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Abstract: A general linear model for time domain (TD) fluorescence
tomography is presented that allows a lifetime-based analysis of the
entire temporal fluorescence response from a turbid medium. Simula-
tions are used to show that TD fluorescence tomography is optimally
performed using two complementary approaches: A direct TD analysis
of a few time points near the peak of the temporal response, which pro-
vides superior resolution; and an asymptotic multi-exponential analysis
based tomography of the decay portion of the temporal response, which
provides accurate localization of yield distributions for various lifetime
components present in the imaging medium. These results indicate the
potential of TD technology for biomedical imaging with lifetime sen-
sitive targeted probes, and provide useful guidelines for an optimal
approach to fluorescence tomography with TD data.
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1 Introduction

The development of disease-specific fluorescent markers and genomic reporters has
prompted concurrent advances in optical tomography techniques for the non-invasive
diagnosis of disease in a living animal or human subject.1,2 The most common optical
tomographic techniques for fluorescence are based on continuous wave (CW) excita-
tion3 and frequency modulated (FD) excitation.4,5 Another measurement mode is in
the time domain (TD),7–15 where the excitation is performed using short laser pulses
in conjunction with time resolved detection. Fluorescence lifetime reconstructions with
turbid media have been discussed in previous works in conjunction with FD4,5 and
TD6,11–14 measurements (CW measurements are incapable of distinguishing fluores-
cence lifetime from yield). A single TD measurement with a short laser pulse implicitly
contains all modulation frequencies, and hence provides the most complete optical in-
formation. Moreover, the surface decay data from TD measurements can directly reveal
the intrinsic fluorophore lifetime, without the need for reconstructions.11–13 This feature
could be of tremendous importance given the potential development of lifetime sensitive
probes for in-vivo applications and the sensitivity of fluorescence lifetime to factors af-
fecting local tissue environment such as pH, viscosity, oxygen concentration and tissue
autofluorescence, in addition to molecular interactions such as Forster resonance energy
transfer (FRET).17 Fluorescence lifetime imaging (FLIM) is already a well established
microscopy technique that is used to probe lifetime contrast in thin tissue sections.18,19

Image reconstruction algorithms for TD fluorescence measurements have so far been
primarily based on derived, or transformed, data types, such as the Laplace trans-
form,8,23 Mellin transform or moments15 and the Fourier transform.27,28 One advantage
of working in a transformed space of the TD data lies in the simplicity of the relation-
ship between the fluorescence lifetime and the measured phase, as compared to the
non-linear dependence on fluorophore lifetime (through the exponential decay factor)
in the direct TD case. For instance, the phase measured in FD experiments is linearly
related to the lifetime distribution.4 Nevertheless, the lifetime is still in the form of a
distribution, which can only be recovered using tomographic reconstructions to remove
the contribution to the phase from diffusive propagation. Also, the measured phase at a
certain modulation frequency (or imaginary frequency in the Laplace case) is an admix-
ture of contributions due to all the lifetimes present in the medium. On the other hand,
Laplace transforms have been applied to selectively reconstruct the early rise portion of
the temporal response curve, since early arriving photons undergo minimal scattering,
and are largely unaffected by the long lived fluorophore lifetimes.8

We recently demonstrated experimentally13 that analyzing the asymptotic decay
portion of the diffuse fluorescence temporal response (DFTR) can by itself have distinct
advantages: The yield distribution(s) for multiple lifetime component(s) present within
the medium can be localized separately using the surface decay amplitudes extracted
from multi-exponential fits. In what follows we will simply label this the “asymptotic”
approach. The asymptotic approach reduces a cumbersome analysis of a large temporal
data set in the decay portion of the DFTR into a multi-exponential curve fitting followed
by simple CW reconstructions. This approach can be viewed as an application of the
inverse Laplace transform (which is equivalent to multi-exponential fitting for a few dis-
crete lifetimes) to reconstruct the decay portion of the DFTR. However, the restriction
of this method to the decay portion excludes the information from the earlier portion
of the DFTR, which is characterized by a better signal-to-noise (SNR) ratio, and may
also contain useful spatial information. It is thus imperative to seek an approach that
incorporates the rising and peak portions of the DFTR data into the analysis. In this
work, we develop a theoretical formalism that allows a lifetime-based separation of flu-



orescence yield distributions using the entire TD data. In order to evaluate the optimal
choice of temporal measurements for tomography using the direct TD approach, we use
a singular value decomposition analysis29,30 of the TD weight matrix. To our knowledge,
this optimization has not been carried out previously for TD fluorescence measurements,
although optimization of multi-frequency data in FD has been studied previously.27,28

The relative merits of the optimized direct TD approach and the asymptotic approach
are then compared using simulations and the advantages of TD data over CW, in the
presence of lifetime contrast, are demonstrated.

