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Abstract—Objective: We use a resolution matrix-based
Bayesian framework to compare inversion methods for tomo-
graphic fluorescence lifetime multiplexing in a diffuse medium,
such as biological tissue. Methods: We consider three inversion
methods; an asymptotic time domain (ATD) approach, based on
a multi-exponential analysis of time domain data, a direct time
domain (DTD) approach, which is a minimum error solution, and
a cross-talk constrained time domain (CCTD) inversion, which is
a solution to an optimization problem that minimizes both error
and cross-talk. We compare these methods using Monte Carlo
simulations and time domain fluorescence measurements with
tissue-mimicking phantoms. Results: The ATD approach provides
high accuracy of relative quantitation and spatial localization of
two fluorophores embedded in a 18-mm thick turbid medium,
with concentration ratios of up to 1:4.25. DTD leads to significant
errors in relative quantitation and localization. CCTD provides
improved quantitation accuracy over DTD, and better spatial
resolution compared to ATD. We present a rigorous theoretical
basis for these results and provide a complete derivation of
the CCTD estimator. The Bayesian analysis also leads to a
formula for rapid computation of the DTD inverse operator
for large-scale tomography measurements. Conclusion: The ATD
and CCTD inversion methods provide significant advantages over
DTD for accurately estimating multiple overlapping fluorophores.
Significance: Time domain fluorescence tomography, using zero
cross-talk estimators, can serve as a powerful tool for quantifying
multiple fluorescently labeled biological processes. The Bayesian
framework presented here can be applied to general multi-
parameter inverse problems for the quantitative estimation of
multiple overlapping parameters.

Index Terms—Molecular imaging, fluorescence tomography,
inverse problems, time-resolved imaging, lifetime multiplexing

I. INTRODUCTION

The simultaneous, non-invasive detection of multiple bi-
ological components or processes (such as receptor expres-
sion, tumor growth, angiogenesis) through multiplexing can
deepen our understanding about how these processes interact
in a living complex biological system. Optical imaging offers
the unique opportunity for multiplexing using a wide range
of near infrared (NIR) fluorophores that can be conjugated
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with disease-specific molecular markers. Several NIR probes
exhibit distinct fluorescence lifetimes and absorption and emis-
sion spectra, thereby allowing the capability for multiplexing
using either spectral or fluorescence lifetime contrast.

Tomographic lifetime multiplexing (TFLM) belongs to
a larger class of linear multi-parameter inverse problems
(MPIPs) and can be solved with standard inversion techniques,
such as the Tikhonov method. The Tikhonov approach pro-
duces a least squares solution with a constraint on the energy
of the solution. In the more general Bayesian approach, prior
information about the unknowns is described using a probabil-
ity distribution. Through application of Bayes’ rule, optimal
solutions can be derived based on the posterior probability
distribution for the unknowns [1].

While standard inversion techniques can minimize recon-
struction error, they are not ideal for multi-parameter prob-
lems, since they do not directly account for inter-parameter
cross-talk, an important source of error specific to MPIPs.
Cross-talk refers to the interference among different param-
eters. Its effect can be illustrated most easily in TFLM
by considering a medium where fluorophores with different
lifetimes are separated spatially. When image reconstruction is
performed, spatial regions which should only reconstruct for a
single lifetime component will reconstruct for other lifetimes
as well. The amount of cross-talk varies depending on the
inherent non-uniqueness of the data with respect to different
parameter distributions. For example, early time points on the
time-domain (TD) fluorescence profile result in significantly
higher cross-talk than late time points [2], [3], since early TD
data are less sensitive to typical fluorescence lifetimes than
late TD data. Similarly, continuous-wave (CW) fluorescence
reconstructions result in 100% crosstalk since CW data cannot
distinguish fluorescence lifetime from concentration [3], [4].

Cross-talk is important for TFLM since it directly leads
to errors in localization and relative quantitation. Previously,
we have shown using simulations [5] that the asymptotic
time domain (ATD) approach, which is based on a multi-
exponential analysis of the asymptotic (or decay) portion of
TD data, provides minimal cross-talk and superior localization
compared to the standard inversion of TD data (DTD), which
is a minimum error solution. We also presented a crosstalk
constrained TD (CCTD) approach for TFLM as a minimum
error solution with zero cross-talk constraints on the resolution
matrix. The CCTD estimator was shown to be identical in
form to ATD, except for a diagonal covariance matrix of
decay amplitudes. In this paper, we present a full analytical
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derivation of the CCTD estimator. We also present the first
experimental comparison of the relative quantitation perfor-
mance of the DTD, CCTD and ATD methods. The results
demonstrate that the ATD approach provides the best relative
quantitation performance among the three methods, and can
accurately recover concentration ratios of up to 1:4.25. ATD
can accurately localize inclusions as close as 1.5 mm, which
is several-fold smaller than DTD. DTD results in large errors
in quantitation and localization, but provides better spatial
resolution. The CCTD method provides improved relative
quantitation compared to DTD, while also providing better
spatial resolution than the ATD method.

We show that a resolution matrix-based formalism provides
a rigorous explanation for these experimental results. The off-
diagonal terms of the resolution matrix provide a complete de-
scription of cross-talk between multiple lifetime components.
The ATD approach produces a resolution matrix that is zero
for off-diagonal terms and is ideal when relative quantitation is
of importance, while CCTD is more appropriate when spatial
resolution and localization are important. We also present a
statistical, Bayesian interpretation of the ATD and DTD esti-
mators, by expressing them in alternate forms. A by-product
of this analysis is a formula for DTD inversion that allows
rapid computation of the DTD solution, which is currently
infeasible to compute for more than a few time gates and large
tomographic data sets. The formula allows comparison of the
DTD and ATD inversion problems for an arbitrary number of
time gates and a dense set of measurements.

II. BACKGROUND

A. Linear MMSE Estimator

A general multi-parameter linear inverse problem can be
described by the matrix equation:

y = Wx+ n, (1)

where y is a (M × 1) data vector, W is a (M ×NP ) matrix
representing the forward model, x is a (NP×1) model vector
containing P physical parameters, each evaluated at N spatial
locations and n is a (M×1) additive noise vector. A common
approach for solving this inverse problem is by adopting a
Bayesian approach where both the noise and model vectors
terms are assumed to be random variables with known first and
second order moments: E[n] = 0, cov[n] = Cn and E[x] =
µx, cov[x] = Cx. It is further assumed that the model and
noise vectors are uncorrelated: E[nxT ] = 0. When estimators
are restricted to be linear with respect to the data, the estimated
model vector x̂ can be written in the form:

x̂ = Ŵy + b, (2)

where Ŵ is a (NP ×M) matrix operator and b is a (NP ×1)
vector.

