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We discuss the application of the maximum entropy method (MEM) to the extraction of rate distributions
from kinetics experiments on the nanosecond to femtosecond time scale. We first present simulations to
show the effects of data truncation (typical of nanosecond experiments) on rate distributions recovered by
MEM. The stretched exponential decay is considered as an example to demonstrate that if the true distribution
of rates for the underlying process includes faster time scales than are contained within the experimental data
set, MEM can introduce unwarranted features that extend into the slower regions of rate space. This observation
has relevance to the application of MEM to obtain rate distributions from kinetic experiments involving the
relaxation of complex molecules like proteins, where features in the distribution are sometimes interpreted as
static distributions of protein conformational substates. As an experimental example, we present an MEM
analysis of the temperature dependence of the geminate rebinding kinetics of carbonmonoxy myoglobin near
room temperature and find a barrier height of 18 kJ/mol. We also consider the application of MEM to ultrafast
pump-probe transient absorption data, where one needs to take into account the possibility of nonmonotonicity
in the kinetics and the finite pulse autocorrelation width that effectively convolves into the observed material
responses. The MEM analyses of the femtosecond photophysics of Mb and MbNO, monitored at several
wavelengths in the visible region, are presented as examples.

I. Introduction

In the analysis of kinetic experiments involving the relaxation
of complex materials like proteins and glasses, fits to the data
using a few discrete exponentials are known to be inadequate,
and one often has to resort to specific nonexponential models
(such as the “stretched exponential”) that fit the data directly
in time domain. Another approach has been to seek a repre-
sentation for the process in a space of decay rates, thus obviating
the necessity of forcing a particular functional form to fit the
data. In this case one, writes

whereg(λ) is the distribution of rate constants for the process
I(t). Given an experimentalI(t), we would like to obtain the
appropriate distributiong(λ) that obeys eq 1. This essentially
involves performing a numerical inverse Laplace transform on
a noisy data functionI(t), which is known from information
theory to be an ill-conditioned problem.1 A large number of
distributions can fit the data equally well, which implies a huge
subspace of solutions, and regularization techniques2 are required
to obtain a smooth solution that is free of the noise induced
artifacts. The maximum entropy method (MEM) is one such
technique, where the smoothing function is the Shannon-Jaynes
entropy.3 MEM has been successfully applied in many situations
where the inverse problem is highly degenerate, owing to the
presence of noise in the data or the large parameter space one

is working with. The application of Laplace inversion has been
carried out in fields such as pulse-fluorimetry,4 NMR spectros-
copy,5 and flash-photolysis studies of heme protein kinetics.6-9

In particular, flash-photolysis studies monitor the transient
absorption of a relaxing material (monitored at specific wave-
lengths) over time scales that are limited experimentally by laser
pulse widths and detector response times. The MEM is used to
obtain smooth rate distributions for the observed kinetics.
Individual features (such as peaks) in the distribution are usually
ascribed to static distributions of conformational substates. In
low-temperature studies with heme proteins, these features are
often interpreted as enthalpy barrier distributions for the
quenched conformational substates of the protein.6,9,10As such,
these features are an important factor in the interpretation of
the kinetic data.

The advantage in the use of the Shannon-Jaynes entropy over
other regularization functions is that it guarantees that the MEM
solution does not contain structure beyond that demanded by
the experimental information.11 In the present work, we present
MEM simulations (in the context of Laplace inversion) to point
out problems that can occur when the short time experimental
data is limited. The MEM reconstruction of kinetics that are
governed by a broad distribution of rate constants, but suffer
from insufficient data at shorter times (e.g., due to experimental
limitations), can have artifactual features that do not represent
the real distribution of rates in the system. This has relevance
to the MEM analysis of flash photolysis and similar kinetic
experiments, where the interpretation in terms of barrier heights
is central. The purpose here is not so much to make a detailed
study of the numerical nature of the artifacts, but to stress their* Corresponding author. E-mail: champ@neu.edu.
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importance in applications related to Laplace inversion and
suggest possible ways to check for their occurrence.

As an example, we focus on the “stretched exponential” type
of relaxation, which has often been used to describe time-
dependent (or series) relaxation in many complex systems.12-15

Although a successful kinetic analysis, based on the rate
representation given in eq 1, presumes the existence of an
inhomogeneous distribution of rate constants in the system
(parallel relaxation), this does not rule out the possibility that
the relaxing system is homogeneous with time-dependent rates.
The distinction between a homogeneous and heterogeneous
ensemble can only be made through additional experiments (e.g.,
kinetic selection using multiple pulse protocols14,16-18). Nev-
ertheless, a general representation such as eq 1 is still useful in
testing for nonexponential behavior. Here, the motivation behind
the choice of a stretched exponential is with the view to applying
the present analysis to previous temperature-dependent studies
of MbCO relaxation dynamics, where the nonexponential
geminate recombination of CO to Mb at high temperatures was
modeled using a stretched exponential.14,15,17,19However, the
potential problems associated with MEM analysis exist quite
generally for processes that have broad rate distributions with
insufficient experimental data on short time scales. Thus, in
addition to the stretched exponential, we also illustrate the effects
of insufficient short time data by analyzing a kinetic process
having a Gaussian distribution of decay amplitudes.