This paper consists of three central parts. In Section 2, key integral expressions
are presented that enable lifetime-specific tomographic reconstructions of the entire
DFTR, along with a discussion of the conditions when the results are valid. In Section
3, the optimization of temporal measurements for fluorescence tomography is addressed
numerically, using a SVD analysis. In Section 4, the theoretical formalism developed and
the results of the SVD analysis are applied to simulated noisy data to more specifically
determine the imaging performance of the rise and decay portions of the DFTR.

2 Theoretical development

In this section, we revisit the basic expressions involved in TD fluorescence tomogra-
phy, and present a simplified expression under the specific condition of long lifetimes.
Consider a turbid imaging medium embedded with fluorophores, described by yield and
lifetime distributions (at one wavelength) η(r) and τ(r) = 1/Γ(r), respectively. For
tomography, optical sources and detectors are arranged on the surface of the imaging
medium. The fluorescence intensity measured at a detector point rd at time t for an
impulsive excitation at source position rs and t = 0 can be written in the standard
way as a double convolution over time, of the source and emission Green’s functions
(omitting experimental scaling factors for simplicity):

UF (rs, rd, t) =
∫

Ω

d3rW (rs, rd, r, t)η(r), (1)

where the weight function, or sensitivity function is given by

W (rs, rd, r, t) =
∫ t

0

dt′
∫ t′

0

dt′′Gm(rd − r, t− t′)e−Γ(r)(t′−t′′)Gx(r− rs, t
′′), (2)

with Gx and Gm denoting the source and emission Green’s functions, which depend
on the net absorption and scattering coefficients (background + fluorophore) at the
excitation and emission wavelengths, µ

(x,m)
a (r) and µ

(x,m)
s (r). The above expression

assumes a single absorption and re-emission event due to the fluorophore. But this does
not prevent the inclusion of multiple absorption of the excitation and emission light
by fluorophores in the background medium, which can be incorporated by obtaining
the G(x,m) as solutions to the diffusion or transport equations at the excitation and
emission wavelengths with the net absorption including the fluorophore absorption at
these wavelengths.

As it stands, the TD fluorescence weight function in Eq. (2) is a double convolution in
time and is computationally intensive, especially for a tomographic measurement setup
with a large number of sources and detectors. But a closer inspection reveals that Eq.
(2) can be rewritten in a more manageable form. First, we define a background weight
function as:

WB(rs, rd, r, t′) =
∫ t′

0

dt′′Gx(rs, r, t′ − t′′)Gm(r, rd, t
′′), (3)



which depends only on the medium optical properties and reduces to the weight function
for an absorption perturbation when the excitation and emission wavelengths coincide.
Using the commutativity of the convolution operation, we can now re-write Eq. (2) as,

W (rs, rd, r, t) =
∫ t

0

dt′WB(rs, rd, r, t′)e−Γ(r)(t−t′). (4)

Since WB can be pre-calculated with a knowledge of background optical properties,
the advantage of Eq. (4) over Eq. (2) is that only a single time integral is left for the
tomographic recovery of the yield and lifetime distributions.20 A more useful form of this
expression is realized if the fluorophores within the medium are described as multiple
distributions, ηn(r), corresponding to discrete lifetime components, τn = 1/Γn. We then
get, for the weight function of each lifetime component,

Wn(rs, rd, r, t) =
∫ t

0

dt′WB(rs, rd, r, t′)e−Γn(t−t′), (5)

so that the total fluorescence signal is expressed as

UF (rs, rd, t) =
∑

n

∫

Ω

d3rWn(rs, rd, r, t)ηn(r). (6)

If it is further assumed that the lifetimes are longer than the absorption timescale,
i.e., τn > τa(= 1/vµa(r)), (see Section 2.1) Eq. 5 can be expressed in a more elegant way
that also reveals the connection with previously developed asymptotic lifetime-based-
tomography.13 To derive this most generally, consider the source-free radiative transport
equation (RTE) for the Greens functions G(x,m), which is a rigorous description of light
transport in a turbid medium:21,22

(
s · ∇+

1
v

∂

∂t
+ µ(x,m)

a (r) + µ(x,m)
s (r)

)
G(x,m)(r, s, t) (7)

= µ(x,m)
s (r)

∫

Ω

Θ(s, s′)G(x,m)(r, s′, t)ds′,

where Θ(s, s′) is the scattering phase function. The source terms are dropped from
the excitation RTE on the basis that the fluence is calculated away from the source
location, and similarly from the emission RTE, given that only a single fluorophore
emission event is considered in accordance with the Born approximation initially made
in Eq. 2. (Multiple absorption of the excitation and emission light by the fluorophore is
still incorporated in the total absorption at these wavelengths viz., µx

a and µm
a .) Suppose

now that we write (dropping the angular dependence for simplicity):

