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We model the capability of a small �6-optode� time-resolved diffuse optical tomography �DOT� system to
infer baseline absorption and reduced scattering coefficients of the tissues of the human head �scalp,
skull, and brain�. Our heterogeneous three-dimensional diffusion forward model uses tissue geometry
from segmented magnetic resonance �MR� data. Handling the inverse problem by use of Bayesian
inference and introducing a realistic noise model, we predict coefficient error bars in terms of detected
photon number and assumed model error. We demonstrate the large improvement that a MR-
segmented model can provide: 2–10% error in brain coefficients �for 2 � 106 photons, 5% model error�.
We sample from the exact posterior and show robustness to numerical model error. This opens up the
possibility of simultaneous DOT and MR for quantitative cortically constrained functional neuroimaging.
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1. Introduction

Diffuse optical tomography �DOT�1 is arousing grow-
ing interest as a noninvasive tool for neuroimaging,
both clinical2 and functional,3,4 as well as other clin-
ical applications such as breast tumor detection,5–8

tracking muscular oxygenation,9 and arthritic joint
imaging.10 By use of spectroscopy, this modality can
couple directly to hemodynamic quantities of inter-
est, measuring both total hemoglobin concentration
and oxygenation. Optical contrast can also arise
from cell-based mechanisms such as the redox state
of cytochrome-c-oxidase and in vivo contrast agents
such as fluorescent and voltage-sensitive dyes.4 By
relying on photon transport through tissue, DOT also
accesses spatial information to a depth of several
centimeters. DOT shows great promise for func-
tional neuroimaging: The advantages of functional
DOT �fDOT� include fast temporal resolution of the
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order of 10 ms and moderate spatial resolution of the
order of 1–2 cm, placing it in these two categories
somewhere between both MEG �magnetoencephalog-
raphy� and EEG �electroencephalography�, and func-
tional magnetic resonance imaging. In addition to
sensitivity to absorbing chromophores, DOT can be
sensitive to cellular scattering changes during neu-
ronal activation.4,11,12 DOT is noninvasive and non-
ionizing. The apparatus is relatively inexpensive, is
compatible with �and complementary to� other mo-
dalities allowing simultaneous imaging,13,14 is porta-
ble, is capable of continuous monitoring, and does not
require an immobile subject.

The key challenge of DOT is that of extracting
spatial maps of the optical properties �absorption co-
efficient �a and reduced scattering coefficient �s��
within a highly scattering tissue volume by coupling
multiple light sources and multiple detectors to the
surface of the skin. The available signals comprise
light intensities at each detector that are due to each
source. For each of these source–detector pairs, it is
possible to measure a dc intensity �continuous-wave
systems�, or intensity amplitude and phase �rf-
modulated systems�, or obtain the intensity distribu-
tion as a function of time of flight �time-domain
systems�. Because tissue dimensions of interest are
much larger than the photon mean free path, the
path taken by photons from source to detector is dif-
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fusive rather than straight; this is what limits the
spatial resolution of DOT. Recovery of �a�r� and
�s��r� from measured signals requires the solving of
an inverse problem, nonlinear in the optical param-
eters, and known to be ill-posed.15,16 Usually �a�r�
is measured at several wavelengths within the near-
infrared low-tissue-absorption window of 650–900
nm. From this, the known spectral absorption
curves17 of the chromophores HbR and HbO2 allow
spatial maps of �HbR� and �HbO2� �and therefore of
total hemoglobin concentration� to be constructed.

Our goal in this paper is to explore the limits of
accuracy in the measurement of baseline optical prop-
erties of the human head using a time-domain appa-
ratus when high-resolution anatomical information
from magnetic resonance �MR� is used to constrain the
optical model. Absolute cerebral oximetry and blood
volume measurement, which require baseline �abso-
lute� quantification of cortical�a, are important for the
study of stroke,18 head trauma, migraine, neonatal
ischemia,19 and brain development.20 Baseline prop-
erties are important for another reason. For DOT it
is common to use a perturbation model where signal
changes are taken to be a linear function of optical
parameter changes. This allows rapid imaging by
matrix inverse methods.15,21–23 However, one can-
not24 compute the required sensitivity functions with-
out knowing both baseline �absolute� �a and �s�. We
envisage using simultaneous MR and DOT to perform
accurate baseline measurements, followed by corti-
cally constrained fDOT imaging and simultaneous and
BOLD �blood oxygenation level dependent� fMRI.3,14

In our model the scalp, skull, brain, and cerebro-
spinal fluid �CSF� are assigned separate optical prop-
erties, assumed uniform within each tissue type, and
their three-dimensional �3-D� geometry is taken from
automatically segmented MR images. This greatly
reduces N the number of unknowns �we use N � 6,
compared with N 	 102–104 that is common in pixel-
or voxel-based representations�, making the inverse
problem much more tractable. This idea of MR-
constrained reconstruction is not new to DOT,25 cer-
tainly in two dimensions,26,27 nor to other medical
inverse problems.28,29 Note that our approach dif-
fers from the class of segmentation methods in which
tissue boundaries are themselves parameterized by
unknowns.30,31

Time-resolved intensity measurement is popular to
extract baseline properties in simple homogeneous32–34

and layered35–38 slab tissue models, in both transmis-
sion and reflection geometries. Time-of-flight infor-
mation resolves otherwise indistinguishable effects of
absorption and scattering changes.15 For example,
Kienle and Glanzmann39 use a two-layer analytic dif-
fusion model to fit for optical coefficients of in vivo arm
muscle, with the superficial fat layer thickness con-
strained by another imaging modality �in this case
ultrasound�. For the adult head, in vivo measure-
ments also have usually been analyzed with simple
analytical diffusion models, even though the internal
geometry may be poorly represented as a slab or lay-
ered slab.

To overcome these limitations, we use a numerical
forward model that can handle arbitrary 3-D tissue
geometries and optode locations in the diffusion ap-
proximation. We use this to perform model-based
fitting by nonlinear optimization.15,40,41 We use the
Bayesian paradigm for inference, giving us the full
posterior probability density function �PDF� of the
parameters �which in turn could be used to obtain the
full PDF of baseline �HbR� and �HbO2��. Bayesian
inference has been used with success in related med-
ical inverse problems.29,42–44 However, fully Bayes-
ian41,45,46 or Bayes-influenced47 applications in DOT
are less common. In contrast to most previous re-
search, we use the posterior PDF to study expected
errors �i.e., error bars� and the detailed distribution
in the parameters rather than presenting a single
best solution. We also introduce a novel realistic
noise model that captures our belief in signal reliabil-
ity at both small and large numbers of detected pho-
tons. This accounts for photon detection noise and
forward modeling errors; the latter have been ignored
in the Bayesian DOT literature thus far.