Finally, we present a MEM analysis of ultrafast pump-probe
experiments on Mb and MbNO. We use an extended MEM
algorithm that is capable of extracting positive and negative
amplitude rate distributions (corresponding to bleaching and
anti-bleaching signals) and allowing for convolution of the laser
pulse autocorrelation function. The results of the MEM analysis
on deoxyMb and MbNO data are presented as examples, and
the possibility of nonexponential behavior in the photophysical
and ligand rebinding processes is addressed.

II. Methods

A. Background. We give only a brief account of MEM here
and refer the reader to the large literature related to the method
for a more detailed discussion.11,20,21Since typical experimental
data in kinetic studies stretch over several decades in time, it is
appropriate to use a logarithmic rate space. Transforming the
Laplace integral eq 1 to logarithmic space and writing the
integral in the form of a discrete sum, we have

Here,M is typically on the order of the number of data points
N. The spacings∆(log λj) are usually chosen to be a
constant. Thefj’s then constitute a distribution of rates in
logarithmic rate space. The MEM proceeds as usual by defining
the entropy

TheFj’s are the so-called prior distribution, which are used to
incorporate any previous knowledge that we may have about
the rate distribution. In the absence of experimental data,
maximizing the entropy function gives the solutionfj ) Fj. The

normalized mean square error between the model and the data
is expressed as

where the subscripts e and f denote the experimental and the
fit values of the functionI(t) and σk is the noise variance
associated with thekth data point. With these two expressions,
the MEM seeks to maximize the “functional”Q defined as

whereη is the Lagrange undetermined multiplier that is chosen
to satisfy the constraint thatø2 ) 1. With the number of
parametersM of the same order as the number of available data
N, the noise in the data results in a highly degenerate solution
set22 for a givenø2. The addition of the entropy function helps
extract a unique solution that is free of unwanted correlations.
MEM is thus said to be maximally noncommittal with respect
to unavailable information.

B. Implementation. The implementation of the MEM
algorithm in the present study was carried out using a home-
built program written in MATLAB (version 4.2). All calcula-
tions were carried out using double precision arithmetic. Rate
distributions were obtained in logarithmic space. The algorithm
was based on a straightforward Newton-Raphson optimization
scheme to minimize-Q ) ηø2 - S, where the Lagrange
multiplier η is adjusted to satisfy the constraint thatø2 be near
unity (which is the optimal value for data with white Gaussian
noise). The size of the discretized rate space was only of the
order of 102, and hence, it was feasible to use the full Hessian
matrix22 ∇∇Q in calculating the steps. Line searches22 were used
to adjust the size of the steps. To begin with,η was set to be a
small number of the order ofσ2 (whereσ is the estimated noise
variance in the data), andQ was optimized for this value. The
value of η was then stepped iteratively andQ successively
optimized untilø2 reached a value close to 1. The initial guess
for the unknown amplitudesfj was chosen to be flat (typical
value of 10-4), and the prior distributionFj was set equal to
the initial guess. This choice of the prior distribution reflects
our complete lack of previous knowledge about the rate
amplitudes. The program was tested with various known
distributions and was seen to provide accurate reconstructions
for the rate amplitudes. An important aspect of MEM as revealed
by simulations (see Figure 1a) is that even pure exponential
decay processes have rate distributions with finite width (unless
the data is completely noiseless). Broad rate distributions
obtained by MEM therefore do not necessarily imply non-
exponential dynamics. A useful test to verify this is to fit the
data with exponential decays with the centroids of the dis-
tributions as the rates and the areas as weights. If the nor-
malizedø2 of the resulting fit is of the same order as that of the
MEM fit, it can be concluded that the dynamics can be well
described by simple exponentials. A more rigorous approach
would be to obtain an estimate for the resolution (width) in the
MEM rate space, in terms of the noise in the data. In this case,
the dynamics are potentially exponential unless the variance of
the MEM distribution is broader than the estimated resolution
in rate space.

The mathematical form of the entropy function given in eq
3 forces the rate amplitudes to be positive, which restricts the
application of MEM to monotonic decays. To extend the
applicability of MEM to bipolar signals23,24 that involve both

I(t) ) ∑
j)1

M

fje
-λjt∆(log λj) (2)

S) -∑
j)1

M

fj[ln( fj

Fj
) - 1] (3)

ø2 )
1

N
∑
k)1

N [If(tk) - Ie(tk)]
2

σk
2

(4)

Q ) S- ηø2 (5)
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positive and negative decays (such as seen in ultrafast transient
absorption measurements), we write the rate amplitudefj as the
difference of two positive rate amplitudesf j

p and f j
n

This distribution is used in the fitting function (eq 2) that is
subject to theø-square test, and the entropy function is written
as the sum of two separate entropies defined (as in eq 3) with
respect tof p and f n. The optimization ofQ defined in eq 5 is
now carried out with the gradients and Hessian matrices defined
in a 2× M dimensional space formed by the vectorsf ′ ) (f p,f n).
The iterative steps inf ′ then determine the corresponding steps
for the positive and negative distributions.