G(x,m)(r, t) = G
(x,m)
0 (r, t)e−vµ(x,m)

a (r)t, (8)

it can be verified by substituting the above solution into Eq. (7) that the functions
G

(x,m)
0 are dependent only on the gradient of the absorption coefficient, ∇µ

(x,m)
a (r),

and independent of µ
(x,m)
a (r) itself. Thus, G

(x,m)
0 are invariant to constant shifts in

the absorption. If we define the Green’s functions G
(x,m)
n evaluated using a reduced

background medium absorption, µ
(x,m)
a (r) − Γn/v, which is positive under the long

lifetime condition viz., Γn < vµ
(x,m)
a (r), it is then easily verified using Eq. (8) that

G(x,m)
n (r, t) = G(x,m)(r, t)|µa−Γn/v = G(x,m)(r, t)|µaeΓnt. (9)



Now, writing eΓnt′ = eΓn(t′−t′′)eΓnt′′ , we can use Eq. (9) in Eq. (5) to show that:

Wn(rs, rd, r, t) = e−Γnt

∫ t

0

dt′WB
n (rs, rd, r, t′), (10)

where WB
n is given by Eq. (3) but with the reduced absorption Green’s functions Gx,m

n .
The form of the weight function in Eq. (10) allows the fluorescence signal to be

expressed as a multi-exponential sum, analogous to fluorescence lifetime imaging18

(FLIM):
UF (rs, rd, t) =

∑
n

An(rs, rd, t)e−Γnt, (11)

where the decay amplitudes An depend on time, in addition to the source and detector
locations. The amplitudes define a linear inversion problem for the yield distributions
of each lifetime component:

An(rs, rd, t) =
∫

d3r

[∫ t

0

dt′WB
n (rs, rd, r, t′)

]
ηn(r). (12)

For fluorophores with lifetimes comparable to optical diffusion time scales in biological
media (≈ nanoseconds), An(t) has a non-trivial time evolution that is determined by the
size and optical properties of the imaging medium. In Figure 1, the temporal evolution
of A(t) is shown for infinite slabs of thicknesses 2cm and 10cm, with a single 2mm3

fluorophore inclusion of 1ns lifetime embedded at the center of the slab. Furthermore,
the net fluorescence signal calculated using Eqs. (3) and (11-12) is compared with the
fluorescence signal computed directly using Eqs. (1-2), to confirm the accuracy of the
effective absorption model in Eq. (10). The above equations are also applicable to phos-
phorescence signals from diffuse media,16 where the lifetimes (≈microseconds) are very
large compared to the diffusion time scales. In this scenario, A(t) can be approximated
as a step function in time.

Asymptotic limit: From Eq. (10), it is clear that the weight function for each life-
time component is an average over a time t of the background sensitivity function WB

n .
Let τD denote the timescale for the evolution of WB

n , which will depend on absorption,
scattering and medium boundaries (see section 2.1 below). For t > τD, the average over
WB

n will then become time independent and reduce to a CW sensitivity function, which
we denote by Wn. We are thus lead to asymptotic lifetime-based tomography, which
was derived previously using complex integration (see Eqs. (3) and (4) in Reference 13):

lim
t>τD

Wn(rs, rd, r, t) → e−ΓntWn(rs, rd, r). (13)

Therefore, Eqs. (11-12) along with Eq. (3) constitute a TD generalization of asymptotic
lifetime-based tomography, that includes the early arriving photons in addition to the
asymptotic decay portion corresponding to the late arriving fluorescent photons. Note
from Fig. 1 that the amplitude of the asymptotic fluorescence decay (shown as dashed
red lines) equals the long time value of A(t), which is related to the CW sensitivity
function W .

The results presented in this section can be summarized as follows. With the lifetimes
calculated from the asymptotic decay of the TD signal, Eq. (11) can be used to recon-
struct the yield distribution for each lifetime using TD data. Since the amplitude for
each lifetime is in general time dependent and cannot be separated, the reconstruction
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Fig. 1. Simulations to elucidate the diffuse and pure fluorescent decay components
in the diffuse fluorescence temporal response, and to demonstrate the accuracy the
time domain fluorescence model presented in Eq. (11) in the text. The medium was
an infinite slab of thickness 2cm (left panel) and 10cm (right panel), with optical
properties µx

s = µm
s = 10/cm, µx

a = µm
a = 0.1/cm. The fluorescence signal was

calculated for a single source detector pair, with a small fluorescent inclusion at
the center. The signal calculated using the conventional approach in Eqs.(1-2), (+
symbol) is compared with that calculated using an effective-absorption based model,
viz., Eqs. (11-12) (solid black line). The convolved medium diffusion, A(t) (dotted
blue line) and asymptotic fluorescence decay (dashed red line) are also delineated
for both cases.

is performed directly on the measured data:



.

