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We discuss the application of the maximum entropy method (MEM) to the extraction of rate distributions
from kinetics experiments on the nanosecond to femtosecond time scale. We first present simulations to
show the effects of data truncation (typical of nanosecond experiments) on rate distributions recovered by
MEM. The stretched exponential decay is considered as an example to demonstrate that if the true distribution
of rates for the underlying process includes faster time scales than are contained within the experimental data
set, MEM can introduce unwarranted features that extend into the slower regions of rate space. This observation
has relevance to the application of MEM to obtain rate distributions from kinetic experiments involving the
relaxation of complex molecules like proteins, where features in the distribution are sometimes interpreted as
static distributions of protein conformational substates. As an experimental example, we present an MEM
analysis of the temperature dependence of the geminate rebinding kinetics of carbonmonoxy myoglobin near
room temperature and find a barrier height of 18 kJ/mol. We also consider the application of MEM to ultrafast
pump—probe transient absorption data, where one needs to take into account the possibility of nonmonotonicity
in the kinetics and the finite pulse autocorrelation width that effectively convolves into the observed material
responses. The MEM analyses of the femtosecond photophysics of Mb and MbNO, monitored at several
wavelengths in the visible region, are presented as examples.

I. Introduction is working with. The application of Laplace inversion has been

In the analysis of kinetic experiments involving the relaxation ggr“ida%tfigglhe_'dﬁostglchsizssfuu;isees-fgﬂﬂ;%eeffrﬁ';ﬂgrs]rl)(?r?thS? k
of complex materials like proteins and glasses, fits to the data py: P Y P ’

using a few discrete exponentials are known to be inadequate,In partipular, flash-p.hotolysis. studies_ monitor the .t.ransient
and one often has to resort to specific nonexponential models‘rjlbsorptIon of a relaxing material (mpnltored at specific wave-
(such as the “stretched exponential’) that fit the data directly Iengths)_ over time scales that are I|m|t_ed experlmentally by laser
in time domain. Another approach has been to seek a repre-pu's‘(.a widths and detec_tor_res_ponse times. The MEM 's_“S"td to
sentation for the process in a space of decay rates, thus obviatin btain smooth rate distributions for the observed kinetics.

the necessity of forcing a particular functional form to fit the ndividual features (such as peaks) in the distribution are usually
data. In this case one. writes ascribed to static distributions of conformational substates. In

low-temperature studies with heme proteins, these features are
" often interpreted as enthalpy barrier distributions for the
I(t) = L g(h)e ' di 1) quenched conformational substates of the prét@MAs such,
these features are an important factor in the interpretation of

whereg(4) is the distribution of rate constants for the process the kinetic data.

I(t). Given an experimentdlt), we would like to obtain the The advantage in the use of the Shannon-Jaynes entropy over
appropriate distributiom(1) that obeys eq 1. This essentially —other regularization functions is that it guarantees that the MEM
involves performing a numerical inverse Laplace transform on solution does not contain structure beyond that demanded by
a noisy data function(t), which is known from information  the experimental informatio.In the present work, we present
theory to be an ill-conditioned problelA large number of MEM simulations (in the context of Laplace inversion) to point
distributions can fit the data equally well, which implies a huge out problems that can occur when the short time experimental
subspace of solutions, and regularization techniesrequired data is limited. The MEM reconstruction of kinetics that are
to obtain a smooth solution that is free of the noise induced governed by a broad distribution of rate constants, but suffer
artifacts. The maximum entropy method (MEM) is one such from insufficient data at shorter times (e.g., due to experimental
technique, where the smoothing function is the Shannon-Jaynedimitations), can have artifactual features that do not represent
entropy? MEM has been successfully applied in many situations the real distribution of rates in the system. This has relevance
where the inverse problem is highly degenerate, owing to the to the MEM analysis of flash photolysis and similar kinetic
presence of noise in the data or the |arge parameter space ongxperiments, where the interpretation in terms of barrier heights
is central. The purpose here is not so much to make a detailed
* Corresponding author. E-mail: champ@neu.edu. study of the numerical nature of the artifacts, but to stress their
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importance in applications related to Laplace inversion and normalized mean square error between the model and the data
suggest possible ways to check for their occurrence. is expressed as
As an example, we focus on the “stretched exponential” type
of relaxation, which has often been used to describe time-
dependent (or series) relaxation in many complex systéms. K=
Although a successful kinetic analysis, based on the rate
representation given in eq 1, presumes the existence of an
inhomogeneous distribution of rate constants in the systemwhere the subscripts e and f denote the experimental and the
(parallel relaxation), this does not rule out the possibility that fit values of the functionl(t) and ok is the noise variance
the relaxing system is homogeneous with time-dependent ratesassociated with thkth data point. With these two expressions,
The distinction between a homogeneous and heterogeneoushe MEM seeks to maximize the “functional) defined as
ensemble can only be made through additional experiments (e.g.,
kinetic selection using multiple pulse protocdl&18). Nev- Q=S— (5)
ertheless, a general representation such as eq 1 is still useful in
testing for nonexponential behavior. Here, the motivation behind Where is the Lagrange undetermined multiplier that is chosen
the choice of a stretched exponential is with the view to applying to satisfy the constraint thgt? = 1. With the number of
the present analysis to previous temperature-dependent studieBarameters/ of the same order as the number of available data
of MbCO relaxation dynamics, where the nonexponential N: the noise in the data results in a highly degenerate solution
geminate recombination of CO to Mb at high temperatures was Set* for a giveny2. The addition of the entropy function helps
modeled using a stretched exponeritfdf1719However, the extract a unique solution that is free of unwanted correlations.
potential problems associated with MEM analysis exist quite MEM is thus said to be maximally noncommittal with respect
generally for processes that have broad rate distributions with to unavailable information.
insufficient experimental data on short time scales. Thus, in B. Implementation. The implementation of the MEM
addition to the stretched exponential, we also illustrate the effectsalgorithm in the present study was carried out using a home-
of insufficient short time data by analyzing a kinetic process built program written in MATLAB (version 4.2). All calcula-
having a Gaussian distribution of decay amplitudes. tipn; were carried out .using doublg prgcision arithmetic. Rate
Finally, we present a MEM analysis of ultrafast purpobe distributions were optalned in logarithmic space. The glgqnthm
experiments on Mb and MbNO. We use an extended MEM Was based on_a_str_alghtforward NewttRaphson optimization
algorithm that is capable of extracting positive and negative SCcheme to minimize-Q = #y? — S where the Lagrange
amplitude rate distributions (corresponding to bleaching and Multiplier 7 is adjusted to satisfy the constraint thétbe near
anti-bleaching signals) and allowing for convolution of the laser Unity (whichis the optimal value for data with white Gaussian
pulse autocorrelation function. The results of the MEM analysis N0iS€). The size of the discretized rate space was only of the
on deoxyMb and MbNO data are presented as examples, andPrder of 16, and hence, it was feasible to use the full Hessian