Among the class of linear estimators, the linear minimum
mean square error (LMMSE) estimator seeks to find the W
and b which minimize the mean square error (MSE) given by:

Ω = E
[
‖x− x̂‖2

]
. (3)

Fig. 1. Schematic showing the three components of fluorescent light transport
in a scattering medium: propagation of the excitation light at λx, response of
the fluorophore to excitation (exp(−t/τ)) and propagation of the fluorescence
light at λm. Also shown is the broadening of the temporal response due to
the medium compared to the excitation pulse.

By setting ∂Ω/∂W = 0 and ∂Ω/∂b = 0 and solving for both
Ŵ and b, we find the LMMSE solution is given by:

x̂ = µx + ŴLMMSE(y −Wµx) (4)

ŴLMMSE = CxW
T (WCxW

T + Cn)−1. (5)

In the case when x and n can be modeled as jointly Gaus-
sian distributed and independent then the LMMSE estimator is
equivalent to the mean of the posterior probability distribution
p(x|y) [1]. The solution in (4) and (5) corresponds to the
commonly used generalized least squares solution in diffuse
optical tomography image reconstruction [6] and is equivalent
to the Wiener filter solution when µx = 0 [1].

B. The Forward Problem for TFLM

Light transport in a turbid medium filled with an arbitrary
distribution of fluorophores can be modeled (Fig. 1) as the
sequential propagation of excitation light from source locations
(rs) on the boundary of the medium to fluorophores within the
medium volume, followed by fluorescence emission and the
propagation of the emitted fluorescence from the fluorophore
to detectors (rd) on the boundary [7], [8]. The propagation of
light through tissue is most rigorously described by coupled
radiative transport equations (RTEs) at the excitation and
emission wavelengths [8]. Using the Green’s functions of the
coupled RTEs and neglecting the re-emission of fluorescence
(first order approximation), the fluorescence intensity at rd
due to a source at rs can be expressed as a weighted sum of
fluorophore-dependent weight function for N fluorophores:

y(rs, rd, t) =
N∑
n=1

∫
Ω

Wn(rs, rd, r, t)ηn(r)d3r, (6)

where Wn = Gx(rs, r, t) ∗ exp(−t/τn) ∗ Gm(r, rd, t) is a
temporal-double convolution of transport Green’s functions at
the excitation (Gx) and emission (Gm) wavelengths and an ex-
ponential decay with a time constant equal to the fluorescence
lifetime, τn. The fluorescence yield of the n′th fluorophore is
expressed as ηn(r) = Qnεncn(r) where Qn, εn and cn are
the quantum yield, extinction coefficient and concentration of
the fluorophore, respectively. The integral equation in (6) can
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be discretized into a linear matrix equation for L time gates
and M source-detector pairs:

y = Wη (7)

where y is a ML×1 vector of the measured fluorescence data,
W = [W1, ....WN ] is a (ML×V N) matrix of TD sensitivity
functions, and η = [η1, ...ηN ]T is a V N × 1 vector of yield
distributions corresponding to lifetimes τ1, τ2, ...τN .

C. The Inverse Problem for TFLM

The goal of tomography is to recover the 3D yield dis-
tributions, ηn(r) for all distinct lifetimes τn present in the
medium from the set of tomographic measurements y as
expressed in (7). We assume that the τn’s are known a priori
from independent measurements [9]. The standard method
[10], [11] for solving for η from TD measurements, y, is
to directly invert the entire TD weight matrix, W , using
Tikhonov regularization. In this approach, which we label
as the direct TD (DTD) approach, the reconstructed yield
distribution η̂DTD is given by:

η̂DTD = ŴDTDy, (8)

where ŴDTD is the Tikhonov inverse operator, given by:

ŴDTD = WT (WWT + λI)−1. (9)

The Tikhonov solution can be made equivalent to the LMMSE
solution in the Bayesian formulation of the TFLM inverse
problem when the commonly made statistical assumptions that
y and η are white Gaussian distributed are made and for
appropriate choice of λ. For the remainder of this paper it
is assumed that these assumptions are met and that the DTD
solution and LMMSE solution can be used interchangeably.
The DTD approach in the form of (9) is computationally
intensive for more than a few time gates (L) and does not
optimally exploit the information content in the TD data.
Further, we will show below that DTD results in significant
cross-talk between yield distributions ηn.

An alternate approach is made possible for tomographic
lifetime multiplexing that uses time points in the “asymptotic”
regime (defined by t � τD), under the condition that the
intrinsic lifetimes are greater than the diffusive time scale, viz.,
τn > τD. Under these two widely applicable conditions [12],
we have shown that the TD weight matrix in (7) factorizes
into temporal and spatial matrices as [2]:

W
t�τD= AW, (10)

where A =
[
exp(−t/τ1)⊗ I . . . exp(−t/τN )⊗ I

]
is a

ML ×MN dimensional basis matrix containing Kronecker
products of exponential decay terms and M × M identitiy
matrices, I and W = diag(W 1, . . . ,WN ) is a (MN × V N )
time-independent block diagonal matrix containing (M ×M )
CW weight matrices Wn, which are evaluated using a reduced
absorption of µa(r)−Γn/v (see [3] for a detailed derivation).
The factorization of W from (10) allows a two-step approach
for lifetime tomography, as can be seen by writing the forward
problem in (7) as:

y = AWη. (11)

In the first step, the well conditioned matrix A is inverted
using its Moore-Penrose pseudoinverse and applied on the
measurements y:

A†y(= a) = Wη. (12)

Note that the first equality in (12) is essentially the normal
equations in linear regression [13], which in the present
case is a multi-exponential fit of the decay portion of the
TD data and leads to decay amplitudes a. In the second
step, the weight matrix W is inverted using the standard
Tikhonov regularization (as in (9)) and applied to the decay
amplitudes. The two-step procedure can be written as a single
linear inverse operator by combining (12) with the Tikhonov
inversion of W . The resulting asymptotic TD (ATD) solution
is then given by:

η̂ATD = W
−1
A†y = ŴATDy, (13)

where W
−1

is the Tikhonov inverse of W and ŴATD is the
ATD inverse operator incorporating both steps and given by:

ŴATD = W
T

(WW
T

+ λI)−1A†. (14)

Due to the block diagonal form of W , the yield distribu-
tions for each lifetime can be solved separately in the ATD
approach. As we have shown previously, this property of
ATD provides a much lower cross-talk compared to the DTD
approach, thereby significantly improving localization accu-
racy when resolving multiple yield distributions with distinct
lifetimes [2]. The separation of inverse problems also allows
us to individually normalize the CW weight matrices (Wn)
(divide Wn by its maximum matrix entry) while keeping the
regularization, λ the same for all n. We have found such a
scheme can result in some minor improvements in relative
quantitation as lifetime separation is increased.

While it can be inferred from the separation of the inverse
problem for different lifetime components in (14) that ATD
provides reduced crosstalk between lifetime components, the
fundamental distinction between the ATD and DTD methods,
in terms of cross-talk performance, is not yet apparent. It is
clear that DTD results in higher cross-talk. However DTD
can provide a MMSE solution (for proper selection of λ),
while ATD will lead to higher reconstruction error. A natural
question, therefore, is whether there exist more general linear
estimators that can provide the improved cross-talk perfor-
mance of ATD while providing minimum reconstruction error.
In the next sections, we precisely address this question from
the point of view of general multi-parameter inverse problems.
We also recast the ATD and DTD inverse problems in a form
that provides a clear statistical interpretation (in a Bayesian
sense) of the performance advantages of ATD. In order to do
this we next provide a formal definition of cross-talk in terms
of the model resolution matrix of a linear inverse operator.

D. Model Resolution Matrix

A useful tool to evaluate the performance of a linear inverse
operator, Ŵ , is the model resolution matrix, R defined as:

R = ŴW. (15)
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By substitution of (1) into (4) and assuming for simplicity
b = 0 (µx = 0), the optimal solution can be written in terms
of R as:

x̂ = Rx+ Ŵn. (16)

This solution can be divided into two parts: the noise ampli-
fication term Ŵn represents the effect of the noise on the
solution while the bias term Rx can be interpreted as the
model resolution matrix acting as an averaging filter between
the estimated model vector x̂ and the true model vector x.
The columns of R have simple interpretations in the case of
a single parameter inverse problem [14]. The c’th column of
R contains the estimate at every voxel due to a unit inclusion
at the c’th voxel. Hence, each column contains a point spread
function of the imaging process. While the model resolution
matrix for a single parameter is straightforward to interpret,
we will see in the next section that for multi-parameter inverse
problems, the model resolution matrix contains the complete
information about the cross-talk between parameters.

III. RESULTS

A. Resolution Matrix Definition of Inter-parameter Cross-talk

The resolution matrix provides a transparent way to analyze
inter-parameter cross-talk when dealing with multiple param-
eter problems. For simplicity, we consider inverse problems
with two parameter types, although the statistical analysis and
proposed methods can be readily generalized to any number
of parameters. We first write the true (x) and estimated (x̂)
model vectors as:

x =

[
x1

x2

]
, x̂ =

[
x̂1

x̂2

]
. (17)

The forward matrix, W and inverse operator, Ŵ can also be
divided into sub-matrices corresponding to each parameter:

W =
[
W1 W2

]
, Ŵ =

[
Ŵ1

Ŵ2

]
. (18)

The model resolution matrix from (15) for the two-
parameter case, R(2), thus takes the form:

R(2) =

[
Ŵ1W1 Ŵ1W2

Ŵ2W1 Ŵ2W2

]
≡
[
R11 R12

R21 R22

]
. (19)

R(2) can be divided into four quadrants. The diagonal quad-
rants (1, 1) and (2, 2) (corresponding to the terms R11 and
R22 in (19)) contain the individual point spread functions for
parameters x1 and x2, respectively. However, the off-diagonal
quadrants represent a different type of point spread function
involving the cross-talk between the parameters. Specifically,
columns in quadrant (1, 2) (corresponding to Ŵ1W2) represent
the cross-talk at all voxels for parameter x1 due to a point
inclusion for parameter x2, and vice versa for quadrant (2, 1).
The off-diagonal blocks of the model resolution matrix, R12

and R21, allow direct quantification of cross-talk for general
linear MPIPs, and provide a systematic and complete measure
of cross-talk for all possible combinations of true and image
voxels. Since the terms in R are independent of the data y
and only depend on W and the a priori assumptions about

the noise and model, (19) can be used to design and evaluate
the performance of a linear inverse operator without generating
data from the forward problem. In the following sections we
will derive an estimator for TFLM based on an LMMSE
estimator with a direct constraint placed on the off diagonal
blocks of R(2).

B. Bayesian Interpretation of Direct and Asymptotic TD Meth-
ods

Before we derive the optimal estimator for TFLM based
on a cross-talk constraint, we present alternate formulations
for the DTD and ATD inverse operators that can provide
insights into the statistical properties of the solutions from a
Bayesian perspective, and also reveal the connection between
the two approaches. The ATD inverse operator from (14) can
be expressed as follows by using the factorization in (10)
(derivation is provided in supplemental materials):

ŴATD = WT (WWT + λAAT )†. (20)

Next, the DTD inverse operator from (9) can also be written
in an alternate form in terms of the block diagonal CW weight
matrix, W (see supplemental materials) as follows :

ŴDTD = W
T

(WW
T

+ λ(ATA)−1)−1A†. (21)

These substitutions can be used to understand the key dif-
ferences between the ATD over the DTD (MMSE) solution.
We first recall that the DTD solution is the optimal solution
in a Bayesian sense, assuming λ = (σn/ση)2, where σn and
ση are the variances of the measurement noise and model,
which are assumed to obey white Gaussian distributions, i.e.,
η ∼ N(0, σ2

ηI) and n ∼ N(0, σ2
nI). The alternate forms of

ATD (20) and DTD (21) show that the ATD approach is equiv-
alent to the DTD approach (MMSE) under two conditions:

1) Comparing (20) with (9), we see that the key difference
between ATD and DTD is that the ATD inverse includes
a measurement covariance of the form AAT in the
under-determined form of the DTD inverse operator.
Thus, the ATD method can be viewed as a Tikhonov
technique where the regularization parameter is varied
based on index of the fluorescence data. This is anal-
ogous to other Tikhonov techniques such as previously
described spatially variant regularization (SVR) [15], in
which the regularization parameter is based on spatial
location inside the medium. While in SVR, the voxel-
based regularization matrix (λJTJ) is to provide spa-
tially uniform resolution and contrast, with the ATD
approach, the data-based regularization matrix (λAAT )
is to effect a reduction in cross-talk.