U j
F (tk)

U j
F (tk+1)

.


 =




. . . .

. W j
n(tk) W j

n+1(tk) .

. W j
n(tk+1) W j

n+1(tk+1) .
. . . .







.
ηn(r)

ηn+1(r)
.


 , (14)

where for simplicity of notation we have dropped the source-detector co-ordinates and
have instead used a single superscript j to denote measurement index that labels each
source-detector (S-D) pair. For times longer than τD, the decay amplitude becomes
time-independent, so that the amplitude for each lifetime component can be recovered
asymptotically using multi-exponential fits. These amplitudes constitute a derived data
set (inverse Laplace transform) for the inversion of the yield distributions:




.
Aj

n

Aj
n+1

.


 =




. . . .

. W
j

n 0 .

. 0 W
j

n+1 .
. . . .







.
ηn(r)

ηn+1(r)
.


 . (15)

The key difference between Eqs. (14) and (15) is that the asymptotic weight function in
Eq. (15) is block diagonal, whereas the TD weight function in Eq. (14) has off-diagonal
terms. Thus, the direct TD reconstruction will be characterized by significantly more
cross-talk between the lifetime distributions than the asymptotic reconstruction. At
least two questions immediately arise, related to the practical application of the above
results. Firstly, what is the optimal choice of time points for the TD reconstruction
using Eq. (14)? Secondly, what are the relative merits of the direct TD and asymptotic
approaches? We will address these questions in Sections 3 and 4.



2.1 Conditions for asymptotic recovery of intrinsic fluorophore lifetimes

A basis for the theoretical work presented in this paper is the direct estimation of
the intrinsic fluorophore lifetimes from the decay of TD fluorescence signals. There
are two different time scales involved in determining whether fluorophore lifetimes are
revealed in the measured decay on the surface of the turbid medium. First is the intrinsic
absorption time scale τa = (vµa)−1, which is the asymptotic decay time of the diffuse
temporal response (DTR) at the excitation wavelength, in the limit of homogenous
semi-infinite media.24 Second is the asymptotic decay time, τD, of the DTR from a
finite sized imaging medium, which includes the effect of boundaries. It is known that
the presence of boundaries reduces the decay time,24,25 so that τD < τa. Since the
DFTR is a convolution of the fluorescence decay with the DTR, two scenarios emerge
for a lifetime based analysis of TD fluorescence data from diffuse media:

• Strong condition: τn > τa. Since τa > τD, this guarantees that lifetimes can
be measured asymptotically, irrespective of tissue optical properties and medium
boundaries. Furthermore, the multi-exponential model presented in Eqs. (11-12)
is valid.

• Weak condition: τa > τn > τD. Lifetimes can still be measured asymptotically,
but the reduced absorption model in Eq. (10) is no longer valid. The more general
expression for the weight function, viz., Eq. (5), should instead be used for both
the direct TD and asymptotic reconstructions.

The strong condition is easily satisfied for nanosecond lifetime fluorophores in biomedi-
cal applications (µa > 0.1cm−1 corresponds to τa < 0.5ns). In applications with small
volumes as in small animal imaging,12 with thicknesses of a few cm, the weak condition
is almost always satisfied. [A numerical evaluation of τD for a range of tissue optical
properties can be found in Reference 13.] Note that for heterogenous media, it is known
that the decay time is relatively constant on the measurement surface,25 so that we
can use the average, or bulk absorption in the medium to define τa, in evaluating the
above conditions. The above two simple rules dictate the condition for measuring in-
trinsic lifetimes from surface fluorescence decays for arbitrary diffuse imaging media.
Note that the average decay time on the surface might itself change due to factors that
affect the amplitude of individual lifetime components (e.g., thickness of autofluores-
cence layers31), but the point is that individual lifetimes can still be recovered through
multi-exponential fits, under the above conditions.