the possibility of nonexponential behavior in the photophysical Matrix? VVQin calculating the steps. Line searctfagere used
and ligand rebinding processes is addressed. to adjust the size of the steps. To begin withyas set to be a

small number of the order @ (whereo is the estimated noise
variance in the data), an@d was optimized for this value. The
Il. Methods value of » was then stepped iteratively arf@ successively
optimized untily? reached a value close to 1. The initial guess
A. Background. We give only a brief account of MEM here  for the unknown amplitude§ was chosen to be flat (typical
and refer the reader to the large literature related to the methodvalue of 16%), and the prior distributior; was set equal to
for a more detailed discussidh?%2!Since typical experimental  the initial guess. This choice of the prior distribution reflects
data in kinetic studies stretch over several decades in time, itisour complete lack of previous knowledge about the rate
appropriate to use a logarithmic rate space. Transforming theamplitudes. The program was tested with various known
Laplace integral eq 1 to logarithmic space and writing the distributions and was seen to provide accurate reconstructions
integral in the form of a discrete sum, we have for the rate amplitudes. An important aspect of MEM as revealed
by simulations (see Figure 1a) is that even pure exponential
M ) decay processes have rate distributions with finite width (unless
I(t) = ije_”JtA(log A) 2 the data is completely noiseless). Broad rate distributions
= obtained by MEM therefore do not necessarily imply non-
exponential dynamics. A useful test to verify this is to fit the
Here,M is typically on the order of the number of data points data with exponential decays with the centroids of the dis-
N. The spacingsA(log 4;) are usually chosen to be a tributions as the rates and the areas as weights. If the nor-
constant. Thefi’'s then constitute a distribution of rates in  malizedy? of the resulting fit is of the same order as that of the
logarithmic rate space. The MEM proceeds as usual by defining MEM fit, it can be concluded that the dynamics can be well
the entropy described by simple exponentials. A more rigorous approach
would be to obtain an estimate for the resolution (width) in the
M fj MEM rate space, in terms of the noise in the data. In this case,
S= —ij In[—]—1 (3) the dynamics are potentially exponential unless the variance of
= F the MEM distribution is broader than the estimated resolution
in rate space.
TheFy's are the so-called prior distribution, which are used to ~ The mathematical form of the entropy function given in eq
incorporate any previous knowledge that we may have about 3 forces the rate amplitudes to be positive, which restricts the
the rate distribution. In the absence of experimental data, application of MEM to monotonic decays. To extend the
maximizing the entropy function gives the solutipr F;. The applicability of MEM to bipolar signaf$24that involve both

1 N[(t) — Ie(tk)]z
N & gkz

(4)
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(@ G(At) = [1P(t — t) exp(-At) dt (8)

k=10%";p=1 L )
The Newtor-Raphson optimization proceeds as before, with

21 . minor modifications to the gradients and the Hessian used in
Pt the search algorithr#.
= Do In Figure 1b,c, we present a simulation to demonstrate the
Ry efficiency of this algorithm in recovering bipolar rate constants
from a convolved data set. A bimodal rate process with rate
constants 0.1 and 1 ps and amplitude radigh; = —5,
convolved with a 100 fs fwhm Gaussian pulse, was used to
generate the simulated data shown in Figure 1b. The rate
constants and the noise level were chosen to represent a typical
pump—probe study. It is seen from Figure 1c that the MEM
accurately reproduces the rate constants, the faster of which is
(b) © equal to the pulse width itself.

I1l. Results and Discussion

15 10/ A. Simulations with a Gaussian Rate Distribution.For the
first nonexponential simulation in the present study, data of the
stretched exponential form

-AA

I(t) = e (P 9)

10, were generated, witky = 10° s~ and = /5 (the choice being
based on typical values previously obtained for CO geminate
01 2 TTTTTr oo X 1 10 recombination to Mb), and white Gaussian noise with=
1072 was added. The MEM solution was then obtained for sets
of renormalized data with successively increasing truncaifons
Fi_gure 1. (a) MEM reco_nstructi_o_n for a_simulated. expon_ential decay of the short time data points.

with a rate of10 s™1, with additive white Gaussian noise of = To test the accuracy of the MEM rate distribution, we