This paper is organized as follows. In Section 2
we outline the application of Bayesian inference to
our problem and introduce the general form of the
likelihood function. In Section 3 we present the
head system and the forward and noise models used
for inference and simulation of noisy experimental
signals. In Section 4 we give results showing the
accuracy of inference achievable using a homoge-
neous head model and a segmented head model. We
present achievable error bars as a function of total
collected photons and assumed model errors. We
investigate in detail the posterior distribution in the
optical parameters using a PDF sampling method
and validate our choice of posterior approximation.
We also demonstrate robustness to forward model
errors. We conclude and suggest future directions
in Section 5. Two appendices contain methodologi-
cal details that would otherwise impede the flow of
the main text.

2. Inference Framework

The Bayesian approach treats an inverse problem as
an inference problem: Our lack of knowledge about
model parameters is represented by a PDF over those
parameters. A model represented by � �for hypoth-
esis� contains unknown parameters given by the vec-
tor x 
 �x1 . . . xN� and includes a prior PDF on those
parameters p�x���. We consider how this PDF is
modified by the arrival of the experimental data
�measured signal� vector y 
 �y1 . . . yM� to give a
posterior PDF:

p�x�y, ��  p�y�x, ��p�x���, (1)

where p�y�x, �� is the likelihood defined by model �,
and the constant of proportionality depends only on
y. The posterior encodes everything we now know
about x. When we are not distinguishing between
different models, we drop the conditionality on � in
our notation.
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The relevant advantages of this framework include
the following: �1� Explicit formulation of all as-
sumptions that are present in all approaches to in-
verse problems but are not always expressed. �2�
The ill-posed nature of the inverse problem, implying
uncertainty in some parameter directions, is em-
braced and handled probabilistically. This con-
trasts with traditional approaches where this is
viewed as ‘instability’ and is therefore removed by ad
hoc regularization methods. �3� The posterior PDF
contains all confidence intervals and error correla-
tions of parameters. In the case of hemoglobin con-
centration parameters, their posterior could be used
to infer neural activation �with fitting models of
neural-hemodynamic coupling48� with more reliabil-
ity than best-fit parameter values alone. �4� Proba-
bilistic prior information, for example, from another
imaging method, can be consistently made use of,
allowing optimal use of multimodal imaging informa-
tion. �5� The Bayesian method is optimal in the
sense of giving unbiased minimum-variance estima-
tors when the likelihood and prior are correct. �6�
Complex models �with many additional, or hidden,
parameters such as amplitude calibrations49� can be
handled without the danger of overfitting that can
occur with simple cost-function minimization. �7�
Competing models �i can be ranked by their ability
to explain the data, even if they have different struc-
ture and numbers of parameters. Offsetting these
advantages is the main obstacle to use of Bayesian
methods: They can be computationally intensive
compared with more ad hoc approaches. For an in-
troduction, see the informal tutorial by MacKay50 or
other more detailed reviews.51–55

We take a forward model f�x� that encapsulates our
physical model of the DOT system. Given an optical
parameter vector x, it returns the expected signal
vector f 
 � f1 . . . fM�. We also need a noise model,
giving the probability that a signal y could be gener-
ated by the addition of noise to the noise-free signal f.
We use an independent Gaussian noise model, giving
the likelihood function

p�y�x�  exp��L�y; x��, (2)

with the negative log likelihood

L�y; x� �
1
2 �m�1

M

ln �m
2 �

1
2 �m�1

M � fm�x� � ym�
2

�m
2 .

(3)

Each noise standard deviation �m
 �� fm�x�� is given
by the same function applied to the corresponding
signal level fm�x�. The form of �� f � is discussed in
Subsection 3.D. The second term is analogous to a
�2 cost function. The constant of proportionality and
the log term arise from the normalization require-
ment � dMyp�y�x� � 1. Our inference procedure is
shown schematically in Fig. 1.

For this study we used a constant prior p�x� within
certain biologically motivated bounds on each param-
eter xn � �xn,min, xn,max� and zero outside �in other

words, a standard minimum–maximum prior�. This
reflects a lack of preference over x within these
bounds and zero belief in values outside the bounds.
Therefore the posterior is

p�x�y�  �exp��L�y; x�� xn � �xn,min, xn,max� � n
0 otherwise ,

(4)

where we do not need to know the constant of pro-
portionality. It would be simple to encode more spe-
cific prior beliefs than this simple constraint.

For N more that 2 or 3, the high dimensionality and
the fact that each evaluation of f�x� requires a time-
consuming solution of a PDF make it impossible in
general to characterize the posterior over all x.
However, for differentiable f�x�, there will always be
a sufficiently small choice of �� f � that the bulk of the
posterior probability mass will be close to the maxi-
mum a posteriori �MAP� value xMAP and will be well
approximated by a multivariate Gaussian with co-
variance matrix �MAP and mean xMAP.52 The infer-
ence task is then to locate xMAP and measure �MAP,
from which confidence intervals on each xn can be
computed. In all but Subsection 4.D we use this
approach; details are presented in Appendix A.

We note that this search for xMAP is analogous to
model-based approaches where an objective function
�cost function� L�y; x�, in our case differing from the
weighted least-squares form only by an additional log
term, is minimized by an iterative approach.15,56 In-
deed much of the machinery is in common. How-
ever, the interpretation is different: Those who use
model-based approaches are generally interested in
the single best solution41,57,58 rather than properties
of the full posterior PDF. �Often this restriction is a
practical one because of large N.�

When the posterior is significant over a region
where f�x� is no longer linearizable, the Gaussian
approximation becomes bad. In this case we use
Markov chain Monte Carlo �MCMC� sampling55 to

Fig. 1. Illustration of Bayesian inference of unknown parameters
x given the measured signal vector y. The complete model com-
prises a forward model f�x� �dotted curve� and an inference noise
model, giving the joint PDF p�y, x� that can be written as a prior
p�x� multiplied by a likelihood p�y�x�. The inference noise model
describes all measurement and model errors; here we use indepen-
dent Gaussian noise with signal-dependent width �� f �.
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generate a set of uncorrelated samples from the exact
posterior, providing a �noisy� cloudlike impression of
the full PDF. We demonstrate this more general but
computationally intensive method in Subsection 4.D.