3 Singular value analysis of the time domain weight function

In this section, we will present an optimization study of the number and location of
time points for a direct TD reconstruction. The general optimization of source-detector
(S-D) pairs and time points is a complex multi-dimensional problem since each S-D
pair could ideally be associated with a different time gate. It is, however, reasonable
to view the temporal points and S-D arrangements as independent dimensions in the
optimization, since for biomedical imaging applications, the length scales involved are
not too large and the correspondingly small variations in the temporal response along
the measurement surface can be assumed not to affect the results in a significant way.
Therefore, in this paper, we consider a fixed S-D geometry and focus on optimizing the
temporal measurements for fluorescent tomography. The optimization of S-D configura-
tion has been discussed in previous works for CW fluorescence29 and non-fluorescent30

tomography, using a singular value decomposition (SVD) analysis. Here, we will apply
SVD to the TD weight matrix Wn defined in Eq. (10) for optimization of the time points
within the DFTR. SVD of a matrix Wn yields the three orthogonal matrices, U, S and
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Fig. 2. Measurement geometry and arrangement of sources (*) and detectors (o) used
for the simulations. The medium was assumed to be a diffusive slab of thickness
2cm. The targets used in the tomographic reconstructions are shown as gray shaded
areas. (a) shows the top-down view and laterally separated (perpendicular to the
source-detector axis) targets and (b) shows the side view, and targets located axially,
i.e., along the source-detector axis.

V , defined as : Wn = USV T . The columns of U and V represent the measurement space
and image space modes, and the diagonal matrix S of singular values determines the
extent to which these modes are coupled.29,30 The number of singular values above a
pre-determined noise threshold is directly related to image resolution.30

The weight matrix as defined in Eq. (10) was simulated for a diffusive slab medium
of thickness 2cm in the transmission geometry, with a S-D arrangement as shown in Fig.
2, with 21 sources and 29 detectors arranged in a honeycomb pattern (yielding 609 S-D
measurement pairs). The medium consisted of 3564 voxels of size 2mm3 (1mm × 1mm ×
2mm). The temporal points were chosen to be 200ps apart, corresponding to the typical
minimum gate width in time-gated detection techniques,10,13 and spread across a time
range of 6ns. To begin with, consider performing tomography using Eq. 14 with all S-D
pairs and a single time point. What is the location for this time point for an optimal
reconstruction? To answer this question, the singular value spectra for Wn evaluated at
various time points were calculated. The five spectra with the highest values are plotted
in Fig 3(a), and the number of singular values, Nσ, above a chosen noise threshold of
10−14 is plotted in the inset of Fig. 3(b). It is seen that the spectrum for the time gate
near the peak has the highest number of singular values above the noise threshold. It is
noteworthy that the slope of the singular value spectrum is lowest for the earliest time,
and increases for later times. This could be attributed to the narrower spatial sensitivity
profile sampled by the early arriving photons. However, the higher signal level (and the
best SNR, in the presence of shot noise) near the peak of the DFTR overcomes the faster
decay of the spectrum, resulting in a larger Nσ near the peak. We thus conclude that
tomography with a single time gate is optimally performed with a time point near the
peak of the DFTR. Note the linearity of Nσ in the exponential decay region (red curve
in the inset of Fig 3(b)). This could be attributed to the fact that the SVD spectra are
also approximately exponential, as evident from the log plot in Fig. 3(a), so that the
intercept of diag(S) at fixed noise threshold depends linearly on time.

Next, SVD was performed on the weight matrix calculated for all possible pairs of
time points, and the pair of time points with the highest number of singular values, Nσ,
was determined. It turns out that one of the time points was again near the peak of
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Fig. 3. (a) Singular value spectra of the TD weight matrix Wn [Eq. (10)] evaluated
for a single temporal measurement. The time point for which the individual spectra
are plotted are indicated as vertical lines in the inset, along with a representative
DFTR. (b) Number of useful singular values, Nσ , as a function of the number of time
points used in the weight matrix Wn. The weight matrix was optimized separately
for each combination of time points. The noise threshold for evaluating Nσ was
10−14 (horizontal dotted line in panel (a)). The inset shows the optimal location of
the five most significant time points on the DFTR (filled circles) along with Nσ for
a single-time weight matrix as a function of the chosen time point along the DFTR
(dashed line, right Y-axis).

the DFTR and the other was located near the rise portion of the DFTR. In the same
way, the location and Nσ for multiple combinations of time points were determined.
In Figure 3(b), Nσ is plotted as a function of the number of time points used. It seen
that the proportional increase in Nσ diminishes rapidly after the first 3 or 4 temporal
measurements. Also shown in the inset in Fig 3(b) are the first five optimal time points
on a representative DFTR on the surface, which are located near the initial portion
of the DFTR before the beginning of the fluorescence decay. It was determined that
additional time points were located near the decay portion of the DFTR and added
little to Nσ.