In addition to the bipolar signals, the applicability of MEM
to kinetic data requires one to consider the finite laser pulse
widths that effectively convolve into the response of the system.
For ultrafast pump-probe data, we convolve the experimentally
known pulse autocorrelation into the model fitting function eq
2, which then takes the form

whereG(λj,t) is obtained by convolving the exponential (the
response for delta function pulses) with the pulse autocorrelation
P(t)

The Newton-Raphson optimization proceeds as before, with
minor modifications to the gradients and the Hessian used in
the search algorithm.25

In Figure 1b,c, we present a simulation to demonstrate the
efficiency of this algorithm in recovering bipolar rate constants
from a convolved data set. A bimodal rate process with rate
constants 0.1 and 1 ps and amplitude ratioA2/A1 ) -1/2,
convolved with a 100 fs fwhm Gaussian pulse, was used to
generate the simulated data shown in Figure 1b. The rate
constants and the noise level were chosen to represent a typical
pump-probe study. It is seen from Figure 1c that the MEM
accurately reproduces the rate constants, the faster of which is
equal to the pulse width itself.

III. Results and Discussion

A. Simulations with a Gaussian Rate Distribution.For the
first nonexponential simulation in the present study, data of the
stretched exponential form

were generated, withk1 ) 106 s-1 andâ ) 1/2 (the choice being
based on typical values previously obtained for CO geminate
recombination to Mb14), and white Gaussian noise withσ )
10-3 was added. The MEM solution was then obtained for sets
of renormalized data with successively increasing truncations26

of the short time data points.
To test the accuracy of the MEM rate distribution, we

calculate the analytic Laplace inverse of the stretched expo-
nential. The inverse Laplace transform is expressed as the
integral

where the integration is carried out over the appropriate
Bromwich contour.27 The Laplace inverse of the stretched
exponential for general 0< â < 1 has not been obtained in a
closed form, and only series approximations exist.28 However,
for the caseâ ) 1/2, the analytic inverse is obtained using eq
10, and the result is

which is an asymmetric bell shaped curve with a maximum at
λ ) k1/6. Before we compare this expression with the MEM
rate distribution, we must keep in mind that the MEM obtains
a solutionf (λ) in log rate space, whereas the Laplace inverse
g(λ) is in linear rate space. The relationship between the two
distributions follows immediately from the change of variables
in going from log to linear space and is given by

It is worth noting from this relation that the linear space
distribution g(λ) is narrower than the log space distribution.
Figure 2a shows the analytic expression in linear (full line) and
log space (dashed line) for a stretched exponential withâ ) 1/2
andk1 ) 106 s-1. The downward pointing arrow in the figure
indicates the inverse of a typical time resolution (100 ns) for
flash-photolysis studies.7,9,10 It is seen that the log space

Figure 1. (a) MEM reconstruction for a simulated exponential decay
with a rate of106 s-1, with additive white Gaussian noise ofσ )
10-3(dotted line), 5× 10-3 (dashed line) and 5× 10-2 (solid line). (b)
Simulated biexponential decay (circles) convolved with a 100 fs fwhm
pulse autocorrelation (dotted line) is shown along with the MEM fit
(solid line) using the bipolar algorithm. The decay constants are 0.1
and 1 ps, with an amplitude ratio of-0.5. (c) bipolar MEM distribution
for the data shown in panel b.

fj ) f j
p - f j

n (6)

I(t) ) ∑
j)1

M

fjG(λj,t)∆(log λj) (7)
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∞
P(t - t′) exp(-λjt′) dt′ (8)

I(t) ) e- (k1t)â (9)

g(λ) ) -i
2π∫Br

eλtI(t) dt (10)
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distribution is nonvanishing for rates faster than 107 s-1 (inverse
of the time resolution), whereas the linear distribution has
negligible amplitude in this region. The presence of nonzero
log space rate amplitudes in the region of the largest experi-
mentally obtainable rates can potentially affect the MEM
analysis, as we show in the following discussion. In the middle
panel of Figure 2, we show the simulated stretched exponential
data truncated at 10-12 s, along with the MEM fit. The
corresponding MEM distribution is shown in the lower panel
of the figure (solid line) and compared with the analytic
expression in log space (circles). The agreement is seen to be
almost perfect, demonstrating the efficiency of the algorithm
in doing the Laplace inversion. In this case, the information
needed to recover the entire rate distribution is contained within
the given data set.