2) Comparing (21) with (14), it is clear that DTD includes
a covariance matrix (ATA)−1 in the inverse operator,
whereas in ATD, this term is set to an identity matrix I .
The term (ATA)−1 is recognized from linear regression
theory [13] as the covariance matrix for the parameters,
or unknowns (which in the present case are the decay
amplitudes) in a multi-exponential analysis of the raw
TD data. The ATD solution thus directly excludes the
influence of inter-amplitude covariance (resulting from
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multi-exponential fitting) during the inversion for the
yield distributions. The alternate form of the DTD in-
verse in (21) shows that this approach implicitly contains
the inter-amplitude covariance, thereby explaining the
increased cross talk in the DTD yield reconstructions.

The alternate form for DTD derived in (21) allows us to
compare the resolution matrices for DTD and ATD in a clear
fashion. Using (21), (14), and the definition of R in (15), the
resolution matrices for the DTD (RDTD) and ATD (RATD)
inverse operators take the form:

RDTD = W
T

(WW
T

+ λ(ATA)−1)−1W (22)

RATD = W
T

(WW
T

+ λI)−1W (23)

It can be seen that (22) and (23) differ by the presence of
the decay amplitude covariance matrix (ATA)−1 in the DTD
resolution matrix. Since every term in the RHS of (23) is
block diagonal, the resolution matrix RATD is also a block
diagonal matrix. Therefore, ATD reconstructions contain zero
cross-talk. On the other hand, RDTD is generally not block
diagonal since the covariance term (ATA)−1 is not block-
diagonal. From these observations it is clear that although the
DTD solution provides a MMSE solution, it suffers from inter-
parameter cross talk when fitting multiple parameters as in the
lifetime multiplexing case. The ATD reconstruction provides
reduced cross-talk, which leads to improved localization of
closely separated fluorescent targets [2], [3]. We will numeri-
cally illustrate the resolution matrices in Section IV.

C. Cross talk-constrained-MMSE Estimator for TFLM

We next address the question of whether optimal estimators
exist that provide MMSE solutions while also providing zero
cross-talk, thereby providing better error performance than
the ATD approach. To address this question, we propose a
novel, Bayesian inversion algorithm for cross-talk reduction in
MPIPs, by seeking an MMSE solution with an imposed zero
cross talk constraint. The basic idea of our new estimator is to
provide optimal separation between parameters at the expense
of higher total MSE than the DTD approach, while providing
better MSE than the ATD approach. We begin by assuming
that both E[x] = E[n] = 0. In our approach, the mean square
error cost function in (3) is minimized while linear constraints
are placed on the cross-talk matrices defined in (19). We refer
to the new estimator as a cross-talk constrained-minimum
mean square error estimator (CCMMSE). With the inverse
operator defined as in (2) (with b = 0), the optimization
problem takes the form:

ŴCCMMSE = arg min
Ŵ

E
[
‖x− x̂‖2

]
(24)

with the constraints:

R12 = 0 and R21 = 0. (25)

Note that the constraint is on the model resolution matrix itself
as opposed to other constrained MMSE approaches which have
focused on the moments of x̂ [16]. The optimization problem
can be described as finding the estimator with the lowest error
rate among all estimators that produce resolution matrices of

a particular form (block diagonal in the present case). The
minimization in (24) and (25) is an example of a quadratic
programming problem and can be solved by standard methods
[17]. An expression for the CCMMSE estimator is derived
in Appendix A. Briefly, we transform the quadratic program-
ming problem with linear constraints into an unconstrained
optimization problem using a change of variables [18]. The
final solution for the optimal estimator is given by:

Ŵ1 = Cx11
WT

1 N1(NT
1 (W1Cx11

WT
1 + Cn)N1)−1NT

1 (26)

Ŵ2 = Cx22W
T
2 N2(NT

2 (W2Cx22W
T
2 + Cn)N2)−1NT

2 (27)

where N1 = null(WT
2 ), N2 = null(WT

1 ) and Cx =[
Cx11 Cx12

Cx12 Cx22

]
. It is clear that the constraints in (25) can

only result in a nontrivial solution for the estimator when
nullity(WT

1 ) > 0 and nullity(WT
2 ) > 0. By the rank-

nullity theorem, this is only satisfied when W1 and W2 do not
have full row rank. While this condition is generally satisfied
for over-determined systems, it only holds for certain under-
determined systems. Due to redundancy from the spatial-
temporal factorization, the TFLM forward matrix does satisfy
this condition and does not have full row rank, even for the
under-determined case [5]. For other multi-parameter inverse
problems, this condition will need to be evaluated to determine
if a nontrivial solution can be found. We discuss less restrictive
constraints for cross-talk reduction which allow nontrivial
solutions even in the full row rank case in Section VI.

We now apply this new CCMMSE estimator to the TFLM
inverse problem. We use the same implicit assumptions as
Tikhonov regularization for the model and data covariance
matrices (Cx = σ2

ηI and Cn = σ2
nI). We then substitute the

TFLM weight matrix and covariance matrices in (26) and (27).
The full derivation is presented in Appendix B. The optimal
inverse operator with constraints on cross-talk, which we term
the CCTD estimator, was found to be:

ŴCCTD = W
T

(WW
T

+ λDIAG
(
(ATA)−1

)
)†A†, (28)

where DIAG(X) converts the matrix X to block diagonal
form by setting all elements of the off-diagonal block to 0
and keeping all other elements the same.