While the exact location of the optimal time points might vary slightly depending on
the specific medium geometry, S-D arrangement and the location of the heterogeneity,
it is generally clear from the results in Fig. 3 that the most useful time points of the
DFTR for a direct TD reconstruction are located near the rise and peak portions. This
result is consistent with Eq. 13, which shows that the weight function is asymptotically
factorized into a spatial and temporal component so that multiple time points in the
decay region are redundant for tomography. In other words, a brute force direct TD
approach is not ideal for tomography with the long time decay data. (When the lifetimes
are widely separated, the shorter lived components may be suppressed by reconstructing
later delays.16) Instead, the asymptotic approach based on a derived data type, viz., the
inverse laplace transform (i.e., multi-exponential fit) is more appropriate. In the next
section, we will perform tomographic reconstructions with simulated data using realistic
noise levels to more quantitatively study the imaging performance of the direct TD and
asymptotic approaches.

4 Tomography using direct TD and asymptotic approaches

The results presented so far in the paper suggest that time domain fluorescence tomog-
raphy can be comprehensively performed in three simple steps. (1) Obtain the intrinsic
fluorescence lifetime(s) and the corresponding decay amplitude(s) from the asymptotic
tail. (2) Reconstruct the individual yield distributions for each decay component using
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(FWHM) for reconstructions using CW (solid black), optimal direct TD using 4
most significant time points near the rise and peak of the DFTR (red), and the
asymptotic approach (blue circles). The cross talk for the 1ns inclusion, viz., the
false yield amplitude at the location of the 1ns lifetime component due the 1.5ns
component is also shown for the TD (red dash-dot line) and asymptotic (blue dashed
line) cases. The simulations used the measurement setup shown in Fig 2, with two
2mm3 fluorescent targets 7mm apart, having distinct lifetimes of 1ns and 1.5ns.

the decay amplitudes for all S-D pairs. (3) Reconstruct the yield distributions for each
lifetime component using a few time points near the rise and the peak of the DFTR.
These three steps reduce the computational complexity involved in a brute-force recon-
struction of a large temporal data set, while retaining the most complete information
possible from a TD experiment.

The question immediately arises as to the relative performance of the direct TD
and asymptotic approaches. To address this, tomography was performed on simulated
noisy data. The simulations employed the same slab geometry used in the SVD analysis
above, with two fluorescent inclusions positioned symmetrically with respect to the
medium geometry and S-D arrangement (Fig. 2) to remove any intrinsic bias due to
the point spread function. The forward data was simulated with a shot noise model,
which is characteristic of photon counting detection schemes, for three laterally placed
inclusions (Fig. 2(a)) with center-to-center separations of 7mm, 5mm and 3mm. Also
considered was the case where the inclusions had non-zero axial separation of 4mm,
with zero lateral separation (Fig. 2(b)). The inclusions had distinct lifetimes of 1ns and
1.5ns. The regularization was carried out using a Moore-Penrose inversion algorithm,
using the pre-calculated SVD matrices, U, S, V of the weight matrix Wn. Denoting the
measurement vector by Y and the image by X, the inversion takes the following typical
form for under-determined problems Y = WnX:

X = V S(S2 + αλI)−1UT y (16)

where α = max{diag(WT
n Wn)} and the regularization parameter λ is typically between

10−5 and 10−3. Three different reconstructions were performed, namely, CW, direct TD,
and asymptotic. The CW reconstructions were performed using the time integrated TD
data. The direct TD reconstructions used Eq. (14) with a set of 4 time points on the
rising edge of the DFTR, following the SVD analysis results of Fig. 3. The asymptotic TD



reconstruction was performed using the amplitudes obtained from a multi-exponential
analysis of the decay portion in Eq. 15.

The sensitivity of the reconstructed images to measurement noise was quantified by
simulating 100 data sets with noise for each S-D pair and time gate. The contrast-to-
noise ratio (CNR), and the full-width-half maximum (FWHM) were then calculated
as a function of λ. The CNR is estimated as the ratio of the peak image intensity
in a region of interest surrounding the known location of the inclusion, to the mean
standard deviation of the voxels in that region. The FWHM was estimated as the cube-
root of the total volume of the voxels within half the peak intensity. In addition, for
the lifetime based TD and asymptotic reconstructions, which provide separate yield
reconstructions η1 and η2 for the 1ns and 1.5ns lifetimes, the cross-talk X was estimated
to quantify the separability of the two inclusions based on lifetimes. If Ω1 denotes a
chosen region-of-interest around the known location of the 1ns inclusion, then X1ns =
max[η2(Ω1)]/max[η1(Ω1)]. The yield cross talk for the 1.5ns component was similarly
evaluated. The CNR vs FWHM plot is shown in Fig. 4 for the 1ns lifetime inclusion,
for the case with 7mm lateral separation between the inclusions. It is clear that the
TD reconstruction shows a dramatic improvement in the CNR and FWHM over the
asymptotic reconstruction, and an improvement over the resolution of the CW case.
The CNR improvement is evidently due to the better SNR of the peak portion of the
DFTR compared to the asymptotic tail. The FWHM improvement of the TD over CW is
due to the tomographic separation of the yield distributions for the lifetime components.
Thus, for fixed CNR, the lifetime based TD reconstruction will have superior resolution
compared to the asymptotic and CW reconstructions. However, the cross-talk, (which is
the reconstructed amplitude of the 1.5ns inclusion at the location of the 1ns inclusion)
is significantly higher for TD than the asymptotic case, and is attributable to the non-
diagonal nature of the TD portion of the forward problem in Eq. (14). We note that the
crosstalk for the asymptotic approach will depend on the separability of the lifetimes
from the multi-exponential fits of raw experimental data, an aspect that will be explored
in future work.