10~3(dotted line), 5x 1072 (dashed line) and % 1072 (solid line). (b) cul h Vi | ; f th h
Simulated biexponential decay (circles) convolved with a 100 fs fwhm calculate the analytic Laplace inverse of the stretched expo-

pulse autocorrelation (dotted line) is shown along with the MEM fit nential. The inverse Laplace transform is expressed as the
(solid line) using the bipolar algorithm. The decay constants are 0.1 integral
and 1 ps, with an amplitude ratio ef0.5. (c) bipolar MEM distribution

for the data shown i I b. i
or the data shown in pane g() = Q‘[‘;re’“l(t) dt (20)

positive and negative decays (such as seen in ultrafast transient

absorption measurements), we write the rate amplifuakethe where the integration is carried out over the appropriate
difference of two positive rate amplitudé$ andf" Bromwich contou”’” The Laplace inverse of the stretched
I

exponential for general & < 1 has not been obtained in a
closed form, and only series approximations eXistowever,
for the case8 = 1/,, the analytic inverse is obtained using eq
10, and the result is

delay (ps) time constant (ps)

n
fi= fjp —f; (6)
This distribution is used in the fitting function (eq 2) that is
subject to the/-square test, and the entropy function is written 1[k\ Y2 exp(—k,/44)
as the sum of two separate entropies defined (as in eq 3) with 94 = é(;) T
respect tdf P andf ". The optimization ofQ defined in eq 5 is

now carried out with the gradients and Hessian matrices definedwhich is an asymmetric bell shaped curve with a maximum at

(11)

ina 2x M dimensional space formed by the vectrs= (f P, "). A = ki/6. Before we compare this expression with the MEM
The iterative steps ifi' then determine the corresponding steps rate distribution, we must keep in mind that the MEM obtains
for the positive and negative distributions. a solutionf (1) in log rate space, whereas the Laplace inverse

In addition to the bipolar signals, the applicability of MEM  g(1) is in linear rate space. The relationship between the two
to kinetic data requires one to consider the finite laser pulse distributions follows immediately from the change of variables
widths that effectively convolve into the response of the system. in going from log to linear space and is given by
For ultrafast pump-probe data, we convolve the experimentally
known pulse autocorrelation into the model fitting function eq 1)

2, which then takes the form 9() = (4 In 10) (12)
M It is worth noting from this relation that the linear space
I(t) = ijG(/lj,t)A(Iog 4) ) distribution g(4) is narrower than the log space distribution.
= Figure 2a shows the analytic expression in linear (full line) and
log space (dashed line) for a stretched exponential fith'/,
where G(4;,t) is obtained by convolving the exponential (the andk; = 10° s™%. The downward pointing arrow in the figure
response for delta function pulses) with the pulse autocorrelationindicates the inverse of a typical time resolution (100 ns) for
P(t) flash-photolysis studie&?1° It is seen that the log space
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Figure 2. (a) The analytic Laplace inverse for a stretched exponential t(s) (s
y p p

with k; = 10° st and 8 = Y/, in linear rate space (solid line) and log  Figure 3. Left panel shows a series of simulated stretched exponential
rate space (dashed line). The downward pointing arrow corresponds todata sets, truncated from 48 to 107 s. The corresponding MEM
the inverse of a typical time resolution for flash photolysis studies. (b) rate distributions are shown at the right. In the region beyond no
Simulated stretched exponential data truncated at?l€) along with experimental information is available.

the MEM fit (solid line). (c) The corresponding MEM rate distribution
compared with the analytic distribution for the stretched exponential

in log space (circles). downward pointing arrows in the figure) are seriously distorted.

Since the iterations were always stopped wheéapproached
distribution is nonvanishing for rates faster tharf 4@ (inverse the optimal value of unity (for Gaussian distributed white noise),
of the time resolution), whereas the linear distribution has it is clear that these features are not due to overfitting the data
negligible amplitude in this region. The presence of nonzero but must arise from the truncation of the data at shorter times.
log space rate amplitudes in the region of the largest experi- B. Simulations with a Gaussian Rate Distribution.It should
mentally obtainable rates can potentially affect the MEM be emphasized that the artifactual features in the MEM
analysis, as we show in the following discussion. In the middle distribution appear whenever the true rate distribution has
panel of Figure 2, we show the simulated stretched exponentialnonvanishing amplitude atmax. Thus, we must anticipate
data truncated at 102 s, along with the MEM fit. The problems in the MEM reconstruction for any broad rate process
corresponding MEM distribution is shown in the lower panel with incomplete short time information. In Figure 4, we show
of the figure (solid line) and compared with the analytic simulations with a Gaussian rate process to illustrate this fact.
expression in log space (circles). The agreement is seen to beA broad rate distribution with a Gaussian profile (Figure 4b,
almost perfect, demonstrating the efficiency of the algorithm circles) was used to generate the kinetics, and the resulting
in doing the Laplace inversion. In this case, the information temporal data was first truncated at3®s (Figure 4a). The
needed to recover the entire rate distribution is contained within MEM reconstruction for these data is shown compared with
the given data set. the true distribution in Figure 4b (solid line) and is seen to match

Next, we consider the series of MEM fits and reconstructions the true distribution very well. Now consider the data set
shown in Figure 3, corresponding to successive truncations oftruncated at 10’ s, shown in Figure 4c, and the corresponding
the data at times from 18° to 1077 s, which spans some MEM rate distribution in Figure 4d (solid line). The presence
possible resolution times for flash photolysis studies. It is seen of artifactual structure in the distribution is clearly seen. Note
that for the MEM reconstruction of the truncated data (right that the distribution belowlmax (10’ s71) is again seen to be
panel of Figure 3), new features appear in the distribution that seriously distorted. The fact that false features appear in the
are quite distinct from the actual featureless distribution. The Gaussian distributed process as well as the stretched exponential,
data that begins at 100 ns are seen to be most affected, with awhen the data are truncated at short times, demonstrates the
least two distinct features that one might naively identify with generality of the problems that can arise when processes with
separate conformational subpopulations, having mean rates giverbroad rate distributions are analyzed using MEM, with insuf-
by the maxima of the peaks. ficient short time data.