3. Forward and Noise Model

A. Head System

We start with a human head segmentation geometry
obtained at a 1 mm by 1 mm by 1.5 mm voxel reso-
lution from a MR structural image using the tech-
nique of Dale et al.59 This data consist of an
assignment of each voxel to one of the five categories:
scalp, skull, CSF, brain, or not tissue �air�. �We did
not distinguish between gray and white matter; gray
matter will dominate the optical properties because
of the rapid decay of sensitivity with depth.� For the
subject data used, the scalp and skull thicknesses
were typical, being 5–7 and 7–8 mm, respectively, in
the relevant region of the head. Figure 2 shows our
head geometry. Unless otherwise stated, we use as
our standard optical properties for the four tissue
types the values given in Table 1. These are be-
lieved to be typical, falling within the quite wide vari-
ation of published values.33,60,61

The CSF falls into a special category. It is pre-
sumed to be approximately 102 times less scattering
and less absorbing than other tissue types and occu-

pies a much smaller volume. Its structure is convo-
luted and uneven, varying from a thin layer of
approximately 1–2 mm thickness hugging the dura,
to folds and pockets of several millimeters in thick-
ness and size, following the folds of the brain sur-
face.62 Once the CSF geometry is held fixed,
realistic biological variation in either CSF �a or �s�
causes negligible changes in the photon tranport, and
hence detected signals. For �a, this is because the
values and volume are too small to cause any signif-
icant absorption of light compared with that caused
by surrounding tissues.

For �s�, the reason is subtly different: The ex-
tremely long reduced scattering length of 1��s� � 100
mm is much longer �by a factor of the order of 5� than
maximal line-of-sight distances within the CSF void
region. This is mainly due to the folded and irreg-
ular geometry and is most likely enhanced by surface
roughness63 and the presence of vasculature in the
CSF below the MR resolution. Thus typical free
transport distances in the CSF are dominated by the
length scale of the irregular folds and vessels. We
believe that photons in the CSF pass into other highly
scattering tissue types long before the particular
value of �s� becomes relevant.

Therefore we do not try to infer CSF properties in
our segmented model, and our unknowns will consist
of �a and �s� for the remaining three tissues. We
compare two models:

• �hom: The interior of the head is assumed ho-
mogeneous, with N � 2 unknown parameters �a,hom
and �s,hom� describing a single tissue type.

• �seg: The interior of the head is segmented as
described above, with N � 6 unknown parameters
�a,scalp, �s,scalp�, �a,skull, �s,skull�, �a,brain, and �s,brain�.
Note that the CSF is present in this model but has
fixed parameters.

The unknown �or fitting� parameters were given
bounds �xn,min, xn,max� of �0.004, 0.04� mm�1 for all
absorption and �0.4, 4.0� mm�1 for all reduced scat-
tering coefficients.

B. Optodes and Detection Model

We chose to model a two-source �Ns � 2� and four-
detector �Nd � 4� fiber-coupled time-resolved system
contacting a small region of the scalp at the top of the
head. The arrangement, shown in Fig. 2, was cho-
sen to cover a range of source–detector distances of
10–36 mm. We assume that the system counts pho-
tons and bins these counts according to their arrival
time, building up a histogram of the temporal point-
spread function �TPSF�. We assume no convolution
of the TPSF because of the measurement system �i.e.,
instrument response function�, but this would be easy
to include in the forward model.

For simplicity, we assume that optode locations are
known accurately and that the system has been cal-
ibrated to provide absolute measurements of ampli-
tude and of time of flight. �We do not model the

Fig. 2. Simulated optode arrangement and placement on the
head �the face, pointing downward, is mostly hidden�. 3-D MR-
segmented head geometry is exposed by a sagittal slice. The
tissue-type color coding on this slice is, from lightest to darkest,
scalp, skull, CSF, brain.

Table 1. Standard Set of Optical Properties of Human Head Tissue
Types Used in this Studya

Tissue �a �mm�1� �a� �mm�1�

Scalp 0.0149 0.8
Skull 0.01 1.0
CSF 0.0004 0.01
Brain 0.0178 1.25

aThe tissue type brain includes gray and white matter but is
optically dominated by gray matter.
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variable attenuation that is often used7,64 to prevent
detector saturation at small optode separations.�

One TPSF is available for each of the Ns � Nd �
8 source–detector pairs. We represent each TPSF
by 18 numbers, giving the photons collected in each
of the 100-ps-wide time gates in the time-of-flight
range 0.2–2.0 ns. We found that for time of flights
below 0.2 ns, diffusion forward model errors were
too large to be useful.65 Beyond 2.0 ns, the signals
generally fall below the 1-photon level. An exam-
ple simulated signal vector y is shown in Fig. 3.
Note that our signals are presented in units of de-
tected photons.

C. Diffusion Forward Model

Photon transport in scattering media at macroscopic
scales, where interference effects can be ignored, is
described by the transport equation.15,66 In media
where �a �� �s� and length scales of interest are
much larger than 1��s�, transport can be well de-
scribed15 by the diffusion approximation �DA�:

1
�

�

�t
� � � � ����� � �a� � q, (5)

where ��r, t� is the fluence, q�r, t� is the source term,
��r� is the local diffusion constant, ��r� is the local

absorption, and ��r� is the local speed of light in the
medium. We use the good approximation67,68 � �
1��3�s�� and assume ��r� � c everywhere correspond-
ing to unity refractive index. Our segmented map of
�s� is given when we assign �s��r� � �s,tissue�r�� where
tissue�r� represents the tissue type of the voxel
within which r falls. Note that the resulting discon-
tinuities in optical properties can cause discontinui-
ties in ��, but not in the value of � itself �this would
not be the case had we allowed refractive-index
changes�. For tissue–air boundary conditions we
found the Dirichlet �� � 0� approximation to be suf-
ficiently close to the more accurate Robin boundary
condition15 because � is much smaller than the thick-
nesses of interest.