The effect of the crosstalk can be more clearly seen in the reconstructed tomographic
images shown in Fig. 5, where the X-Z slices of the 3-D reconstructions for all three
data sets and separations are displayed. Also shown are the plots of the yield at a fixed
depth (Z) where the yield is maximum. It should be noted that the regularization λ was
not identical for all the reconstructions but was rather determined by the condition that
log10(CNR) was near 1. This is necessary to properly account for the difference in the
noise characteristics of the different methods. (For example, CW has the best SNR, and
should thus be the least regularized.) To visualize crosstalk easily, the yield images for
the 1ns and 1.5ns components for the TD and asymptotic approaches were assigned red
and green colors in an RGB colormap of a single image. The degree of crosstalk is thus
revealed as a mixture of these two colors (e.g., yellow implies 100% crosstalk). Thus,
CW reconstructions have no lifetime information so that they are shaded in yellow. It
is clear from Fig. 5 that the TD reconstruction has superior resolution but significantly
more cross-talk than the asymptotic reconstructions, as can also be seen in the intensity
plots in the bottom panel. For small target separations, the cross talk of the TD method
proves detrimental to its accuracy, whereas the asymptotic case recovers the localizations
accurately even for 3mm separation. Thus it can be said that the direct TD approach
using optimal time points provides more precise (better-resolved) reconstructions, and is
useful when the targets are well separated, whereas the asymptotic reconstructions are
more accurate but less precise (less-resolved). In Figure 6, the reconstructions are shown
with the targets located axially, i.e., along the S-D axis. The advantage of the lifetime
based asymptotic reconstruction is even more evident in this case, as the localizations of
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Fig. 7. Illustration of the enhancement of direct TD reconstructions in the pres-
ence of lifetime contrast. The colormap scheme used is direct and reflects the actual
reconstructed yield, in contrast to that used in Figs (5) and (6). (a) Yield reconstruc-
tions with two inclusions separated by 7mm, with both having the same lifetime of
1ns and (b-c) yield reconstructions for inclusions with distinct lifetimes of 1ns and
1.5ns. (d) 1-D plot of the reconstructed yield along the X axis at the actual depth
of the inclusions, for no lifetime contrast (black) and with the inclusions having
1ns (red) and 1.5ns (green) lifetimes. (e) Dependence of cross talk for the direct
TD reconstructions on the mean lifetime. The two inclusions had a fixed lifetime
separation of 0.5ns, while the mean lifetime was varied between 0.75ns and 3.25ns.



the two lifetimes are not reproduced either for the CW or the direct TD reconstructions.
Although characterized by cross-talk, the presence of lifetime contrast enhances the

images reconstructed using direct TD data. To delineate this effect clearly, Fig. 7 shows a
comparison of the reconstructions of the two laterally placed targets using the direct TD
approach, with and without lifetime contrast between the targets. The effect of lifetime
contrast on the direct TD reconstruction is clearly seen as a significant reduction in
the point-spread-function of the reconstructed yield distributions for the two lifetimes.
Of course, this effect will depend on the difference between the fluorophore lifetimes
and the diffuse propagation time τD, which is near 0.4ns for the present simulation.
(corresponding to µa = 0.1). As the mean lifetime becomes much larger than τD, the
cross talk will also increase, diminishing the separability of the corresponding yield
distributions. This is due to the fact that the elements of the first row of the TD weight
matrix in Eq. (14) are almost identical for the early time points, when τn >> τD.
To study this quantitatively, the simulations in Fig. 7 (b) and (c) were repeated for a
range of mean lifetimes, with fixed lifetime separation of 0.5ns and the crosstalk was
estimated for each case. In Fig. 7(e), the cross talk of the direct TD approach is plotted
as a function of the mean lifetime of the inclusions, indicating the large range of lifetimes
for which direct TD reconstructions can benefit from lifetime contrast.