It is obvious that, for a given shortest time potpi, in the The appearance of these artifacts can be traced to the fact
experimental data, we cannot expect to obtain information for that when a small prior level is chosen, the MEM rate
rates faster thadma1/tmin. Thus, any features in the distribu-  distribution approaches zero for rates larger thag. The fact
tion beyondimax must be artificial. However, the surprising that the rate distribution should approach zero beyond this value
result of the MEM reconstructions in Figure 3 is that even the follows from the fact that the amplitudes for these rates are
portions of the rate distribution well beloiya{shown by the severely underweighted ig? (see eq 2), and the optimization
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Figure 4. (a) Simulated kinetics generated using a Gaussian distribution A (3_1) A (s'1)

ggstrr{;‘tt)i?ilo r?lgpgat\ggr:mt:g t(l)VIEe'\f‘le]:’I;tésg’:fklig‘;)iés(l:()():irzlges)Gae:(L)jSSIar!th Figure 5. Role of the Prior distribution. (a) Simulated stretched
‘o gen ST » along wi exponential withk; = 10° s7* and = /,, shown truncated at 1I0s.
the MEM reconstructed distribution (solid line). (c) Same data as those (b) Top panel shows the MEM reconstruction with a flat prior

g‘oﬁin:)! pae?ilrjr: ém:‘ﬁ;t‘?g) aé;?g;%%é?:;T\r/lnlza,{;lzreedcg%g{::}éigﬁ I(?ucljlfltii r;) distribution of value 10* The true distribution (from eqs 8 and 9 in
compared with the true distribution. Both the true and reconstructed the text) S shov_vn in circles. The bottom pam_al Sh.OW.S the MEM
distributions must be rescaled by the same factor (2.5) that was usedre_constru_ctlon with I_a rger level (0.2) for the prior Fjlst_rlbgtlon. ©
to normalize the data in panel ¢. Note that the area.under the MEM Kinetics s!mu_late_d using a double-peaked Gaussian dlstrlbutlc_)n o_f rates.
: (d) The distribution used to generate the kinetics is shown in circles.

distribution in panel d is smaller than that for the true distribution. . - .
. . ] . The MEM reconstruction for a small value of the prior level is shown
Y
This arises from the fact that the MEM fit at times shorter than’10 in the top panel and for a larger value in the bottom panel (dashed

s is imperfect and corresponds to a smaller zero time point (1.68) than line).
the correct one (2.5) (note from eq 2 that the zero time point determines
the area of the distribution). The prior distribution was set to a constant
value of 10 in this simulation. If larger values for the prior distribution ~ Poth a small (10%) and a larger (0.2) constant value for the
are used, the effective area also becomes larger and the artifacts argorior distribution. The theoretical distribution is shown in circles
reduced (see text). for comparison. It is evident that use of a larger value for the
procedure gives back the prior distribution in the regions where prior distribution minimizes the artifactual features that appear
no experimental information exists. In other words, the lack of in the MEM reconstruction. The agreement between the MEM
required information for faster rates forces the entropy term to distribution and the true distribution is quite good in this case,
dominatey? in the optimization. In the examples given above, atleast for rates below the “no-information zone” (region below
the prior distribution was set to a constant value near zero Amax= 10" s71). Above this region, the prior distribution, which
(~107%). The rate distribution approaches this small value for was chosen to be a consté{shown by a dashed line), is seen
rates abovelmax and is effectively nonvanishing only before to be reproduced.

this rate. The MEM algorithm is thus forced to fit the incomplete  In the other simulation, a double peaked distribution of rates
data whose true distribution extends beyohghy, with a was used to generate the kinetics shown in panel c of Figure 5.
narrower band of rates less thap.. This is the likely cause The MEM analysis on this data set for the two different prior
of the discrete features that appear in the MEM reconstructionslevels is shown in panel d,and it is seen that the MEM rate

of truncated data sets. distribution is unaffected by the value chosen for the prior level.
C. Role of the Prior Distribution. As mentioned above, the In this case, the true distribution (in log space) is within the
MEM reproduces the prior distribution for rates faster thag. fastest rate constant obtainable with the given data«E 10

This motivates us to consider the role of the prior distribution s1) so that the features are unaffected by the chosen value of
in the analysis. It might be expected that the use of a higher the prior level. Thus, one way of checking for the presence of
level for the prior distribution could reduce the artifactual false features in the MEM analysis is to obtain reconstructions
features, since the rate distribution abdygx would then not for various prior distribution levels. If the features beldwax

be forced to zero. In Figure 5, we show the MEM analysis using in the computed rate distribution are sensitive to the prior level,
two sets of simulated data. Panel a in the figure shows the then it can be concluded that they are most likely artifactual.
stretched exponential truncated as before at 100 ns. The D. Role of the Zero Time Point. Another way to minimize
corresponding MEM rate distribution is shown in panel b, using the artifactual role played by rates faster tlapxis to include
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Figure 6. Role of the zero time point in minimizing the artifacts. (@)  monitored in the Soret band, at 280 The MEM fit is shown in solid
Stretched exponential kinetics truncated at 100 ns. A time zero data |jpeg. (b) MEM rate distributions for the 26K data with prior level

point has been inqluded_ (not shown in the_ log plo_t) in the data set. (b) -4 (top panel) and 0.02 (bottom panel). The bimolecular rate near
MEM reconstruction without the zero time point. (c) Shows the 500 st is shown rescaled in dashed lines.

reconstruction with the zero time point included. N o )
facilitated by a representation in rate space using MEM.

an estimated zero time point in the data. This is only possible Nonexponential kinetics in myoglobin have also been observed
in the experimental analysis if absorption cross sections for the at high temperature, where the interconversion between the
reactant and photoproduct states are known or can be ap-substates is expected to be more rapid, and hence, the ensemble
proximated by their equilibrium values. This procedure gives is more homogeneous on the ligand binding time scales. Thus,
an additional term in,? that involves all the rate amplitudes the nonexponential nature of the kinetics at room temperature
(even those abovémay, and hence, the fast rate amplitudes has been attributed either to the relaxation of the proxihaal

will not be so drastically underweighted in the fit. In Figure 6, the distal* pockets, both of which lead to a time-dependent
we show the MEM fit and reconstruction for a simulated rebinding rate.