We use a finite-difference time-domain �FDTD�69

method to compute the evolution of Eq. �5�, from
which the signal expectation vector f�x� is extracted
by use of the detector locations. Details are given in
Appendix B. The method represents the smooth
function ��r, t� as discrete values on a cubical lattice
of nodes, at a sequence of time steps. We resample
the segmentation voxel map to the required lattice
resolution, in this study either 2 or 1 mm. For a
2-mm voxel size, with 3.3� 104 nodes in the required
head volume, our current FDTD method takes ap-
proximately 8 s�source �on a 1-GHz CPU� to simulate
2 ns of propagation time. We did not optimize the
forward model, and there exist refinements of FDTD
that can be much faster �see Appendix B�. Typical
error sizes at 2 mm can be judged from Fig. 9 �keep in
mind that these signals span close to 6 orders of
magnitude�.

A note is necessary to explain how we treat the
CSF. In recent years, research has been done that
shows the large fluence errors that can result when
the extremely low �s� value in voidlike regions is fed
directly into the DA.67 �These errors were measured
by comparison with transport equation solutions.�
We chose a different tactic, similar to that of Ripoll et
al.63 By giving the CSF an effective �s� for use
within the DA, we were able to approximate the phys-
ics much better than possible using the true �s�. As
discussed in Subsection 3.A, line-of-sight distances in
the CSF are small, we believe of the order of l 	 10
mm because of highly irregular geometry and vascu-
lature. We believe that the optimal DA choice
�which may vary from subject to subject� is a�s� of the
order of l�1. Our preliminary results suggest that
the fluence field is not sensitive to the exact �s� cho-
sen when the full 3-D MR head geometry is modeled.
In contrast, most previous comparisons have used
idealized two-dimensional CSF geometries with long
lines of sight60,67,70 or two-dimensional models taken
from a single MR slice.67 In this paper we fix �s,CSF�
� 0.4 mm�1. The largeness of this choice is in part
influenced by numerical efficiency: The CPU time
for our current FDTD scales inversely with the small-
est �s� in the system, which is always �s,CSF� in our
case.

Fig. 3. Signals and noise models. �a� Typical signal expectation
vector f 
 � fm� for m � 1 . . . M, corresponding to Np � 1.1 � 106

detected photons, with error bars representing the noise standard
deviation � used for inference. The eight time courses correspond
to the interval 0.2–2.0 ns and are labeled according to source and
detector number. The 1 photon level is shown by the dashed line;
the level for crossover to fractional-error-dominated noise at 1��2 is
shown by the dotted line for � � 0.05. �b� The solid line is the
inference noise �� f � given in Eq. �6�, and the dashed–dotted line is
the simulated experimental noise �sim� f � given in Eq. �7�, plotted
horizontally to share the same vertical scale as �a�. �c� A simu-
lated noisy signal vector y generated by the addition of Gaussian
noise of size �sim� f � to the expectation f on same horizontal axis as
�a�. �d� The residual �m �in standard deviation units, see Eq. A�3��
that would result from the y and f shown on same horizontal axis
as �a�.
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D. Noise Model for Inference

The forward model provides the signal expectation
value vector f�x�. Bayesian inverse methods always
require a noise model, which captures our uncertain-
ties about the difference between the numerically
generated f�x� and the real-world signals y, given
that the parameters x were actually correct.

Recall that in Eq. �3� we assigned Gaussian distri-
butions to each of the components m � 1 . . . M inde-
pendently, each with a mean fm and a standard
deviation �� fm�. The Gaussian approximation to
the Poisson photon detection statistics71 would yield
�2� f � � f. Remember that signal units are in �effec-
tive� photons per time gate. This approximation is
good for f �� 1, becoming bad �especially in the tails�
as f approaches 1. To handle sensibly the case f� 1,
we place a lower limit of 1 on �. �This limit could be
increased to account for additive electronic noise.�

However, there is a problem at large signals: If
some fm is, say, 106, giving �m � 103, then we cannot
be expected to believe that the fractional error �m�fm,
and therefore our trust in our forward model’s close-
ness to reality, is 0.1%. Rather we choose a fraction
� that is a lower limit on our fractional error and
takes account of

�1� modeling of physics of photon migration in a
given tissue geometry �e.g., transport corrections to
the DA�;
�2� deviations from the assumption of uniform op-

tical properties within a given tissue type;
�3� incorrect tissue-type assignments from auto-

matic MR segmentation; and
�4� the accuracy with which absolute amplitude

�and time offset� calibration can be carried out, in-
cluding effects of optode–skin coupling variations
that are due to, e.g., skin pigmentation.

We typically choose � � 0.05–0.2, corresponding to a
5%–20% model and calibration error.

Combining the above, the noise level �� f � is a
piecewise power law:

�� f � � �1, f � 1
f 1�2, 1 � f � 1��2

�f, f � 1��2
. (6)

This is shown by the solid line in Fig. 3�b�. Typically
the peaks in f are fractional-error dominated,
whereas the tails are Poisson statistics dominated.

E. Simulating Experimental Signals

In this proof-of-concept study, we generate simulated
experimental signals using numerical forward mod-
els of the same type as used for the inference �inverse�
problem. Given a true optical parameter vector x�0�,
we generate a noise-free signal expectation vector
f�x�0��, to which we apply a simulated noise model.

Our simulated noise is identical to our inference
noise �as described in Subsection 3.D�, except it in-
cludes only the detection noise component. We do
not explicitly add noise to simulate model error;

rather in Subsection 4.E we investigate the effects of
model error by changing the forward model used to
calculate f�x�0��. This yields the simulated noise
level

�sim� f � � �1, f � 1
f 1�2, f � 1 . (7)

This is shown by the dashed–dotted line in Fig. 3�b�.
Note that the difference between simulated and in-
ference noise models manifests itself in Fig. 3�d� as a
residual �m �see Eq. �A3��, which has a variance ��1
for the m values where fm �� 1��2.

The recipe to simulate experimental signals is

ym � max� fm�x0� � nm, 0�, m � 1 . . . M, (8)

where each nm is independently sampled from a uni-
variate Gaussian distribution with zero mean and
variance �sim

2� fm�x0��. The maximum value opera-
tion removes unphysical negative signals.

4. Results and Discussion

A. Homogeneous versus Segmented Head Fit

We are interested in finding out what improvement is
possible in fitting baseline optical parameters when
anatomical segmentation information becomes avail-
able. Therefore in this subsection we compare the
models �hom and �seg in their ability to infer these
parameters, using simulated data also generated
from �hom or �seg. We choose a total detected pho-
ton number �which includes both sources�

Np ��
m�1

M

ym (9)

at approximately 2� 106, typical for photon-counting
DOT systems. As we vary the head optical proper-
ties, we decided to hold the collection time constant
rather than fix Np. Note that some advantage, in
terms of smaller Np values, could be gained if vari-
able detector attenuation64 were used. �Figure cap-
tions 4–7 and 10 give the Np range for each
experiment.� In this subsection we fix � � 0.05 and
use a 2-mm forward model lattice. Recall that all
simulated signals include realistic detection noise.