Using the definition in (17), the corresponding resolution
matrix for CCTD takes the form:

RCCTD = W
T

(WW
T

+ λDIAG
(
(ATA)−1

)
)†W. (29)

The inverse operator shown in (28) provides the optimal
CCMMSE estimator for lifetime multiplexing. Remarkably,
(28), which was derived by solving an optimization problem,
is essentially the same as the ATD inverse operator, which is
based on a two step inversion of the factorized TD weight ma-
trix (10) in the asymptotic region. The difference between ATD
and CCTD is the replacement of the identity matrix, λI in (14)
in ATD with a block diagonal matrix, λDIAG(ATA)−1 in
CCTD. This substitution shows that the optimal solution with
zero crosstalk is obtained by simply setting the off-diagonal
matrix elements of the covariance matrix in the DTD inverse
operator to zero, to maintain the off-diagonal structure of
the resulting model resolution matrix. The uncertainties in
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the individual amplitudes are still retained in the on-diagonal
blocks. The DTD inverse operator from (21) implicitly retains
the full amplitude covariance matrix into the regularization,
thereby explaining the higher cross talk between multiple yield
distributions in the DTD approach.

IV. SIMULATIONS

We illustrate the key aspects of the above theoretical results
using Monte Carlo (MC) simulations, performed using tM-
Cimg [19], a MC computing software package. A simulation
medium was set up with dimensions 50 mm × 30 mm × 20
mm. The optical absorption (µa) and scattering (µs) were set
to 0.1 cm−1 and 10 cm−1, respectively, and the anisotropy (g)
was set to 0.01. All MC simulations were performed for 109

photons per source. The simulations used 21 equally spaced
(5 mm) sources and detectors in a transmission geometry. The
MC software also generated the source and detector Green’s
functions (or “2-pt functions”), Gx and Gm, which were used
to calculate the weight functions W , Wn and W . The DTD,
CCTD and ATD inversions were performed using (9), (14)
and (28), with 40 time gates in the asymptotic regime, which
was chosen to start 1.2 ns from the peak of the TD fluorescence
data. 2% shot noise was added to the simulated TD data.

A. Resolution Matrix

Figure 2 shows the resolution matrices for DTD, CCTD
and ATD, RDTD, RCCTD and RATD, respectively, computed
using (22), (29) and (23). To aid with visualization, the rows
and columns of the matrices were binned down by a factor of
300 and normalized to the maximum value of the matrix. It
can be seen that the off-diagonal blocks of RDTD contain non-
zero terms, while all the elements in the off-diagonal blocks of
RCCTD and RATD are identically zero. The resolution matrix
therefore shows in the most general form, that CCTD and ATD
inversions have zero cross-talk across all voxels of the imaging
medium. It should also be noted that corresponding elements
within the two block matrices on the main diagonal (R11 and
R22 in (19)) of RDTD are significantly different. The two
diagonal blocks represent the point-spread functions for the
two lifetime components. As such, this difference contributes
to the inaccurate recovery of the relative concentrations of the
two lifetimes using DTD. In contrast, the relative magnitudes
of corresponding elements on the diagonal blocks of both
RCCTD and RATD are much closer, with corresponding ele-
ments for RATD being nearly identical. This implies improved
relative quantitation for both CCTD and ATD. These results
will be confirmed using simulations and experiments below.

B. Relative Quantitation

To compare the relative quantitation performance of the
DTD, CCTD and ATD inversions, we performed simulations
with two overlapping fluorophores (lifetimes of τ1 = 0.75 ns,
and τ2 = 1 ns) located at the same 1 mm3 voxel at a height of
10 mm in the slab medium. Reconstructions were performed
for five ratios of the yields, η1 and η2, of the two lifetime
components, namely η1/η2 = 1 : 1, 2 : 1, 3 : 1, 4 : 1 and

DTD ATD

 

 

0

0.5

1

CCTD

Fig. 2. Resolution matrices, RDTD , RCCTD and RATD for tomographic
inversion of two fluorophores with distinct lifetimes of 0.75 ns and 1 ns in a
turbid slab medium (parameters discussed in text). The matrices are binned
down by factor of 300 and normalized to their maximum values.
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Fig. 3. Relative quantitation performance of DTD (blue), CCTD (green)
and ATD (red) tomographic inversions of simulated data. Shown are the
tomographically recovered yield ratios, η1/η2, for two fluorophores with
distinct lifetimes (τ1 = 0.75 ns, and τ2 = 1 ns) at the center of a 2 cm
thick slab phantom (µa = 0.1 cm−1 and µ′s = 10 cm−1). Reconstructions
were performed for five ratios of the yields, namely η1/η2 = 1 : 1, 2 : 1, 3 :
1, 4 : 1 and 5 : 1. Vertical error bars indicate yield estimates obtained from
simulations with 100 different realizations of shot noise (2%). Dashed lines
indicate the true ratios.

5 : 1. To calculate the standard deviation of the yield estimates,
simulations were repeated with 100 different realizations of
shot noise (2%). Figure 3 shows the recovered yield ratios
(obtained as the ratio of maximum of the reconstructed yields)
using DTD (blue), CCTD (green) and ATD (red) along with
the true ratio in black, with the standard deviations shown as
error bars. It is clear that ATD recovers the true yield ratios
accurately for all ratios considered, while the DTD results
in a significant error, vastly underestimating the short life-
time component. CCTD also underestimates the short lifetime
component but results in improved relative quantitation as
compared to DTD. It can be noted that the standard deviation
for the reconstructed ratio was highest for ATD followed by
CCTD and DTD. This disparity in standard deviation among
the methods was greater for higher values of true ratios and
can at least partly be attributed to the increased uncertainty
inherent for larger recovered ratios. The smaller uncertainty
for DTD could also be the result of the MMSE nature of the
DTD solution which provides improved noise sensitivity.

V. EXPERIMENTAL VALIDATION

We next validated the above simulation results using phan-
tom measurements with a TD fluorescence tomography system
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Fig. 4. a) Dish phantom with capillary tubes separated by 1.5 mm. During
measurements, the dish is filled with Intralipid and nigrosin solutions, the
right tube is filled with IR-806 (τ = 0.74 ns, 2 µM) and the left tube with
Alexa Fluor 750 (τ = 1.01 ns, 0.2-1 µM). Also shown are the source and
detector positions (labeled with red ’x’). b) Representative log-normalized
fluorescence intensity curves for a source-detector pair at the center of the
dish, for each yield ratio r = η1/η2. The dash dotted black line shows
the instrument response function (IRF) while the dashed black vertical line
indicates the start of the asymptotic region.