Next, we consider the series of MEM fits and reconstructions
shown in Figure 3, corresponding to successive truncations of
the data at times from 10-10 to 10-7 s, which spans some
possible resolution times for flash photolysis studies. It is seen
that for the MEM reconstruction of the truncated data (right
panel of Figure 3), new features appear in the distribution that
are quite distinct from the actual featureless distribution. The
data that begins at 100 ns are seen to be most affected, with at
least two distinct features that one might naively identify with
separate conformational subpopulations, having mean rates given
by the maxima of the peaks.

It is obvious that, for a given shortest time pointtmin in the
experimental data, we cannot expect to obtain information for
rates faster thanλmax≈1/tmin. Thus, any features in the distribu-
tion beyondλmax must be artificial. However, the surprising
result of the MEM reconstructions in Figure 3 is that even the
portions of the rate distribution well belowλmax(shown by the

downward pointing arrows in the figure) are seriously distorted.
Since the iterations were always stopped whenø2 approached
the optimal value of unity (for Gaussian distributed white noise),
it is clear that these features are not due to overfitting the data
but must arise from the truncation of the data at shorter times.

B. Simulations with a Gaussian Rate Distribution.It should
be emphasized that the artifactual features in the MEM
distribution appear whenever the true rate distribution has
nonvanishing amplitude atλmax. Thus, we must anticipate
problems in the MEM reconstruction for any broad rate process
with incomplete short time information. In Figure 4, we show
simulations with a Gaussian rate process to illustrate this fact.
A broad rate distribution with a Gaussian profile (Figure 4b,
circles) was used to generate the kinetics, and the resulting
temporal data was first truncated at 10-10 s (Figure 4a). The
MEM reconstruction for these data is shown compared with
the true distribution in Figure 4b (solid line) and is seen to match
the true distribution very well. Now consider the data set
truncated at 10-7 s, shown in Figure 4c, and the corresponding
MEM rate distribution in Figure 4d (solid line). The presence
of artifactual structure in the distribution is clearly seen. Note
that the distribution belowλmax (107 s-1) is again seen to be
seriously distorted. The fact that false features appear in the
Gaussian distributed process as well as the stretched exponential,
when the data are truncated at short times, demonstrates the
generality of the problems that can arise when processes with
broad rate distributions are analyzed using MEM, with insuf-
ficient short time data.

The appearance of these artifacts can be traced to the fact
that when a small prior level is chosen, the MEM rate
distribution approaches zero for rates larger thanλmax. The fact
that the rate distribution should approach zero beyond this value
follows from the fact that the amplitudes for these rates are
severely underweighted inø2 (see eq 2), and the optimization

Figure 2. (a) The analytic Laplace inverse for a stretched exponential
with k1 ) 106 s-1 andâ ) 1/2 in linear rate space (solid line) and log
rate space (dashed line). The downward pointing arrow corresponds to
the inverse of a typical time resolution for flash photolysis studies. (b)
Simulated stretched exponential data truncated at 10-12 s, along with
the MEM fit (solid line). (c) The corresponding MEM rate distribution
compared with the analytic distribution for the stretched exponential
in log space (circles).

Figure 3. Left panel shows a series of simulated stretched exponential
data sets, truncated from 10-12 to 10-7 s. The corresponding MEM
rate distributions are shown at the right. In the region beyondλmax, no
experimental information is available.
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procedure gives back the prior distribution in the regions where
no experimental information exists. In other words, the lack of
required information for faster rates forces the entropy term to
dominateø2 in the optimization. In the examples given above,
the prior distribution was set to a constant value near zero
(∼10-4). The rate distribution approaches this small value for
rates aboveλmax and is effectively nonvanishing only before
this rate. The MEM algorithm is thus forced to fit the incomplete
data whose true distribution extends beyondλmax, with a
narrower band of rates less thanλmax. This is the likely cause
of the discrete features that appear in the MEM reconstructions
of truncated data sets.

C. Role of the Prior Distribution. As mentioned above, the
MEM reproduces the prior distribution for rates faster thanλmax.
This motivates us to consider the role of the prior distribution
in the analysis. It might be expected that the use of a higher
level for the prior distribution could reduce the artifactual
features, since the rate distribution aboveλmax would then not
be forced to zero. In Figure 5, we show the MEM analysis using
two sets of simulated data. Panel a in the figure shows the
stretched exponential truncated as before at 100 ns. The
corresponding MEM rate distribution is shown in panel b, using

both a small (10-4) and a larger (0.2) constant value for the
prior distribution. The theoretical distribution is shown in circles
for comparison. It is evident that use of a larger value for the
prior distribution minimizes the artifactual features that appear
in the MEM reconstruction. The agreement between the MEM
distribution and the true distribution is quite good in this case,
at least for rates below the “no-information zone” (region below
λmax ) 107 s-1). Above this region, the prior distribution, which
was chosen to be a constant29 (shown by a dashed line), is seen
to be reproduced.