1. Homogeneous–Homogeneous Fit
Using signals from �hom, we fit using �hom and sweep
the true optical parameters. The results are pre-
sented in Fig. 4. This shows that if the head were
indeed homogeneous, then accurate inference of its
baseline optical parameters would be possible. The
error bars �representing the expected measurement
error of the parameters� are 0.5% or less. The true
values fall within, or just outside, the error bars.

2. Segmented–Homogeneous Fit
Using signals from the more realistic �seg, we fit
using �hom �see Fig. 5�. This shows that the homo-
geneous model does a poor job of measuring the
brain’s properties: Changes in absorption are only
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20% of the true change and for scattering are only 5%.
This is due to detected photons spending a large frac-
tion of time in the scalp and skull layers. To take
this into account we also compare against local
volume-averaged properties �dashed lines in Fig. 5�;
as expected, the homogeneous model reflects these
better than the brain’s properties. However, there
are two major failures of the homogeneous model:
cross talk and nonlinearity. Neither of these fail-
ures can be compensated for by any �linear� volume-
averaging correction. The absorption and scattering
cross talk dominates the fitted �s,hom�. �There is of
course large cross talk with scalp and skull parame-
ters, too, which we do not plot.� The tracking is
highly nonlinear, meaning that even relative changes
in brain parameters could not be quantitatively as-
sessed. Note that �hom is a more physically accu-
rate model than the homogeneous semi-infinite slab
model commonly used to fit background properties
because it incorporates the correct head surface
shape. The fact that the true values are hundreds of
standard deviations outside the error bars implies
that the inference noise model grossly underrepre-
sents the large true model errors.

3. Segmented–Segmented Model
We now fit these same �seg signals with the �seg
model �see Fig. 6�. Measurement errors are 2–2.5%

Fig. 4. Tracking of inferred optical parameters of a homogeneous
head model by use of noisy signals derived from the same model.
�a� and �b� The effect that a change in the true absorption �a,hom

�0�

has on inferred�a,hom and�s,hom�, respectively. The range of total
detected photons Np is from 3.4 � 106 at the smallest �a,hom

�0� to
3.6 � 105 at the largest. �c� and �d� Same as �a� and �b� except for
a change of the true reduced scattering ��s,hom

�0� over which Np varies
from 1.8 � 106 to 3.5 � 105. The error bars show �1� about the
MAP �best-guess� value for the �marginal� posterior distribution of
inferred values, computed by the methods of Appendix A. For
comparison, the thin lines show the true values. The fractional
model error is � � 0.05.

Fig. 5. Same as Fig. 4, except the noisy signals are generated by
use of the segmented forward model, sweeping over a range of
brain parameters. �The scalp and skull are fixed at the standard
parameters given in Table 1.� The inference is still performed by
the homogeneous model. The dashed lines show true parameters
volume averaged over a depth of 17 mm. �We chose a constant
effective thickness of 4 mm for the brain’s volume contribution, a
typical time-independent fluence decay length in a semi-infinite
brain.� Np spans 2.4 � 106 to 2.1 � 106 over the range of �a,brain

�0�

and 2.1� 106 to 2.2� 106 over the range of��s,brain
�0� . The fractional

model error is still � � 0.05.

Fig. 6. Tracking of inferred brain optical parameters in a seg-
mented model by use of noisy signals also derived from the seg-
mented model. �The scalp and skull are fixed at the standard
parameters given in Table 1, and the inferred scalp and skull
parameters are not shown.� Np and � are the same as for Fig. 5.
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in �a,brain and 5–10% in �s,brain� across the complete
range of biologically relevant true parameter values.
The linearity is excellent, and cross talk causes a
0.5% change in �a,brain and a 5% change in �s,brain�
across the parameter range. Importantly, although
error bars are larger than with �hom, true values
always fall within the error bars. This shows that
we believe reliable measurements of the brain’s base-
line properties can be made when anatomical infor-
mation is provided.

Recalling that we are simultaneously fitting for
scalp, skull, and brain parameters, we can ask how
accurately the scalp and skull have been character-
ized. At the standard values of Table 1, expected er-
rors are approximately 8% for �a,scalp, 3% for �s,scalp�,
4% for �a,skull, and 2% for �s,skull�.

We believe that in this fitting �nonimaging� exam-
ple, the total photon number Np will be more impor-
tant to determine accuracy than the number of
sources and detectors. Only when N is increased, as
in an imaging application, or when unknown optode
calibration parameters are included, do we expect
that an increase in the number of sources and detec-
tors will significantly improve accuracy. Note that
generally to optimize the optode location and num-
ber, and TPSF parametrization, it would be impor-
tant to know which components m of the signal y are
most important to determine error-bar size for
�a,brain and �s,brain�. Within the Gaussian posterior
approximation, all this information is contained in
the singular value decomposition of �J �defined in Eq.
�A6��. We will present these results in future pub-
lications.

B. Systematic Deviations

In this subsection we discuss a detail of the inference
procedure. �This can be skipped on first reading.�

The reason why there are systematic deviations
between MAP and true parameter values in Figs. 4
and 6 is not immediately intuitive. One might sus-
pect that, because exactly the same models are used
for simulation as for inference, zero error would re-
sult, averaging over the simulated noise. This effect
is worth discussing further. In essence the system-
atic difference comes from the mismatch between the
simulated and the inference noise models: �sim� f �
� �� f � for large f �see Eqs. �7� and �6��. If the infer-
ence noise model is correct �i.e., reflects the popula-
tion from which noisy signals are sampled�, Bayesian
inference provides unbiased estimators52 �in this
case, xMAP values�. We have checked this: If
�sim� f � � �� f � for all f, then the deviations change
from systematic to random. However, model error is
not random; we prefer to investigate its effect in par-
ticular cases of realistic model error �see Subsection
4.E�.

Mathematically, the systematic deviation can be
seen to arise from the weak x dependence of �� f �x��
�giving �� terms in Eq. �A2��. It would be misleading
to attempt to correct this deviation as this would be
tantamount to benefiting from more information
about the system than we have formalized in the

noise model of Eqs. �3� and �6�. The deviation is
always of a size consistent with the error bars; the
correct way to reduce this deviation is to build more
accurate forward models whose smaller known model
error we can then use for inference.