stretched exponential process, with and without the inclusion Here, we present a MEM analysis of MbCO kinetics at high
of a zero time point. It is seen in the lower portion of Figure 6 temperature (266300 K). This nonexponential geminate
that the resulting rate distribution is flat and nonzero for rates rebinding was previously modeled using a stretched exponential
abovelmax and that the artifacts are partially suppressed. With and was attributed to nonequilibrium relaxation of the distal
the logarithmic time base that is often adopted in flash-photolysis pocket!4 We first demonstrate the appearance of an artifactual
studies®”-?1417a zero time point is not usually included in the shoulder in the portion of the MEM distribution corresponding
fitting procedure. However, it is sometimes possible to ap- to the fast geminate kinetics. In Figure 7, we show the kinetics
proximate the zero time point, by using known optical properties of CO rebinding to myoglobin at 260 K in 75% glycerol
of the initial and photoproduct states, along with the amount of solution, monitored at 423 nm (corresponding to the absorption
photolysis (e.g., complete photolykid?. Thus, if MEM is to maximum of the CO bound system). Shown directly below the
be used in the kinetic analysis and short time data truncation iskinetic trace is the corresponding MEM reconstruction with two
a possibility, it is worthwhile to include an approximate zero different levels of the prior distribution. When the prior
time point in the analysis. distribution is chosen to be constant with a small"(3@alue,

E. MEM Analysis of MbCO Kinetic Data. We now distinct features labeled-13 and S can be seen in the MEM
consider the application of MEM to temperature-dependent distribution. The sharp feature in the distribution (labeled S in
studies of MbCO relaxation dynamics in solution. The binding the figure) peaked near 200%sis nearly exponential, and is
of CO to myoglobin has been studied over a wide range of time attributed to bimolecular rebinding of CO that has escaped into
scales and temperaturest1° At low temperaturesT < 180 solution. Peak 3 at % 10 s™! and the broader distribution
K), the protein ensemble is characterized by a “frozen” consisting of the features 1 and 2 are attributed to geminate
distribution of conformational substates that do not interconvert, phases of the rebinding kinetics and correspond to rebinding
and the rebinding process is nonexponential. An interpretation processes taking place from within the heme pocket. Peak S at
of the kinetics in this type of inhomogeneous ensemble is 200 st has the largest amplitude and has been shown rescaled
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range 266-293 K (circles), shown along with the MEM fits (solid depicted over the time scales of heme and distal pocket relaxations.
lines). (b) Corresponding MEM rate distributions. Only the geminate (2) Temperature dependencekai ~ lk. |1 was found from the area

processes are shown. The corrected distributions (using larger valuel.Jnder the asymmetric distributions in Figure 8. The solid I|n_e ShO\.NS a
0.02 for the prior level) are shown in solid lines. The artifactual ne@r fit to the plot. The slope gives the enthalpy barrier height

distributions are shown as dashed lines (prorl0-4). The arrows associated wittksa, and the intercept is related to the prefactor.
indicate the peaks used to extract the stretched rate constants associated
with the asymmetric distribution, as described in the main text. dashed line, using small prior levels). We note from this figure
that for higher temperatures, the artifactual features that appear
for clarity. The shoulder labeled 1 is quite distinct and could when small prior values are used become less prominent,
potentially be attributed to a conformational subpopulation. indicating that the rate distribution gets narrower and more
However, when the prior level is increased to a higher value of symmetric at higher temperatures. In view of a previous study,
0.02, it is seen that the shoulder disappears, showing that it iswhere the geminate rebinding was modeled using a stretched
an artifact resulting from incomplete short time data. We exponentiak? along with the results of eqs 8 and 9 and Figure
conclude that the shoulder is due to the existence of nonzero2, we suggest that the asymmetric MEM distributions be-
amplitudes of the true rate distribution near the fastest obtainabletween 260 and 280 K in Figures 7 and 8 are indicative of a
rate of 16 s~1. This example illustrates the need for caution in geniune stretched exponential behavior for the MbCO geminate
the interpretation of the MEM reconstruction when data are kinetics.
truncated at times where the rate amplitudes may be nonzero. Under the assumption that the short time nonexponential
It is clear from the corrected distributions (using the larger behavior arises due to a series type of relaxation (time-dependent
prior values) shown in Figure 7 that the geminate rebinding rates), we can recover the enthalpy barrier for CO rebinding to
kinetics is governed by an asymmetric distribution of rate the heme using the MEM distribution and compare it with
amplitudes and that there are rate components fasterithan previous results? For this purpose, we note that the rate constant
= 10° s™1. We note that in a previous application of MEM to that is most easily linked to the low-temperature rate distribu-
analyze the low-temperature MbCO rebinding kinetitthree tion!8 is associated with CO geminate rebinding to the relaxed
distinct features were observed in the rate distribution for the heme, prior to distal pocket (or protein) relaxatidrigure 9a
data taken at 250 K, the highest temperature kinetics measuredschematically depicts the behavior of the average rate constant
in that study. In contrast to the asymmetric distribution seen for rebinding, as discussed by Tian ef‘aHere it is assumed
here for the fast phase of the geminate kinetics, Johnsori®t al. that the heme relaxation is a picosecond process, while the distal
observed a single Gaussian-like distribution of rates. This pocket (or protein) relaxation takes place on nanosecond time
difference can possibly be attributed to the better experimental scales. The (approximately) constant rebinding rate labdeled
time resolution of the data presented here 1€) compared to in the figure can be predicté¥! from the rate distributions
1077 s). Itis also conceivable that the difference in temperatures obtained at low temperatutéwhere the heme partially relaxes
(250 vs 260 K) at which the kinetics were monitored might to an intermediate out of plane positf8f® and distal pocket

contribute to this discrepancy. (or protein) relaxation is completely quenched. The fundamental
In Figure 8, we display the MEM analysis of the MbCO rate constankga can be related to the observed stretched rate
rebinding kinetics over the temperature range of 2893 K. constantk; using ksa = Iiki, where liis the (normalized)