In the other simulation, a double peaked distribution of rates
was used to generate the kinetics shown in panel c of Figure 5.
The MEM analysis on this data set for the two different prior
levels is shown in panel d,and it is seen that the MEM rate
distribution is unaffected by the value chosen for the prior level.
In this case, the true distribution (in log space) is within the
fastest rate constant obtainable with the given data (λmax ) 107

s-1) so that the features are unaffected by the chosen value of
the prior level. Thus, one way of checking for the presence of
false features in the MEM analysis is to obtain reconstructions
for various prior distribution levels. If the features belowλmax

in the computed rate distribution are sensitive to the prior level,
then it can be concluded that they are most likely artifactual.

D. Role of the Zero Time Point.Another way to minimize
the artifactual role played by rates faster thanλmax is to include

Figure 4. (a) Simulated kinetics generated using a Gaussian distribution
of rates, along with the MEM fit (solid line). (b) The Gaussian
distribution of rates used to generate the kinetics (circles), along with
the MEM reconstructed distribution (solid line). (c) Same data as those
in panel a but truncated at 10-7 s and renormalized to unity, as is often
done experimentally. (d) Corresponding MEM reconstruction (full line)
compared with the true distribution. Both the true and reconstructed
distributions must be rescaled by the same factor (2.5) that was used
to normalize the data in panel c. Note that the area under the MEM
distribution in panel d is smaller than that for the true distribution.
This arises from the fact that the MEM fit at times shorter than 10-7

s is imperfect and corresponds to a smaller zero time point (1.68) than
the correct one (2.5) (note from eq 2 that the zero time point determines
the area of the distribution). The prior distribution was set to a constant
value of 10-4 in this simulation. If larger values for the prior distribution
are used, the effective area also becomes larger and the artifacts are
reduced (see text).

Figure 5. Role of the Prior distribution. (a) Simulated stretched
exponential withk1 ) 106 s-1 andâ ) 1/2, shown truncated at 10-7s.
(b) Top panel shows the MEM reconstruction with a flat prior
distribution of value 10-4. The true distribution (from eqs 8 and 9 in
the text) is shown in circles. The bottom panel shows the MEM
reconstruction with larger level (0.2) for the prior distribution. (c)
Kinetics simulated using a double-peaked Gaussian distribution of rates.
(d) The distribution used to generate the kinetics is shown in circles.
The MEM reconstruction for a small value of the prior level is shown
in the top panel and for a larger value in the bottom panel (dashed
line).
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an estimated zero time point in the data. This is only possible
in the experimental analysis if absorption cross sections for the
reactant and photoproduct states are known or can be ap-
proximated by their equilibrium values. This procedure gives
an additional term inø2 that involves all the rate amplitudes
(even those aboveλmax), and hence, the fast rate amplitudes
will not be so drastically underweighted in the fit. In Figure 6,
we show the MEM fit and reconstruction for a simulated
stretched exponential process, with and without the inclusion
of a zero time point. It is seen in the lower portion of Figure 6
that the resulting rate distribution is flat and nonzero for rates
aboveλmax and that the artifacts are partially suppressed. With
the logarithmic time base that is often adopted in flash-photolysis
studies,6,7,9,14,17a zero time point is not usually included in the
fitting procedure. However, it is sometimes possible to ap-
proximate the zero time point, by using known optical properties
of the initial and photoproduct states, along with the amount of
photolysis (e.g., complete photolysis14,17). Thus, if MEM is to
be used in the kinetic analysis and short time data truncation is
a possibility, it is worthwhile to include an approximate zero
time point in the analysis.

E. MEM Analysis of MbCO Kinetic Data. We now
consider the application of MEM to temperature-dependent
studies of MbCO relaxation dynamics in solution. The binding
of CO to myoglobin has been studied over a wide range of time
scales and temperatures.6,14-19 At low temperatures (T < 180
K), the protein ensemble is characterized by a “frozen”
distribution of conformational substates that do not interconvert,
and the rebinding process is nonexponential. An interpretation
of the kinetics in this type of inhomogeneous ensemble is

facilitated by a representation in rate space using MEM.6,7

Nonexponential kinetics in myoglobin have also been observed
at high temperature, where the interconversion between the
substates is expected to be more rapid, and hence, the ensemble
is more homogeneous on the ligand binding time scales. Thus,
the nonexponential nature of the kinetics at room temperature
has been attributed either to the relaxation of the proximal15 or
the distal14 pockets, both of which lead to a time-dependent
rebinding rate.