C. Noise Model Effect on Brain Parameter Error Bars

It is natural to wonder what the effects of the number
of detected photons Np and the fractional model error
� are on the measurement accuracy. This allows the
experiment designer to know in advance the detec-
tion time needed to reach a certain expected error in
brain optical properties. In Fig. 7 we plot contours
of expected percentage error in the two brain param-
eters across the Np–� plane. We chose the standard
set of optical parameters using �seg for inference on
a noisy signal from the same segmented model. The
results show that, even if we assume a fractional
model error as large as � � 0.2, expected errors on
brain parameters can be 5% for absorption and 15–
20% for reduced scattering.

To generate Fig. 7, it would have been a costly
operation to find a solution for �MAP if we located
xMAP for each point in the plane. Instead we observe
that, because f�x� is locally linear, its Jacobean J at
xMAP will be similar to that at x�0�, when xMAP is close
to x�0�. �In our case, it becomes a bad approximation

Fig. 7. Expected percentage marginal error as a function of noise
model Np �total detected photons� and � �fractional model error� for
parameters �a� �a,brain and �b� �s,brain�. The standard set of optical
properties are used for inference with �seg and simulated noisy
signals from the same model. Note that the contour lines bend
quite sharply at the transition from Poisson-statistics-limited error
�lower left� to model-limited error �upper right�.
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only when marginal expected errors are greater than
roughly 20%, when nonlinearity of f�x� becomes rel-
evant.� Therefore we can use J measured once at
x�0� to approximate �MAP for any noise model param-
eters, according to approximation �A5� and Eqs. �A6�
and �A7�. This procedure makes investigation of the
noise model a rapid process.

D. Visualization of Full Posterior Distribution

In Subsection 4.A, for inference with �seg, the error
bars �marginal expected errors� in the six parameters
were of the same order of magnitude, 2–10%. How-
ever, the hyperellipsoid defining the full posterior is
actually narrow in some directions; these directions
are not aligned with the parameter axes. The ratio
of the largest to smallest eigenvalue of �MAP is 3 �
103, implying that the shortest principal axis is only
approximately 2% of the longest. The distribution is
in fact pancakelike. This phenomenon of both well-
constrained and poorly constrained parameter direc-
tions is a feature of ill-posed inverse problems.

Combined with the nonlinear nature of f�x�, this
gives us some motivation to be suspicious of a Gauss-
ian approximation to the posterior. Figure 8 shows
that, even when our posterior is much wider �5% in
�a,brain and 14% in �s,brain��, the Gaussian approxi-
mations to the marginal distributions are adequate
and would give adequate confidence intervals on each
xn. However, the non-Gaussian nature has become
relevant in the tails of the distribution �e.g., at large
�s,brain�, Fig. 8�i��. We generated the samples from
the true posterior by MCMC using the Metropolis
method55 with the stepping distribution chosen to be
uniform within a hyperellipsoid of shape given by the
Hessian matrix �approximation �A5��. By optimiz-
ing the hyperellipsoid size, we could extract one in-
dependent sample from the Markov chain roughly
every 40 forward model evaluations. The total cloud
took 20 h of CPU time to generate. Faster MCMC
methods exist.55

Note that in Fig. 8 the conditional distributions
�i.e., slices through the posterior; conditional distri-
butions are much easier to generate than true mar-
ginal distributions� do a poor job of telling us the
width of the marginal distributions. This results
from the pancakelike nature of the PDF.

E. Robustness to Forward Model Error

If we run our forward model at a higher lattice res-
olution, we can generate simulated signals y that are
more accurate, given the DA physics and the tissue
segmentation model. In this way we can see how
the inference procedure �based on a lower lattice res-
olution� handles realistic model error, which is highly
correlated. In other words, we avoid committing the
inverse crime of using identical forward and inverse
models, of which we were guilty of in Subsection 4.A.

In Fig. 9�a� we show that a change from a 2-mm to
a 1-mm lattice voxel size in the forward model causes
changes of roughly 20%. Most are smaller, and
some are much larger, approaching 50% at early
times. This latter early-time error is due to the non-

zero depth below the surface at which the optode
couples to the fluence gradient �see Appendix B�.
The smaller late-time error is due to the voxelated
�rough� surface representation local to each optode.

We perform inference using the usual 2-mm lattice
model �seg and the choice of � � 0.2 in the inference
noise model, motivated by the 20% observed model
error. We increase the collection time to yield
roughly 1.2 � 107 photons. We find �Fig. 9�b�� that
the variance of the resulting normalized residuals �m
�see Eq. �A3�� is close to 1, indicating a rough match
of the noise model to true forward model errors.

Figure 10 shows the results of sweeping the true
brain optical parameters. The accuracy of measure-
ment of �a,brain is approximately 4% and for �s,brain� it
is 10–20%. The linearity is good, and maximum
cross talk is 6% �only significantly affecting �s,brain��.
The systematic errors are certainly larger than those
achieved in the more artificial situation shown in Fig.
6; however, the error bar still does a good job of in-
dicating the size of this error. Therefore model error
is being handled in a robust fashion.

Clearly, incorporating the fact that model errors

Fig. 8. Views of the posterior distribution p�x�y, �seg�with signals
y from the same forward model �2-mm lattice� by use of our stan-
dard optical parameters given in Table 1. Only 3.2� 105 photons
were collected, and � � 0.1. The three columns of graphs show the
�a–�s� plane separately for each tissue type. �a�, �b�, and �c� show
true x0 �dot�, xMAP �cross�, and the marginal PDF as an elliptical
contour enclosing 63% of the probability mass in the Gaussian
posterior approximation. The contour is at e�1 times the peak
density. �d�, �e�, and �f � show for comparison, on the same axes,
conditional distributions �slices through the PDF with other com-
ponents of x fixed at the xMAP values� at contours of e�1 �shown
with thicker line�, e�3, e�10, e�30, e�100, e�300, and e�1000 times the
peak density. �g�, �h�, and �i� show 123 independent samples from
the posterior obtained by MCMC. This displays the true mar-
ginal posterior PDF as a density cloud.
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are large only at early times would be advantageous.
We discuss ideas for model error improvement in
Section 5.