Only the geminate part of the rate distribution is shown, analyzed amplitude of the stretched exponential decay. Assuming&hat
using two prior levels (solid line, using larger prior levels, and = Y/,, the stretched rate constdatcan be obtained from the
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MEM distribution using the fact that the log rate space
distribution for a stretched exponential is peakek,atc= ki/2

(as follows from eqgs 11 and 12). The peaks of the distributions
that were used to obtalg are indicated by downward pointing
arrows Figure 8. The amplitudésare calculated from the areas
under the asymmetric peaks. The valuekgaf= |:k; extracted
from the MEM analysis are shown using an Arrhenius plot in
Figure 9b. The slope of this plot is found to Bg ~ 18 kJ/mol

and gives the barrier height for CO rebinding near room
temperature after heme relaxation is complete, but prior to distal
pocket (or protein) relaxation. The high-temperature intercept [
gives a prefactoky ~ 3 x 10° s™1. These results are in good
agreement with the predictions of a simple mégi&}4and with
previously obtained valué$,suggesting that the identification
of the asymmetric MEM distribution with a stretched exponen-
tial process is valid.

F. MEM Analysis of Ultrafast Photophysical Processes
(Mb and MbNO). In this section, we consider the application
of MEM to the analysis of the ultrafast photophysics of
myoglobin, monitored through pumyprobe femtosecond co-

465nm

herence spectroscoffy?® (FCS). Traditional nonlinear least-

squares fitting procedures of kinetic data often suffer from [¥7. ... i

problems due to local minima and overfitting (in addition to /"”’7 470 0m

being model specific) and can lead to inconsistent results. ¥ . _ 1

Furthermore, FCS data often contain oscillatory signals super- fﬁ 480 nm

imposed on the exponential background decay signal. These | I S S S
oscillations are a manifestation of the quantum beats induced ¢~ 2 4 & & 10 001 04 1 10 100
in the medium by the pump pulse interacti®he extraction delay (ps) time constant (ps)

of the rate constants for the “zero frequency” background decaysFigure 10. (a) Series of MbNO open band data (circles) for different
from the total FCS data often poses a challenge due to theprope wavelengths, along with the corresponding MEM fits (solid line).
presence of the oscillatory signals that act as a systematic noiseThe broad offsets occurring near 100 ps have been subtracted for
We have found that the bipolar MEM algorithm, with the pulse efficient recovery of picosecond rates. (b) The corresponding MEM
convolution feature (see Methods section above), offers a rate distributions.

consistent approach in separating the nonoscillatory backgroundl\legative peaks correspond to bleaching buildup or the decay

from the oscillatory components of the purnprobe signal. of antibleach signal. The change from a positive to a negative
The results of the MEM analysis of the open band FCS amplitude for a given peak as a function of the probing
signals of MbNO are shown in Figure 10. (Open band wavelength occurs at an isosbestic point between the equilibrium
measurements are obtained by registering the entire probe pulsgind nonequilibrium absorption spectra. It is noteworthy that the
bandwidth on the photodetector, without the use of a mono- rate distributions for all the kinetics are relatively narrow (see
chomator to filter its spectral content, as is sometimes done to Figure 1 and related discussion above), suggesting that expo-
enhance higher-frequency oscillatory components of the FCS nential processes are sufficient to describe the observed signals.
signal®*3j A series of open band pumiprobe data for carrier From the MEM analysis presented in Figure 10, it is clear
wavelengths in the range 46600 nm (resonant with the Soret  that the kinetics can be classified into three major groups, with
band) are shown along with the MEM rate distributions. The time constants 0.1, 0:51, and 2-4 ps. A resolution of the peak
kinetics shown are presented in arbitrary units of the net corresponding to rate processes larger than 10 ps (such as NO
transmission change (pump-on minus pump-off) of the probe recombination) requires longer delay scans than presented here.
pulse. Positive signals correspond increased transmittance (ot is seen that all the kinetics in the wavelength range of-400
decreased absorbance) following pump photoexcitation (bleach-427 nm exhibit a bleaching signal. Between 427 and 430 nm,
ing). Negative signals correspond to a decreased transmittanceve observe a transition from the bleach into antibleach phase,
of the pump induced photoproduct (anti-bleach). The data at and the signal remains in the antibleaching region until full
413 and 420 nm have been offset by a small constant in orderrecovery. In the range 43554 nm, only the antibleaching
to remove the large background in the MEM rate distribution signals are recorded, while the kinetics measured at 460, 470,
at longer time constants, which corresponds to NO recombina-and 480 nm show an antibleach that evolves into a bleaching
tion following photolysis. The data near zero delay and signal. It must be mentioned that the equilibrium difference
extending beyond the width of the pulse autocorrelatioh50 spectrum (Mb-MbNO) has a second isosbestic point near 455
fs) have been excluded from the present analysis. This regionnm and shows a bleach for longer wavelengths.
corresponds to the overlap of the pump and probe pulses and In Figure 11, we present the open band measurements of
contains a strong nonlinear response known as the coherentleoxy Mb (Mb) along with the corresponding MEM analysis.
coupling signal, which will not be considered héfeThe It is noteworthy that the kinetics have features very similar to
corresponding rate distributions for each independently analyzedthat of MbNO despite the absence of photolysis in Mb, which
data set stretch over three decades (0.01 to 10 ps) and are plotteid a five-coordinate species. In the case of Mb, the kinetics is
as distributions in the time constant (inverse rates) in the right composed of two major components, with time constants in the
panel of Figure 10. Positive peaks correspond either to decayranges 0.10.3 and 2-6 ps. The major difference between the
of a bleached signal or the rise of an anti-bleaching signal. kinetics of the two compounds is the absence of a slower process
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(a) (b) photoproduct and its subsequent cooffigf!*3 The second
ML L b N T model is based on the creation of multiple electronically excited
‘ 1 intermediate state species that have red shifted spectra, followed
by decay to the final photoproduct ground st&té\ careful
analysis of the femtosecond continuum spéétiavors the hot
ground-state model over the multistate model, as does the recent
time resolved Raman data of Kitagawa and Mizuténi.