Here, we present a MEM analysis of MbCO kinetics at high
temperature (260-300 K). This nonexponential geminate
rebinding was previously modeled using a stretched exponential
and was attributed to nonequilibrium relaxation of the distal
pocket.14 We first demonstrate the appearance of an artifactual
shoulder in the portion of the MEM distribution corresponding
to the fast geminate kinetics. In Figure 7, we show the kinetics
of CO rebinding to myoglobin at 260 K in 75% glycerol
solution, monitored at 423 nm (corresponding to the absorption
maximum of the CO bound system). Shown directly below the
kinetic trace is the corresponding MEM reconstruction with two
different levels of the prior distribution. When the prior
distribution is chosen to be constant with a small (10-4) value,
distinct features labeled 1-3 and S can be seen in the MEM
distribution. The sharp feature in the distribution (labeled S in
the figure) peaked near 200 s-1 is nearly exponential, and is
attributed to bimolecular rebinding of CO that has escaped into
solution. Peak 3 at 3× 10-4 s-1 and the broader distribution
consisting of the features 1 and 2 are attributed to geminate
phases of the rebinding kinetics and correspond to rebinding
processes taking place from within the heme pocket. Peak S at
200 s-1 has the largest amplitude and has been shown rescaled

Figure 6. Role of the zero time point in minimizing the artifacts. (a)
Stretched exponential kinetics truncated at 100 ns. A time zero data
point has been included (not shown in the log plot) in the data set. (b)
MEM reconstruction without the zero time point. (c) Shows the
reconstruction with the zero time point included.

Figure 7. (a) Kinetics of CO rebinding to Mb in 75% glycerol solution,
monitored in the Soret band, at 260K. The MEM fit is shown in solid
lines. (b) MEM rate distributions for the 260K data with prior level
10-4 (top panel) and 0.02 (bottom panel). The bimolecular rate near
200 s-1 is shown rescaled in dashed lines.
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for clarity. The shoulder labeled 1 is quite distinct and could
potentially be attributed to a conformational subpopulation.
However, when the prior level is increased to a higher value of
0.02, it is seen that the shoulder disappears, showing that it is
an artifact resulting from incomplete short time data. We
conclude that the shoulder is due to the existence of nonzero
amplitudes of the true rate distribution near the fastest obtainable
rate of 108 s-1. This example illustrates the need for caution in
the interpretation of the MEM reconstruction when data are
truncated at times where the rate amplitudes may be nonzero.

It is clear from the corrected distributions (using the larger
prior values) shown in Figure 7 that the geminate rebinding
kinetics is governed by an asymmetric distribution of rate
amplitudes and that there are rate components faster thanλmax

) 108 s-1. We note that in a previous application of MEM to
analyze the low-temperature MbCO rebinding kinetics,10 three
distinct features were observed in the rate distribution for the
data taken at 250 K, the highest temperature kinetics measured
in that study. In contrast to the asymmetric distribution seen
here for the fast phase of the geminate kinetics, Johnson et al.10

observed a single Gaussian-like distribution of rates. This
difference can possibly be attributed to the better experimental
time resolution of the data presented here (10-8 s, compared to
10-7 s). It is also conceivable that the difference in temperatures
(250 vs 260 K) at which the kinetics were monitored might
contribute to this discrepancy.

In Figure 8, we display the MEM analysis of the MbCO
rebinding kinetics over the temperature range of 260-293 K.
Only the geminate part of the rate distribution is shown, analyzed
using two prior levels (solid line, using larger prior levels, and

dashed line, using small prior levels). We note from this figure
that for higher temperatures, the artifactual features that appear
when small prior values are used become less prominent,
indicating that the rate distribution gets narrower and more
symmetric at higher temperatures. In view of a previous study,
where the geminate rebinding was modeled using a stretched
exponential,14 along with the results of eqs 8 and 9 and Figure
2, we suggest that the asymmetric MEM distributions be-
tween 260 and 280 K in Figures 7 and 8 are indicative of a
geniune stretched exponential behavior for the MbCO geminate
kinetics.

Under the assumption that the short time nonexponential
behavior arises due to a series type of relaxation (time-dependent
rates), we can recover the enthalpy barrier for CO rebinding to
the heme using the MEM distribution and compare it with
previous results.14 For this purpose, we note that the rate constant
that is most easily linked to the low-temperature rate distribu-
tion16 is associated with CO geminate rebinding to the relaxed
heme, prior to distal pocket (or protein) relaxation.14 Figure 9a
schematically depicts the behavior of the average rate constant
for rebinding, as discussed by Tian et al.14 Here it is assumed
that the heme relaxation is a picosecond process, while the distal
pocket (or protein) relaxation takes place on nanosecond time
scales. The (approximately) constant rebinding rate labeledk̃BA

in the figure can be predicted30,31 from the rate distributions
obtained at low temperature,16 where the heme partially relaxes
to an intermediate out of plane position32,33 and distal pocket
(or protein) relaxation is completely quenched. The fundamental
rate constantk̃BA can be related to the observed stretched rate
constantk1 using k̃BA ) I1k1, where I1is the (normalized)
amplitude of the stretched exponential decay. Assuming thatâ
) 1/2, the stretched rate constantk1 can be obtained from the

Figure 8. (a) Soret band MbCO kinetics for the temperatures in the
range 260-293 K (circles), shown along with the MEM fits (solid
lines). (b) Corresponding MEM rate distributions. Only the geminate
processes are shown. The corrected distributions (using larger value
0.02 for the prior level) are shown in solid lines. The artifactual
distributions are shown as dashed lines (prior) 10-4). The arrows
indicate the peaks used to extract the stretched rate constants associated
with the asymmetric distribution, as described in the main text.

