\
2E2`

`

dt8E
2`

t8
dt9 E~ t8!E~ t9!e2Gegusu

3@eiVvsAk
e~ t,t8,t9!1e2 iVvsAk

e~ t,t9,t8!#,

~A16!

wheres5t82t9 and we have defined
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e(t,t8,t9)

5exp(2 ikD cos(v0t))

3K S expS iv0DE
0

t9
ds8Q̂(s8) D D

1

3exp~ ikQ̂~ t !!S expS 2 iv0DE
0

t8
ds8Q̂(s8) D D

2
L

T

.

~A17!

The thermal average in Eq.~A17! can be evaluated similar to
Eqs.~A7a! and~A7b!, using a second-order cumulant expa
sion. We find

Ak
e~ t,t8,t9!5e2g* (s)2 iv0sD2/2e2(2n̄11)k2/4

3expS 2
kD

2
Ge~ t,t8,t9! D , ~A18!

whereg(s) is defined in Eq.~12!, and

Ge~ t,t8,t9!5 i @e2 iv0t~~ n̄11!eiv0t82n̄eiv0t9!

1eiv0t~~ n̄11!e2 iv0t92n̄e2 iv0t8!#. ~A19!

@Note thatGe(t,t9,t8)52Ge* (t,t8,t9).] Expansion ofAk in
powers ofk and substituting the result in Eq.~A16! gives us
the final result:

M Q
(e)~k,t !5 (

n50

`
~ ik !n

n!
Qe8

n̄~ t !, ~A20!

where

Qe8
n̄~ t !5

n!

~2i !nNe
(
l 50

`

(
m50

`

dn,2l 1m

~21! l 1m

l !m!
Dm~2n̄11! l

3@Dm~ t !1~21!mDm* ~ t !#, ~A21!

with

Dm~ t !5
umgeu2

\2 E
2`

`

dt8E
2`

t8
dt9 E~ t8!E~ t9!

3e2Gegusu1 iV00s2g* (s)@Ge~ t,t8,t9!#m. ~A22!

Equations~A21! and ~A22! along with Eqs.~A19! and ~12!
provide the complete set of expressions required to calcu
arbitrary moments of the coordinate operator for the pu
induced excited state density matrix. Extension of the m
results in this section to the multimode harmonic case
for damped oscillators is straightforward, but is not cons
ered here for simplicity.

APPENDIX B: COHERENT MOTION IN THE
IMPULSIVE LIMIT

Here we consider the impulsive limit of the first mome
results obtained in Secs. III B and IV B, by assuming that
laser pulse duration is much shorter than the vibrational
riod. Consider the ground state first moments in Eqs.~20a!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and ~20b!. Before we make the short pulse approximatio
we rewrite the two equations after making a simple cha
of variables:

Q̄g~0!52
umgeu2E0

2~2n̄11!D

8p\2Ng
E

0

`

dvF I~v!G̃~v2vc!

3@G̃~v2vc2v0!2G̃~v2vc1v0!#, ~B1a!

P̄g~0!5
umgeu2E0

2D

8p\2Ng
E

0

`

dv FR~v!G̃~v2vc!

3@G̃~v2vc2v0!2G̃~v2vc1v0!#. ~B1b!

If we now make the approximation,tp
21@v0 , we may re-

place the expressions within square brackets in Eqs.~B1a!
and ~B1b! by the first derivatives of the pulse spectrum.
subsequent integration by parts then leads to final result

Q̄g
~ Imp!~0!52

umgeu2E0
2~2n̄11!v0D

8p\2Ng

3E
0

`

dv G̃2~v2vc!~]F I~v!/]v!, ~B2a!

P̄g
~ Imp!~0!5

umgeu2E0
2v0D

8p\2Ng

3E
0

`

dv G̃2~v2vc!~]FR~v!/]v!. ~B2b!

The only assumption made in deriving the above result
that the pulse duration is short compared to the vibratio
period. The temperature,~linear! electron-nuclear coupling
strength, and all other line shape parameters remain arbit
It is seen that in the impulsive limit, the position and m
mentum increments are simply given by the convolution
the laser pulse spectrum with the derivatives of the abs
tion and dispersion line shapes, respectively. Also, the ef
of the spectral bandwidth of the laser pulse enters the ab
expressions independently of the mode frequency, in con
to the general expressions~20a! and ~20b!.

The impulsive limit of the excited state coherence can
similarly obtained from Eq.~36a!. We find,

Q̄e
(Imp)~0!52

umgeu2E0
2D

4p\2Ne
E

0

`

dv G̃2~v2vc!

3@F I~v!2n̄v0~]F I~v!/]v!#. ~B3!

A closed form solution is possible for the mean position
we approximate the imaginary part of the line shape to
Gaussian, which is realized in the semiclassical limit of h
temperatures or strong electron-nuclear coupling strength76

As an illustration, we obtain a closed form expression for
ground state by taking the following forms for the Gauss
spectral function and the imaginary part of the line sha
function:
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where the semiclassical linewidth is given bysT

5DAkBTv0 /\. Using these definitions in Eq.~B2a!, we get

Q̄g
(Imp)~0!5

~2p!3/2v0umgeu2E0
2tp

2D~2n̄11!

16p\2sT
3

3E
0

`

dv~v2Vv!

3e2(v2vc)2tp
2
e2(v2Vv)2/2sT

2
. ~B6!

Evaluation of the above-mentioned integral gives the fi
result,

Q̄g
(Imp)~0!5

Cv0tp
4D~vc2Vv!~2n̄11!

~112tp
2sT

2!3/2

3expF2
tp

2

~112tp
2sT

2!
~vc2Vv!2G , ~B7!

where we have defined the constantC5pumgeu2E0
2/2\2.

Equation~B7!, valid in the impulsive limit of short pulses
captures several of the features found from the general re
in Eq. ~20a!. The initial amplitude is seen to change its pha
across the absorption maximumVv . The sign of the dis-
placement is opposite to that of the excited state equilibri
shift D for red detuning from the absorption maximum
while it has the same sign for blue detuning. The grou
state displacement vanishes for very short pulses. If, in
dition to the impulsive limit wherev0!tp

21 , the condition
sT@tp

21 is also satisfied~yielding the snapshot limit26!, Eq.
~B7! reduces to

Q̄g
(Imp)~0!5

Cv0tpD~vc2Vv!~2n̄11!

A8sT
3

3exp@2~vc2Vv!2/2sT
2#, ~B8!

so that the mean position has a linear dependence on
pulse width.
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