V. Summary

In the analysis of nonexponential kinetic processes, the MEM
is well established as a useful tool for obtaining rate distributions
with minimal noise induced features. However, as the simula-
tions presented in this paper show, truncation of short time data
points can introduce distinct features even in the optiryas(

1) reconstruction. These features extend into the slower regions
of rate space and can potentially affect the interpretation of the
MEM distribution. In this paper, we have demonstrated how,
: ; ‘ in the absence of short time information, the prior distribution
470nm j ; in the entropy functional can be used to distinguish true features
; : from false ones. An experimentally approximated zero time data
point can also be useful in minimizing the appearance of
misleading features in the MEM rate distribution. We also stress
that when noise is present, even pure exponential processes have
broad MEM distributions so that further tests are required to
; ‘ check for nonexponential behavior. An application of MEM to
T : ; e B R the nanosecond geminate kinetics of MbCO rebinding near room
0 2 4 6 8 10000 01 1 10 100 : . S .
delay (ps) fime constant ps) temperature yields an asymmetric rate dlstrl_butlon that is
characteristic of stretched exponential behavior. The value

Figt‘)re 11. (l"") Seh”es |°f deo>_<¥]Mr? open band g_ata &E‘;ﬁ?) f?r ‘li.ig?.rer;t obtained for the barrier height (prior to distal pocket structural
probe wavelengths, along with the corresponding its (solid line). . - : :
The broad offsets occurring near 100 ps have been subtracted forgﬂ?;ﬁggnr)éfjltg 18 kJ/mol, agrees well with previously

efficient recovery of picosecond rates. (b) The corresponding MEM 3 o
rate distributions. Finally, we have also demonstrated the application of a

that corresponds to ligand recombination in MbNO (not shown, PiPolar MEM algorithm (with a pulse convolution feature) that
to be published). can extract positive and negative rate amplitudes from femto-

In interpreting the open band data of Mb and MbNO, it must S€cond pumpprobe data. The MEM analysis of single wave-
be kept in mind that the absorption spectrum of the pump '€ngth pump-probe data on myoglobin has revealed the
induced photoproduct is dynamic rather than static in nature, €XiStence of at least three distinct rate processes, which are
as revealed by ultrafast transient spectral measurements usingonsistent with independent studies that employ continuum
a white light continuunf? As might be expected, it is found probe technique®. Surprisingly, the ultrafast photophysms of
that the dynamics of the first and second moments of the spectral™P and MbNO appear to be governed by exponential rather
line shape of the pump induced photoproduct have time than distributed processes, as indicated by the relatively narrow
constants similar to those found in the single wavelength open rate distributions found in the ultrafast kinetics. An independent

band measurements discussed above. In general, there are thrédalysis of the continuum probe détéavors a “hot” dynamic
major dynamical processes that are observed in the transien{i"® Shape model associated with the cooling of the transient
line shape evolution. These consist of the ligand recombination Photoproduct. A more detailed analysis of these results will be
with time constant 16100 ps, spectral shifting of the transient €Ported elsewhere.
photoproduct Mb* (change in the peak position of the line
shape) with time constant-® ps, and spectral narrowing of
Mb*(change in the width of the line shape) with a time constant NSF (
of 0.1-0.3 ps. The observed open band kinetics for each
wavelength shown in Figures 10 and 11 is a result of a
combination of these processes. The observed kinetics is highly (1) McWhirter, J. G.; Pike, E. RJ. Phys A: Math. Gen197§ 11,
dependent upon the location of the probe wavelength with 1729. ) ]
respect to the equilibrium and photoproduct absorption spectra | (2) Tichonov, A.; Arsenin, VSolutions of lll-posed Irerse Problems;
S - . . ohn Wiley & Sons: London, 1977.
(which is dynamic). For instance, note the disappearance of the (3) Jaynes, E. T. IrPapers on Probability, Statistics and Statistical
fast bleaching decay and anti-bleaching rise seen in the MbNO Physics Rosenkranz, R., Ed., Ed.; D. Reidel: Dordrecht, The Netherlands,
kinetics at 413 and 460 nm. These two wavelengths correspondl983. _
to the points where the photoproduct absorption remains g’g ;‘i‘t’)‘?;eys'?\ia'fdff;‘ig?}ggﬂ;ig%‘?03%*}}’5,1334'1987' 52 693.
unchanged despite the Qynamic. speqtral evolution. Such phe- (6) Steinbach, P. J.; Ansari, A.; Berendzen, J.; Braunstein, D.; Chu
nomena are “dynamic isosbestic points” that result from a K.; Cowen, B.; Ehrenstein, D.; Frauenfelder, H.; Johnson, J. B.; Lamb, D.
combination of spectral narrowing and shifting of the photo- C.; Luck, S.; Mourant, J. R.; Nienhaus, G. U.; Ormos, P.; Phillip, R.; Xie,
product absorption spectrum. There are two competing models” \((%“g%éiﬁhiﬁ'gmfmc'?ylgE_’lFf’:' esrii%er H. Johnson. J. B Lamb
that can account for the observed spectral dynamics. One isp_ ¢ -'Nienhaus, G. U,;"Saui'e, T. B.;uYoung’ R. Blophys. J1992 61, '
based on the creation of a “hot” electronic ground state of the 23.