Figure 9. (a) Schematic of the behavior of the fluctuationally averaged
(time dependent) rate constant for ligand rebinding to the heme〈kBA〉
depicted over the time scales of heme and distal pocket relaxations.
(b) Temperature dependence ofk̃BA ≈ I1k1. I1 was found from the area
under the asymmetric distributions in Figure 8. The solid line shows a
linear fit to the plot. The slope gives the enthalpy barrier height
associated withk̃BA, and the intercept is related to the prefactor.
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MEM distribution using the fact that the log rate space
distribution for a stretched exponential is peaked atkpeak) k1/2
(as follows from eqs 11 and 12). The peaks of the distributions
that were used to obtaink1 are indicated by downward pointing
arrows Figure 8. The amplitudesI1 are calculated from the areas
under the asymmetric peaks. The values ofk̃BA ) I1k1 extracted
from the MEM analysis are shown using an Arrhenius plot in
Figure 9b. The slope of this plot is found to beEA ≈ 18 kJ/mol
and gives the barrier height for CO rebinding near room
temperature after heme relaxation is complete, but prior to distal
pocket (or protein) relaxation. The high-temperature intercept
gives a prefactork0 ≈ 3 × 109 s-1. These results are in good
agreement with the predictions of a simple model30,31,14and with
previously obtained values,14 suggesting that the identification
of the asymmetric MEM distribution with a stretched exponen-
tial process is valid.

F. MEM Analysis of Ultrafast Photophysical Processes
(Mb and MbNO). In this section, we consider the application
of MEM to the analysis of the ultrafast photophysics of
myoglobin, monitored through pump-probe femtosecond co-
herence spectroscopy34,35 (FCS). Traditional nonlinear least-
squares fitting procedures of kinetic data often suffer from
problems due to local minima and overfitting (in addition to
being model specific) and can lead to inconsistent results.
Furthermore, FCS data often contain oscillatory signals super-
imposed on the exponential background decay signal. These
oscillations are a manifestation of the quantum beats induced
in the medium by the pump pulse interaction.35 The extraction
of the rate constants for the “zero frequency” background decays
from the total FCS data often poses a challenge due to the
presence of the oscillatory signals that act as a systematic noise.
We have found that the bipolar MEM algorithm, with the pulse
convolution feature (see Methods section above), offers a
consistent approach in separating the nonoscillatory background
from the oscillatory components of the pump-probe signal.

The results of the MEM analysis of the open band FCS
signals of MbNO are shown in Figure 10. (Open band
measurements are obtained by registering the entire probe pulse
bandwidth on the photodetector, without the use of a mono-
chomator to filter its spectral content, as is sometimes done to
enhance higher-frequency oscillatory components of the FCS
signal.34,35) A series of open band pump-probe data for carrier
wavelengths in the range 400-500 nm (resonant with the Soret
band) are shown along with the MEM rate distributions. The
kinetics shown are presented in arbitrary units of the net
transmission change (pump-on minus pump-off) of the probe
pulse. Positive signals correspond increased transmittance (or
decreased absorbance) following pump photoexcitation (bleach-
ing). Negative signals correspond to a decreased transmittance
of the pump induced photoproduct (anti-bleach). The data at
413 and 420 nm have been offset by a small constant in order
to remove the large background in the MEM rate distribution
at longer time constants, which corresponds to NO recombina-
tion following photolysis. The data near zero delay and
extending beyond the width of the pulse autocorrelation (∼150
fs) have been excluded from the present analysis. This region
corresponds to the overlap of the pump and probe pulses and
contains a strong nonlinear response known as the coherent
coupling signal, which will not be considered here.36 The
corresponding rate distributions for each independently analyzed
data set stretch over three decades (0.01 to 10 ps) and are plotted
as distributions in the time constant (inverse rates) in the right
panel of Figure 10. Positive peaks correspond either to decay
of a bleached signal or the rise of an anti-bleaching signal.

Negative peaks correspond to bleaching buildup or the decay
of antibleach signal. The change from a positive to a negative
amplitude for a given peak as a function of the probing
wavelength occurs at an isosbestic point between the equilibrium
and nonequilibrium absorption spectra. It is noteworthy that the
rate distributions for all the kinetics are relatively narrow (see
Figure 1 and related discussion above), suggesting that expo-
nential processes are sufficient to describe the observed signals.