5. Conclusion

We have demonstrated that an accurate determina-
tion of the baseline optical properties �both absorp-
tion �a and scattering �s�� of the human head could

be made using a small time-resolved DOT apparatus
with high-resolution 3-D anatomical information
from MR imaging. We use an automatic MR seg-
mentation into the basic tissue types �scalp, skull,
CSF, and brain� and fit for �a and �s� of scalp, skull,
and brain �holding the CSF fixed�, assuming each
tissue is optically homogeneous. We perform simul-
taneous nonlinear model-based fitting �inference� of
the six optical parameters and demonstrate the su-
periority of this approach over a homogeneous head
model in the biologically relevant parameter ranges
0.005 mm�1 � �a,brain � 0.025 mm�1 and 0.5 mm�1

��s,brain� � 2.0 mm�1. We emphasize that even the
homogeneous head model is more realistic than the
commonly used homogeneous semi-infinite slab
model. For our research we use numerically simu-
lated noisy measured signals. Our finite-difference
forward model can simulate the time-domain diffu-
sion approximation in arbitrary 3-D head geometries;
we use approximately 3 � 104 nodes. We believe
that this approximation is adequate given the convo-
luted CSF geometry, although this an important area
of active research for us and others in the field. Fit-
ting takes approximately 10 min on a standard
1-GHz CPU.

We employ a realistic but novel Gaussian noise
model incorporating both shot noise, parametrized by
the total detected photons Np, and model error �in-
cluding calibration� parametrized by a fraction �. In
the Bayesian inference framework, with a flat prior,
we find the baseline measurement accuracy �error
bars� by examining the marginal width of the poste-
rior distribution for each parameter. We note that
all previous demonstrations of Bayesian DOT have
either been in two dimensions or simple cuboid ge-
ometries and have not considered more than the sin-
gle best-fit �MAP� solution. We find that 2 � 106

detected photons yield a 2.5% error bar in �a,brain and
5–10% in �s,brain�, assuming model errors of 5%.
The cross talk between surface layers and the cortex,
and between �a and �s�, present with the homoge-
neous model is eliminated.

By using a finer computational lattice, we tested a
realistic forward model error and found that, even
with a 20% model error, the error bars can still be
adequate: 4% in �a,brain and 10–20% in �s,brain� for
Np � 107. �All Np values could be reduced experi-
mentally by use of per-detector variable attenuation.�
Robustness is demonstrated by the fact that error
bars always reflect the size of the true deviations.
We have also demonstrated the power of MCMC for
posterior sampling when the Gaussian MAP approx-
imation is no longer good.

The Bayesian framework allows, without fuss, use
of improved noise models. We believe it will be im-
portant to encode into such models both measure-
ment properties of the DOT apparatus and physical
and numerical human head forward model errors.
Noise models should also provide robustness to mea-
surement outliers by replacing the Gaussian with a
heavier-tailed distribution. In future studies we
plan to include unknown optode amplitude calibra-

Fig. 9. �a� Approximate error of the 2-mm lattice forward model
signal expectation, expressed as a ratio against its �more accurate�
1-mm lattice equivalent. The standard set of optical properties is
used for the segmented head model. �b� The normalized residual
�m, which results when we compare the 1-mm lattice signal with
the 2-mm lattice signal using noise model parameters yp � 10�4

and � � 0.2.

Fig. 10. Inference by use of the 2-mm lattice forward model �seg

on simulated noisy signals generated from a 1-mm lattice forward
model. The detection time was larger than in Fig. 6, with Np

spanning 1.18 � 107 to 1.35 � 107 over the range of �a,brain
�0� and

��s,brain
�0� . The fractional model error of � � 0.2 was chosen to reflect

our knowledge of the 2-mm lattice model errors.
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tion parameters,49 which can then be marginalized
over naturally within the Bayesian framework. �We
note that Oh et al.45 have recently simulated Bayes-
ian optode calibration in a 3-D cubical geometry, at
least in terms of a single MAP solution, with success.�
By increasing the number of parameters from 6 to 102

or more, our Bayesian approach could give error bars
and correlations of voxel parameters in a true imag-
ing �tomography� context, something we intend to
address in future research. In general the value of
the Bayesian paradigm in neuroimaging lies with its
statistical roots in what is becoming an increasingly
statistical practice. On a lower level, information
from other modalities can optimally be included as a
prior. On a higher level, the full posterior PDF, con-
taining all error correlations, could be fed to dynam-
ical models of neural activation.

Our study provides realistic expectations for
achievable baseline accuracy in human hemody-
namic parameters. An experimental implementa-
tion could have rapid clinical benefit in the stroke and
neonatal fields. Our research also expands the pos-
sibility of simultaneous DOT and MR for functional
neuroimaging: Quantitative optical imaging of he-
modynamic changes will require accurate baseline
properties, which can best be achieved through the
type of anatomical modeling presented here.

Appendix A: Finding the Gaussian Approximation to
the Posterior

Maximizing relation �4� is equivalent to minimizing
L�y; x� over x within the given bounds. We rescale
the components of x to have the same typical size by
multiplying absorption coefficients by a constant C�
102, given, for example, in the fully segmented case x

 �C�a,scalp, �s,scalp�, C�a,skull, C�a,brain, �s,brain��.
This elementary preconditioning enhances the per-
formance of the inference methods presented below.

Because of the nature of the numerical solution of
the forward model �Appendix B�, the dependence of L
on x is not completely smooth or differentiable. This
jitter in L, although estimated to be on a scale of less
than 10�3, means that care has to be taken in the
choice of an optimization algorithm. We found New-
ton’s method72 most successful, the ith iteration step
being

xi 1 � xi � H�1�xi� � �L�xi�, (A1)

where the exact gradient of L has components

��L�x��n ��
m�1

M Jmn

�m
��m � �1 � �m

2��m��, (A2)

which follows from Eq. �3�. Here the normalized re-
sidual is

�m �
fm�x� � ym

�m
, (A3)

and the Jacobean �Frechet� derivative of the forward
model is Jmn 
 �fm��xn. The symbol �m� is an ab-
breviation for d��df �fm

, which in our case we can find

in closed form by differentiating Eq. �6�. All quan-
tities are evaluated at x. Because the number of
unknowns N is small, we evaluate J using crude
finite differencing along the axes in x space:

Jmn�x� �
1
!x
� fm�x � !xen� � fm�x��, (A4)

where en is the nth unit vector, requiring N  1
forward evaluations. With adjoint differentiation it
would be possible to obtain J with an effort roughly
equal to one forward evaluation40,41,57; this would be
worthwhile only if N were larger.