[4]. Liquid phantoms were created using polystyrene cell
culture dishes (100 mm diameter, Corning). The phantom was
filled with an Intralipid and nigrosin mixture to a height of
18 mm, resulting in optical properties of µa = 0.1 cm−1

and µ′s = 10 cm−1. Two capillary tubes (I.D.: 0.90 mm,
O.D.: 1.20 mm) were located at a depth of 9 mm with a
1.5 mm center-to-center separation. The choice of closely
spaced but non-overlapping inclusions for the experiment was
to avoid chemical interactions between the fluorophores that
could occur in a mixture. In addition, this allows comparison
of the ability of the three methods to localize closely separated
targets. The tubes were filled with IR-806 (Sigma-Aldrich, 2
uM in ethanol. τ1 = 0.74 ns) and Alexa Fluor 750 (Invitrogen,
1 uM in ethanol. τ2 = 1.01 ns). The ratio of the fluorescence
yields of IR-806 (η1) and Alexa Fluor 750 (η2) was varied
from η1/η2 = 0.85 to 4.25 in 5 steps, using serial dilutions
of the Alexa Fluor 750 solution. The true (in vitro) yield
ratio of the two tubes for each combination was estimated
by first directly measuring the fluorescence intensity from the
tubes in the phantom (without Intralipid) for the smallest yield
ratio (0.85), and calculating the subsequent ratios based on the
dilutions used for Alexa Fluor 750.

For tomography, 21 sources (3 rows of 7 sources across
the tubes) were used at the bottom of the dish, with detectors
assigned as camera pixels directly above the sources (4 ×
4 hardware binning) on top of the dish (See Fig. 4). The
full TD tomographic data was collected using a TD imaging
system with a Ti:Sapphire laser (∼ 100 fs pulses) and a gated
intensified CCD camera (ICCD) (LaVision:Picostar, 500 ps
gatewidth, 560 V gain, 20-25 ms CCD integration time, 150 ps
time step). For each ratio of the yields, η1/η2, 10 tomographic
data sets were collected to allow estimation of the uncertainty
in the reconstructed ratios. The decay amplitudes for each
source detector pair were obtained using the Moore-Penrose
pseudoinverse (A†y, see (12)) of the raw TD measurements
y, using 55 times gates in the asymptotic region, which
was chosen to start at 1.2 ns from the peak of the TD
fluorescence signal. The instrument response function (IRF),
measured using a white paper placed on the imaging plate,
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Fig. 5. Experimental comparison of the relative quantitation performance
of DTD, CCTD and ATD tomographic inversions of TD measurements.
Reconstructions were performed on TD tomogaphic data with a dish phantom
(1.8 cm height, µa = 0.1 cm−1 and µ′s = 10 cm−1) with two capillary tubes
(I.D.: 0.90 mm, O.D.: 1.20 mm) located at a depth of 9 mm and separated
by 1.5 mm center-to-center. The reconstructed yield ratio η1/η2 is shown for
DTD (blue), CCTD (green) and ATD (red) along with the true ratio of the
yields (black dashed line).

was directly incorporated in the linear bi-exponential fit using
a forward convolution with exponentials, which formed the
basis functions for the fit.

Figure 5 shows the reconstructed fluorescence yield ratios
from the experimental data for a range of true ratios, using
the DTD (9), CCTD (28) and ATD (14) methods. Vertical
error bars indicate variations across the 10 measurements for
a given ratio. Figure 6 shows the 1-D line profiles, taken along
the x-axis through the maximum of the yields, η1 and η2,
for DTD, CCTD and ATD, reconstructed from the averaged
data over all 10 trials. Also shown are the true ratios (solid
vertical rectangles), normalized to η1 for convenience. The
ATD approach provides excellent accuracy in both relative
yield ratio and the localization, resulting in a range of error
in relative quantitation of 1.8%-7.8% across all ratios. DTD
results in significantly higher error in relative quantitation
(16.1%-80.3% across all ratios), vastly underestimating the
yield of the short lifetime dye (IR-806), and is unable to
localize the inclusions as spatially separate. CCTD is able
to accurately localize the tubes while providing a reduced
relative quantitation error over DTD of 29.4%-33.9% across
all ratios. In addition, CCTD provides a 11.0% reduction
in the full width at half maximum (FWHM) of the spatial
distribution for η2 compared to ATD, while the η1 distribution
remains the same for both methods. These observations are in
agreement with the simulations (Fig. 3). It is also noteworthy
that while DTD results in large errors in quantitation and
localization, it provides a reduction in FWHM of 23.7% for
η1 and 12.7% for η2, compared to CCTD. Thus DTD is ideal
for applications where only a single lifetime is present, when
quantitative multiplexing is not of interest. It should be noted
that a center-to-center separation of 1.5 mm is more than
two-fold smaller than the previously reported center-to-center
spatial separation using CW fluorescence tomography (∼4.7
mm center-to-center) [20], illustrating the powerful advantage
of ATD and CCTD for accurate quantitative multiplexing.
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Fig. 6. 1-D line profiles of the DTD (a-c), CCTD (d-f) and ATD (g-i)
yield reconstructions, η1 (blue dashed-dot line) and η2 (red dashed-dot line),
corresponding to the relative quantitation results shown in Fig. 5. The line
profiles are taken along the x-axis through the maximum of the reconstructed
yields. Also shown are the true ratios (solid rectangles), normalized to η1.