5 Conclusions

We have presented a theoretical formalism for TD fluorescence tomography with tur-
bid media that allows a lifetime-based reconstruction of yield distributions using the
entire TD data. Besides providing a comprehensive understanding of TD fluorescence
signals from diffuse media, a key advance of this work from the previously presented
asymptotic lifetime based tomography is an algorithm for lifetime based tomographic
separation using the peak and rise portions of the temporal diffuse fluorescence response.
The formalism is generally valid provided the intrinsic fluorescence lifetimes are revealed
in the long time decay, a condition well satisfied11–13 given the typical optical response
times of diffuse tissue and fluorophore lifetimes used in molecular imaging. This is im-
portant since the measured average lifetime on the surface can by itself provide useful
diagnostic information, without the need for tomography. This shows the potential for
lifetime sensing in diagnostic imaging and extends the application of this work to a wide
range of biomedical imaging problems.

The results presented here can be viewed as an inevitable consequence of the long
lifetime condition: The longer lived fluorescence decay effectively convolves over the
intrinsic diffuse material response, resulting in a decay tail that is separated in space
and time. This implies that for tomography with the long time data, a direct use of
multiple time points in the decay portion is redundant. The optimal approach is to
perform tomography using the amplitudes recovered from multi-exponential fits. This
result was shown to be consistent with a SVD analysis of the time-dependent Born
weight functions, which showed that the optimal time points to use in a direct TD
reconstruction are located near the peak and rise portions of the DFTR.

Tomographic reconstructions with simulated noisy data also revealed the relative
merits of optimized direct TD and the asymptotic approaches. It was found that the
direct TD and asymptotic approaches yield complementary information: The asymptotic
approach provides superior localization ability due to minimal cross-talk between the
images for multiple lifetimes, while the optimal direct TD reconstructions yield better
resolution due to superior SNR near the peak of the DFTR. Thus, when no lifetime
contrast is present in the medium, the direct TD analysis should be the method of
choice. For targets located along the S-D axis, it was shown that the asymptotic analysis
is superior to both direct TD and CW in its ability to accurately localize the targets,



provided they have different lifetimes. Axially located targets could occur for example
in small animal brain imaging, where transillumination may be the preferred geometry
when depth resolution along the various brain regions is desired.

The simulations presented here considered two distinct lifetime inclusions placed
both lateral and axial to the measurement axis. Although simplistic, this example has
highlighted key aspects of TD fluorescence tomography with lifetime contrast that can
potentially be extended to more complicated spatial distributions of lifetimes. This
work is also based on the assumption that lifetimes present in the medium are few and
discrete, or at least can be described as sharp distributions centered around a mean
lifetime. In the more general case when lifetimes are broadly distributed, a numeri-
cal inverse Laplace transform can be used to recover amplitude distributions.26 The
simulation analysis presented here was not meant to optimize for any particular TD
detection technique (e.g., wide-field time gated, time correlated detection schemes), but
was rather an attempt to explore the information content in a TD signal and to provide
a recipe for an optimal approach for TD fluorescence tomography with turbid media.
The purpose of the numerical simulations was also not to make a statement about the
absolute resolution achievable by TD methods. This quantity can be optimized using
better S-D arrangement and adjusting actual experimental conditions. Indeed, sub-mm
resolution has recently been demonstrated using CW measurements.3 Such optimization
will enhance the resolution of all three approaches viz., CW, direct TD and asymptotic,
so that the main results obtained here will not be affected.

In future work, we will attempt to extend the formalism developed here to a hybrid
model that incorporates both the direct TD and the asymptotic approaches into a sin-
gle inverse problem in a self-consistent fashion. This hybrid TD-asymptotic approach
is expected to provide optimal localization and resolution. It should be reiterated that
although a diffusive slab model was assumed for the simulations, the formalism devel-
oped here can readily incorporate Green’s functions calculated as solutions of either
the diffusion or transport equations, as appropriate, for heterogenous media with com-
plex boundaries. We are currently engaged in applying the formalism developed here to
imaging complex shaped mouse phantoms and mouse models of disease.

Optical molecular imaging can immensely benefit from the use of biochemical re-
porter probes that are not merely disease specific, but also provide specific molecular
signatures such as spectral and lifetime shifts that help isolate the disease from back-
ground tissue.2 The unique advantages of time domain technology as explored in this
work strongly motivates the development of fluorescent contrast agents that exhibit tar-
get specific lifetime shift upon binding. We also hope that this work will provide useful
guidelines for biological imaging using time domain fluorescence tomography.
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