It is simple and efficient to use an approximate
Hessian matrix,

H � Happrox � �JT �J, (A5)

where

�Jmn �
��m

�xn
�

Jmn

�m
�1 � �m�m�� (A6)

is the Jacobean of the normalized residual. This re-
quires no extra function evaluations to be performed.
The stopping criterion for locating xMAP is �xi 1 � xi�
� � where � is of the order of 10�3. The initial value
x1 is chosen randomly in the optical parameter range
of interest and has no effect on the xMAP found. �Oc-
casionally if xMAP is very far from x1, then an initial
rough Nelder–Mead simplex optimization72 is re-
quired.� Typically 3–8-newton iterations are re-
quired. Given that a 2-mm lattice evaluation of f�x�
takes approximately 16 s, this means 5–15 min are
required to find xMAP and �MAP.

Because the derivatives of log terms from Eq. �3�
are small, the above form of the Hessian usually
agrees to within a few percent with a numerically
estimated Hessian found by means of finite differenc-
ing N�N  1��2 samples of L in x space. We have
experimented with procedures for this estimation,
but the combination of jitter on L, the fact that L is
orders of magnitude more sensitive in some direc-
tions than others �i.e., the Hessian is close to singu-
lar�, and the nonlinearity of f�x� and hence L�x�
causes a tendency for large errors and nonpositive
definiteness. Nothing as reliable as the above �guar-
anteed positive definite� approximate Hessian form
has been found. Therefore our multivariate Gauss-
ian covariance matrix estimate is

�MAP � Happrox
� 1. (A7)

To calculate confidence intervals on single param-
eters, and the lower-dimensional marginal Gaussian
distributions shown in Figs. 8�a�–8�c�, we need the
recipe for marginalizing a multivariate Gaussian
onto a subspace. We split x into subspaces a and b.
By reordering �xn�, without loss of generality, this can
be written as xT 
 �aT, bT�. Any covariance � in x
space can then be written in block form:

� � ��aa �ab

�ab
T �bb

� . (A8)
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By analytically integrating over b, the inverse covari-
ance of the marginal distribution in subspace a can be
shown to be73

��a�
�1 � �aa � �ab�bb

�1�ab
T. (A9)

In the case where a has a single dimension a 
 xn,
then ��a� 
 �xn

is a scalar giving the marginal stan-
dard deviation of parameter xn.

Appendix B: Finite-Difference Method for the Diffusion
Equation

Here we provide details of the method used to ap-
proximate the time evolution of the 3-D parabolic of
Eq. �5� with constant ��r� � c. There are many is-
sues, most of which we discuss only cursorily.

Because q�r, t� is nonzero only at t � 0, this is a
initial value problem, and we use a FDTD method
with a regular cubical lattice of nodes with spacing"x
and a time step "t. We chose this over finite-
element methods for simplicity and the fact that our
segmentation map is also based on a cuboid lattice.
We chose a node-based representation of fluence �
and discretized the spatial derivative at node location
ri, j,k in the standard fashion72,74,75:

�

�x
�
��

�x
�

ri, j,k

�
�i 

1
2, j,k��i 1, j,k � �i, j,k� � �i�

1
2, j,k��i, j,k � �i � 1, j,k�

"x2 ,

(B1)
with equivalent expressions in the y and z direc-
tions, where i, j, k are integer node labels in x, y, z
axes, respectively. This is second-order accurate
in "x. The material property � is voxel based. We
locally average four voxels to give edge-based values
�i�1�2, j,k.

The initial fluence q�r, 0� is discontinuous, compris-
ing a delta function �or convolved delta function� near
the source; we found that Crank–Nicolson-type
O�"t2� methods do not handle the nonsmooth fluence
well because of the slow decay of nonphysical oscilla-
tory modes excited by the discontinuity. We note
that these methods �specifically the alternating-
direction implicit method� are commonly
used15,40,41,57 for simulation of Eq. �5� without men-
tion of this issue. Instead we use the explicit Euler
O�"t� method, which is less efficient and requires
"t � "x2��6�c� at every point in the lattice for sta-
bility.75 Evolution is performed by repeated sparse
matrix multiplication. Our computational effort is
proportional to the number of nodes times the num-
ber of time steps: This scales like 1��"x3"t�, which
is proportional to 1��"x5�s,min�� where �s,min� is the
smallest value of �s� in the system. Changing "x
from 2 to 1 mm therefore increases the effort by a
factor of 32. Implicit methods would be more effi-
cient; we are developing an optimal way to combine
explicit and Douglas–Gunn75 evolution to handle the
discontinuous initial condition.

We emulated Dirichlet boundary conditions by re-
moving degrees of freedom �i, j,k for nodes on or out-
side the tissue–air boundary. �The issue of FDTD
stability with the more correct Robin boundary con-
ditions is an area for research; we found resulting
differences to be slight in our simulations for reasons
given in Subsection 3.C.� We simulate only a frac-
tion of the human head volume, corresponding to
approximately 3 � 104 nodes for "x � 2 mm. De-
tector signal relative changes were less than 1% com-
pared with the full head simulation of approximately
6 � 105 nodes.

To inject and detect fluence signals, we developed
lattice versions of standard optode models that couple
to the fluence normal gradient n̂ � �� at the tissue–air
boundary.15 To reduce dependence on the detailed
local voxel representation of the head surface re-
quired that each optode be coupled to the fluence
derivative in the beam direction, averaged over a
beam of 2-mm radius at the rather large fixed depth
of 1.5 voxels below the local surface along the beam
direction. This large depth is responsible for the
large early-time errors in Fig. 9, but is necessary to
maximize immunity to voxelated surface roughness.
The source optodes give q�r, 0�; the time-dependent
detector signals are then integrated over the time
gates to give the components of the signal expectation
vector f�x�. Note that this gradient-based source
model is equivalent to more usual point-source mod-
els, but is more immune to voxelated surface rough-
ness. Exploration of other optode models is an area
for future research.

The procedure was validated against known ana-
lytic semi-infinite slab solutions ��5% errors beyond
200 ps� and against a Monte Carlo calculation of a
heterogeneous cuboid containing an absorbing and
scattering inclusion whose nearest approach to the
surface was as close as 6 mm �	20% errors�. We
reserve validation against Monte Carlo in the full
head model for a future publication.
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