VI. DISCUSSION

The resolution matrix-based framework for quantifying
cross-talk in tomographic lifetime multiplexing shows that
MMSE solutions, such as the DTD approach, may not be
ideal for multiplexing problems, since they do not constrain
inter-parameter cross-talk. Using simulations and experiments,
we showed that the high cross-talk of DTD translates to a
significant error in relative quantitation and spatial localiza-
tion. On the other hand, the ATD inversion, which is not an
MMSE solution but is rather based on a two-step approach
using multi-exponential analysis of TD data, provides zero
cross talk and excellent accuracy for relative quantitation for
a wide range of concentration ratios. The ATD reconstructions
result in broader spatial point spread functions (PSF), implying
poorer spatial resolution than DTD. Intermediate between
ATD and DTD solutions is the CCTD estimator, which is
an MMSE solution with a constraint on the off-diagonal
blocks of the resolution matrix, which represent cross talk. We
showed experimentally that CCTD provides improved relative
quantitation compared to DTD while also providing narrowed
spatial PSF compared to ATD. These results suggest that
ATD is the method of choice for optimal relative quantitation
and CCTD is the method for optimal spatial resolution while
maintaining zero cross-talk. It is conceivable that ATD could
be combined with CCTD in some manner to incorporate the
improved spatial resolution of the CCTD approach into ATD.
The spatial resolution of both the CCTD and ATD methods
can also be further improved by combining with early photons,
as in the hybrid TD (HTD) approach [2].

Our approach for deriving the CCTD estimator was based
on shaping the model resolution matrix to minimize cross-talk.

It should be noted that in this derivation, no assumptions were
made regarding the form of the inverse operator. The solution
for the optimization problem was obtained analytically, and
was nearly identical in form to the ATD inverse operator.
The key difference between CCTD and ATD is that while
the regularization matrix for ATD is an identity matrix, the
CCTD regularization matrix has unequal diagonal elements,
and is related to the amplitude covariances, which have the
effect of lowering reconstruction error while maintaining zero
cross-talk. This derivation therefore rigorously establishes the
relationship of the ATD solution to the minimum error solution
on the spectrum of zero crosstalk estimators. We also presented
alternate forms of DTD and ATD inversions that revealed the
distinction between the cross-talk performance of DTD and
ATD as simply related to distinct regularization matrices in
a Bayesian interpretation. In addition, the alternate form of
the DTD inverse operator allows a computationally efficient
method of performing reconstruction of asymptotic TD data
with an arbitrary number of time gates.

The framework for quantifying and reducing cross-talk in
TFLM could also be extended to other types of computational
imaging modalities. An important example in optical imaging
is diffuse optical tomography (DOT) where absorption and
scattering are the parameters to be separated and cross-talk
has been shown to be a confounding factor. Applying our
constrained optimization approach to DOT would likely be
more difficult than TFLM since the factorization, which occurs
naturally in TFLM and plays a key role in the derivation, does
not occur in DOT. However, the approach employed here in
deriving the CCTD estimator, based on sacrificing reconstruc-
tion error performance for better crosstalk performance, should
prove useful in DOT and other inverse problems. Furthermore,
even though cross-talk has been the primary focus of the
present study, the general procedure of constraining the model
resolution matrix while minimizing reconstruction error could
be extended to other performance measures. For example, this
approach could help equalize the spatial resolution, which
is represented by columns in the model resolution matrix,
throughout the imaging medium. The spatial resolution for
standard reconstruction algorithms typically exhibits strong
depth dependence, thereby precluding comparisons of quan-
titation across spatial locations in the medium.

An important issue to consider when using a constrained
optimization approach is the increase in error due to the
imposing of constraints. For the TFLM inverse problem, the
equality constraints in (25) still produced sufficiently regular-
ized solutions at practical levels of the noise. However, for
other multi-parameter problems, the equality constraints may
cause the noise amplification error to dominate the solution
(the solution becomes under-regularized). While this error can
be decreased by assuming higher noise covariance (increasing
regularization) the effect of noise amplification can also be
mitigated by considering less restrictive constraints. In the case
of cross-talk the constraint could be placed on a subset of terms
in the off diagonal blocks instead of the entire off diagonal
block. Other types of constraints could also be considered
such as inequality constraints instead of equality constraints.
However, these are numerically more difficult to solve.
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Our experimental results highlight the ability of zero cross-
talk approaches such as ATD and to a lesser extent CCTD to
achieve highly accurate relative quantitation between multiple
parameters. In addition, we observed that the recovered relative
quantitation for ATD and CCTD was robust, and was mini-
mally affected by the choice of regularization parameter. Reg-
ularization had a bigger effect on the DTD recovered ratios,
with higher regularization resulting in further underestimation
of the ratios. Although absolute quantitation is difficult to
achieve both in TFLM and optical tomography due to partial
volume effects inherent in ill-posed inverse problems, our
paper demonstrates that high accuracy for relative quantitation
is possible over a wide range of fluorophore concentration
ratios.

VII. CONCLUSION

We have presented the first experimental comparison of the
ATD, DTD and CCTD methods for quantitative multiplex-
ing in turbid media. The ATD approach provides superior
relative quantitation and localization accuracy for recovering
two fluorophores in a turbid medium, with true yield ratios
of up to 1:4.25. While the standard DTD approach, which is
a minimum error solution, provides improved spatial resolu-
tion compared to the ATD approach, it results in significant
errors in relative quantitation. The CCTD approach provides
improved quantitation compared to DTD and better spatial
resolution compared to ATD. The ability to recover accurate
relative quantitation of multiple fluorophores has important
applications for biomedical imaging, including the extension
of microscopy based fluorescence lifetime imaging applica-
tions [21]–[23] to tomographic whole body imaging. One
application that holds particular promise is the detection of
molecular interactions using fluorescence resonance energy
transfer (FRET) [11], [24]. The ATD approach should prove
to be a powerful approach to quantify the ratio of the donor
to acceptor concentrations (and hence the FRET efficiency) in
deep tissue. Another potentially important application where
accurate relative quantitation is critical is the imaging of
activatable probes. These probes have the property that their
lifetime shifts upon activation by disease-specific enzymes
such as proteases [25]. The ATD approach can allow accurate
determination of the ratio of probes in an activated state to
probes in the inactivated state, thereby accurately quantifying
disease-specific molecular expression in vivo. Future work will
be focused on applying ATD and CCTD for quantitative in
vivo multiplexing applications.