From the MEM analysis presented in Figure 10, it is clear
that the kinetics can be classified into three major groups, with
time constants 0.1, 0.5-1, and 2-4 ps. A resolution of the peak
corresponding to rate processes larger than 10 ps (such as NO
recombination) requires longer delay scans than presented here.
It is seen that all the kinetics in the wavelength range of 400-
427 nm exhibit a bleaching signal. Between 427 and 430 nm,
we observe a transition from the bleach into antibleach phase,
and the signal remains in the antibleaching region until full
recovery. In the range 435-454 nm, only the antibleaching
signals are recorded, while the kinetics measured at 460, 470,
and 480 nm show an antibleach that evolves into a bleaching
signal. It must be mentioned that the equilibrium difference
spectrum (Mb-MbNO) has a second isosbestic point near 455
nm and shows a bleach for longer wavelengths.

In Figure 11, we present the open band measurements of
deoxy Mb (Mb) along with the corresponding MEM analysis.
It is noteworthy that the kinetics have features very similar to
that of MbNO despite the absence of photolysis in Mb, which
is a five-coordinate species. In the case of Mb, the kinetics is
composed of two major components, with time constants in the
ranges 0.1-0.3 and 2-6 ps. The major difference between the
kinetics of the two compounds is the absence of a slower process

Figure 10. (a) Series of MbNO open band data (circles) for different
probe wavelengths, along with the corresponding MEM fits (solid line).
The broad offsets occurring near 100 ps have been subtracted for
efficient recovery of picosecond rates. (b) The corresponding MEM
rate distributions.
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that corresponds to ligand recombination in MbNO (not shown,
to be published).

In interpreting the open band data of Mb and MbNO, it must
be kept in mind that the absorption spectrum of the pump
induced photoproduct is dynamic rather than static in nature,
as revealed by ultrafast transient spectral measurements using
a white light continuum.42 As might be expected, it is found
that the dynamics of the first and second moments of the spectral
line shape of the pump induced photoproduct have time
constants similar to those found in the single wavelength open
band measurements discussed above. In general, there are three
major dynamical processes that are observed in the transient
line shape evolution. These consist of the ligand recombination
with time constant 10-100 ps, spectral shifting of the transient
photoproduct Mb* (change in the peak position of the line
shape) with time constant 2-6 ps, and spectral narrowing of
Mb*(change in the width of the line shape) with a time constant
of 0.1-0.3 ps. The observed open band kinetics for each
wavelength shown in Figures 10 and 11 is a result of a
combination of these processes. The observed kinetics is highly
dependent upon the location of the probe wavelength with
respect to the equilibrium and photoproduct absorption spectra
(which is dynamic). For instance, note the disappearance of the
fast bleaching decay and anti-bleaching rise seen in the MbNO
kinetics at 413 and 460 nm. These two wavelengths correspond
to the points where the photoproduct absorption remains
unchanged despite the dynamic spectral evolution. Such phe-
nomena are “dynamic isosbestic points” that result from a
combination of spectral narrowing and shifting of the photo-
product absorption spectrum. There are two competing models
that can account for the observed spectral dynamics. One is
based on the creation of a “hot” electronic ground state of the

photoproduct and its subsequent cooling.38-41,43 The second
model is based on the creation of multiple electronically excited
intermediate state species that have red shifted spectra, followed
by decay to the final photoproduct ground state.37 A careful
analysis of the femtosecond continuum spectra42 favors the hot
ground-state model over the multistate model, as does the recent
time resolved Raman data of Kitagawa and Mizutani.44

IV. Summary

In the analysis of nonexponential kinetic processes, the MEM
is well established as a useful tool for obtaining rate distributions
with minimal noise induced features. However, as the simula-
tions presented in this paper show, truncation of short time data
points can introduce distinct features even in the optimal (ø2 )
1) reconstruction. These features extend into the slower regions
of rate space and can potentially affect the interpretation of the
MEM distribution. In this paper, we have demonstrated how,
in the absence of short time information, the prior distribution
in the entropy functional can be used to distinguish true features
from false ones. An experimentally approximated zero time data
point can also be useful in minimizing the appearance of
misleading features in the MEM rate distribution. We also stress
that when noise is present, even pure exponential processes have
broad MEM distributions so that further tests are required to
check for nonexponential behavior. An application of MEM to
the nanosecond geminate kinetics of MbCO rebinding near room
temperature yields an asymmetric rate distribution that is
characteristic of stretched exponential behavior. The value
obtained for the barrier height (prior to distal pocket structural
relaxation), EA ∼ 18 kJ/mol, agrees well with previously
obtained results.14

Finally, we have also demonstrated the application of a
bipolar MEM algorithm (with a pulse convolution feature) that
can extract positive and negative rate amplitudes from femto-
second pump-probe data. The MEM analysis of single wave-
length pump-probe data on myoglobin has revealed the
existence of at least three distinct rate processes, which are
consistent with independent studies that employ continuum
probe techniques.42 Surprisingly, the ultrafast photophysics of
Mb and MbNO appear to be governed by exponential rather
than distributed processes, as indicated by the relatively narrow
rate distributions found in the ultrafast kinetics. An independent
analysis of the continuum probe data42 favors a “hot” dynamic
line shape model associated with the cooling of the transient
photoproduct. A more detailed analysis of these results will be
reported elsewhere.
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