Acknowledgment. This work is supported by grants from
MCB 9904515) and NIH (DK35090).

References and Notes



7856 J. Phys. Chem. B, Vol. 105, No. 32, 2001

(8) Petrich, J. W.; Lambry, J. C.; Balasubramanian, S.; Lambright, D.
G.; Boxer, S. G.; Martin, J. LJ. Mol. Biol. 1994 238 437.

(9) Tetreau, C.; Primo, C. D.; Lange, R.; Tourbez, H.; Lavalette, D.
Biochemistry1997, 36, 10262.

(10) Johnson, J. B.; Lamb, D. C.; Frauenfelder, H.; Mueller, J. D;
McMohan, B.; Nienhaus, G. U.; Young, R. Biophys. J1996 71, 1563.

(11) Livesey, A. K.; Skilling, J.Acta Crystallogr., Sect. B: Struct.
Crystallogr. Cryst. Chem198 A1, 113.

(12) Ngai, K. L.; Wang, C. H.; Fytas, G.; Plazak, D. L.; Plazak, D. J.
J. Chem. Physl1987, 86, 4768.

(13) Frauenfelder, H.; Sligar, S. G.; Wolynes. P.Sgiencel991, 254,
1598.

(14) Tian, W. D.; Sage, J. T.; Srajer, V.; Champion, P.Rys. Re.
Lett. 1992 68, 408.

(15) Ansari, A.; Jones, C. M.; Henry, E. R.; Hofrichter, J.; Eaton, W.
A. Sciencel99], 256, 1796.

(16) Austin, R. H.; Beeson, K. W.; Eisenstein, L.; Frauenfelder, H.;
Gunsalus, |. CBiochemistryl975 14, 535.

(17) Tian, W. D.; Sage, J. T.; Champion, P. M.; Chien, C.; Sligar, S. G.
Biochemistry1996 35, 3487.

(18) Post, F.; Doster, W.; Karvounis, G.; Settles, Blophys. J1993
64, 1833.

(19) Lambright, D. G.; Balasubramanian, S.; Boxer, SC&em. Phys.
1991, 158 249.

(20) skilling, J.; Bryan R. KMon. Not. R. Astron. So&984 211, 111.

(21) Stephenson, D. rog. NMR Spectrosd 988 20, 51.

(22) Press. W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery. B. P.
Numerical Recipes in @nd ed; Cambridge University Press: Cambridge,
1992.

(23) Laue, E. D.; Mayger, M. R.; Skilling, J.; Staunton,JJ.Magn.
Reson.1986 68, 14.

(24) Smith, P. F.; Player, M. Al. Phys. D: Appl. Phys1991, 24, 1714.

(25) For instance, the Hessian now takes the foWQ); = G(4i,t) x
G(4.b).

(J26) The number of data points decreased with increasing truncations.
But the MEM is quite insensitive to the number of data points. and we can
ignore this factor in the present discussion.

(27) Stephenson, M.; Radmore, P. Mlvanced Mathematical Methods
for Engineering and Science StudentSambridge University Press:
Cambridge, 1990.

Kumar et al.

(28) Lindsey, C. P.; Patterson, G. D. Chem. Phys198Q 73, 3348.

(29) Although we have considered a constant prior distribution in this
analysis, the discussion here is not restricted to this choice in that a prior
distribution of any shape will be reproduced in the region where no
experimental information is available.

(30) Srajer, V.; Reinisch, L.; Champion. P. M.Am. Chem. So4988
100, 6656.

(31) Srajer, V. Ph.D. Thesis, Northeastern University, 1991. Srajer, V.;
Champion, P. MBiochemistry1991, 30, 7390. Champion, P. Ml. Raman
Spectrosc1992 23, 557.

(32) Schlichting, I.; Berendzen, J.; Phillips, G. N., Jr.; Sweet, R. M.
Nature 1994 371, 808.

(33) Teng, T. Y.; Srajer, V.; Moffat, KNat. Struct. Biol.1994 1,

701.

(34) Rosca, F.; Kumar, A. T. N.; Ye, X.; Sjodin, T.; Demidov, A. A;;
Champion, P. MJ. Phys. Chem200Q 104, 4280.

(35) Kumar, A. T. N.; Rosca, F.; Widom, A.; Champion, P. MChem.
Phys.2001, 114, 701.

(36) The presence of the coherent coupling signal near the zero delay
region might affect the ultrafast medium response over and above the simple
pulse convolution considered here. Although we have chosen to ignore
this portion of the data in the present analysis, a more complete understand-
ing of the nonlinear response near zero delay is necessary in order to
accurately and reliably extract the fast electronic decay processes occurring
on the time scales of the pulse durations and will be considered in future
work.

(37) Petrich, J. W.; Poyart, C.; Martin, J. Biochemistry1988 27,
4049. Franzen, S.; Kiger, L.; Poyart, C.; Martin, J.Biophys. J2001, 80,

2372.

(38) Rodriguez, J.; Kirmaier, C.; Holten, 0. Chem. Phys1991 94,
6020.

(39) Rodriguez, J.; Holten, DOl. Chem. Phys199Q 92, 5944.

(40) Rodriguez, J.; Holten, Ol. Chem. Phys1989 91, 352.

(41) Rodriguez, J.; Westerfield, W.; Whiteley, B.; Kirmaier, C.; Holten,

D. J. Lumin.1994 60—-1, 507-510.

(42) Demidov, A. A.; Ye, X.; Rosca, F.; Kumar, A. T. N.; Champion,
P. M. in press.

(43) Wang, W.; Ye, X.; Demidov, A. A.; Rosca, F.; Sjodin, T.; Cao,
W.; Sheeran, M.; Champion, P. M. Phys. Chem. R00Q 104, 10789.

(44) Mizutani, Y.; Kitagawa, TChem. Recor@001, 1, 258.