APPENDIX A
CCMMSE ESTIMATOR

We seek to find an expression for WCCMMSE which solves
the quadratic programming problem defined in (24) and (25).
The MSE cost function f(Ŵ ) is first separated into terms
which depend on Ŵ1 and Ŵ2, f(Ŵ ) = E

[
‖x− x̂‖2

]
=

f1(Ŵ1) + f2(Ŵ2),

f1(Ŵ1) = tr
(
−2Ŵ1WCx1

+ Ŵ1WCxW
T ŴT

1 +

Ŵ1CnŴ
T
1 + Cx11

)
(30)

f2(Ŵ2) = tr
(
−2Ŵ2WCx2 + Ŵ2WCxW

T ŴT
2 +

Ŵ2CnŴ
T
2 + Cx22

)
(31)

where Cx =

[
Cx11

Cx12

Cx12
Cx22

]
, Cx1

=

[
Cx11

Cx12

]
, Cx2

=

[
Cx12

Cx22

]
We perform a change of variables to combine the equality

constraints in (25) and the cost function in (24) into a single
unconstrained cost function using the following procedure. We
begin by defining the null spaces for WT

1 and WT
2 as:

N1 = null(WT
2 ) (32)

N2 = null(WT
1 ) (33)

and introducing two new variables Z1 and Z2:

ŴT
1 = N1Z1 (34)

ŴT
2 = N2Z2. (35)

We focus on solving for Ŵ1 by substituting (34) into cost
function (30) to get:

f1(Z1) = tr(−2ZT1 N
T
1 WCx1

+

ZT1 N
T
1 (WCxW

T + Cn)N1Z1 + Cx11).

The problem of minimizing f1(Z1) for Z1 (an unconstrained
minimization problem) is equivalent to the constrained op-
timization problem of (24) and (25) since for any Z1 the
constraint Ŵ1W2 = 0 is satisfied. To minimize f1(Z1), we
take the derivative with respect to Z1:

∂f1(Z1)

∂Z1
= −2NT

1 WCx1
+ 2NT

1 (WCxW
T + Cn)N1Z1.

We now set the derivative to 0 and solve for Z1 to get:

Z1 = (NT
1 (WCxW

T + Cn)N1)−1NT
1 WCx1 .

Substituting Z1 back into (34) and using WT
2 N1 = 0

(from (32)) we get:

Ŵ1 = Cx11
WT

1 N1(NT
1 (W1Cx11

WT
1 + Cn)N1)−1NT

1 . (36)

Ŵ2 can be solved similarly to give:

Ŵ2 = Cx22
WT

2 N2(NT
2 (W2Cx22

WT
2 + Cn)N2)−1NT

2 . (37)

APPENDIX B
CCMSE APPROACH FOR TFLM

Our derivation will focus on the inverse operator for the first
parameter, τ1 as the derivation for τ2 proceeds in a similar
manner. We begin by listing some properties of orthogonal
projection matrices which will be useful for the subsequent
derivation. The orthogonal projection matrix for W2 is defined
by:

P⊥W2
= I −W2(WT

2 W2)†WT
2 (38)

and can be related to the null space of its transpose (WT
2 )

using:
P⊥W2

= N1N
T
1 . (39)

It is also straightforward to show by substitution into (38) that:

P⊥A2
= P⊥W2

. (40)
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Using the formula for pseudoinverse of a block matrix [26],
we divide the pseudoinverse of the exponential basis matrix
A from (10) into components corresponding to each lifetime:

A† =
[
A1 A2

]†
=

[
(P⊥A2

A1)†

(P⊥A1
A2)†

]
=

[
a†1
a†2

]
. (41)

From (41) and using (39) and (40), we can obtain an expres-
sion for a1:

a1 = N1N
T
1 A1. (42)

Assuming Cx = σ2
ηI and Cn = σ2

nI , the CCMMSE
estimator from (36) for τ1 becomes (NT

1 N1 = I):

Ŵ1 = WT
1 N1(NT

1 W1W
T
1 N1 + λI)−1NT

1 , (43)

where λ = (σn/ση)2. We next obtain an equivalent
overdetermined form for Ŵ1 by premultiplying (43) by
(WT

1 N1N
T
1 W1 + λI) and solving for Ŵ1 to get

Ŵ1 = (WT
1 N1N

T
1 W1 + λI)−1WT

1 N1N
T
1 . (44)

We proceed by substituting the rightmost WT
1 term in (44)

with W1 = A1W1 and using (42)

Ŵ1 = (WT
1 N1N

T
1 W1 + λI)−1W1

T
aT1

= (WT
1 N1N

T
1 W1 + λI)−1W1

T
aT1 a1a

†
1 (45)

= (WT
1 N1N

T
1 W1 + λI)−1WT

1 N1N
T
1 A1a

†
1,

where (45) is due to the identity aT1 = aT1 a1a
†
1. Terms

corresponding to the overdetermined form of Ŵ1 (44) are
then replaced with terms corresponding to the undetermined
form (43):

Ŵ1 = WT
1 N1(NT

1 W1W
T
1 N1 + λI)−1NT

1 A1a
†
1

= W1
T

(NT
1 A1)T (NT

1 W1W
T
1 N1 + λI)−1(NT

1 A1)a†1

= W1
T

(((NT
1 A1)T )†)†((NT

1 A1)W1W1
T

(NT
1 A1)T

+ λI)†((NT
1 A1)†)†a†1

= W1
T

(W1W1
T

+ λ(NT
1 A1)†((NT

1 A1)T )†))−1a†1 (46)

= W1
T

(W1W1
T

+ λ((NT
1 A1)TNT

1 A1)†)−1a†1

= W1
T

(W1W1
T

+ λ(AT1 P
⊥
A2
A1)−1)−1a†1,

where (46) follows from the generalized inverse product rule
(ABC)† = C†B†A† [27].

Using a similar procedure for τ2. the optimal estimator with
equality constraints for both lifetimes can be written as:

Ŵ1 = W1
T

(W1W1
T

+ λ(AT1 P
⊥
A2
A1)−1)−1a†1 (47)

Ŵ2 = W2
T

(W2W2
T

+ λ(AT2 P
⊥
A1
A2)−1)−1a†2. (48)

Finally, comparing (47) and (48) with the formula for inverse
of the block matrix ATA

(ATA)−1 =

[
(AT1 P

⊥
A2
A1)−1 f(A1, A2)

g(A1, A2) (AT2 P
⊥
A1
A2)−1

]
we see that the optimal estimator Ŵ can be compactly written
as:

Ŵ = W
T

(WW
T

+ λDIAG
(
(ATA)−1

)
)†A†. (49)
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