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We introduce a modified Tikhonov regularization method to include three-dimensional x-ray mammog-
raphy as a prior in the diffuse optical tomography reconstruction. With simulations we show that the
optical image reconstruction resolution and contrast are improved by implementing this x-ray-guided
spatial constraint. We suggest an approach to find the optimal regularization parameters. The pre-
sented preliminary clinical result indicates the utility of the method. © 2003 Optical Society of America
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1. Introduction

The development of diffuse optical tomography
�DOT� to obtain three-dimensional �3-D� images of
the spatially varying absorption and scattering prop-
erties of highly scattering media probed by near in-
frared light has advanced rapidly during the past
decade.1–3 Its clinical application to imaging breast
cancer and brain pathology and activity 4–8 is begin-
ning to show more promise as preliminary clinical
results begin to demonstrate the feasibility of extract-
ing physiologically relevant information from the im-
ages reconstructed from the diffuse optical
measurements. As the inverse imaging problem for
DOT is ill-conditioned and generally underdeter-
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mined, the image quality is compromised by poor
spatial resolution and sensitivity to measurement
noise.2 This can be improved modestly by optimiza-
tion of the geometry and number of measurements,9
but significant improvement will be obtained by in-
cluding prior information in the image reconstruc-
tion.

Previously researchers have tried different ways to
combine a priori structural information from mag-
netic resonance imaging �MRI�10,11 or ultrasound
�US� 12 into the DOT reconstruction procedure. The
most straightforward way is to assume that optical
perturbation comes mostly from the region of interest
�ROI� shown in the US; MRI, or x-ray structural im-
ages. In this case, the DOT image reconstruction is
limited just to the ROI, which makes for a particu-
larly simple imaging problem since the sensitivity
matrix needs to be calculated only over this small
area.13 A second method divides the whole medium
into different types of tissue �fat, glandular tissue,
tumor, etc�, and each tissue type is homogeneous and
has its own optical properties.13 In this way the
number of unknowns is greatly reduced and the
speed of the image reconstruction is increased. Both
methods have the disadvantage that the geometric
assumptions are too rigidly enforced in the DOT im-
age formation process. Specifically, errors in the
boundaries identified by x-ray, MRI, or US lead to
strongly biased results in the resulting DOT image.

Motivated by this shortcoming, we describe an al-
ternative approach in which the contrast seen in the
MRI, x-ray, or US images are assumed to be propor-
tional to the DOT contrast. A linear least-squares
type of DOT image formation problem is then posed
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in which the cost function comprises two terms: the
normal data residual term and a second term that
encompasses this structural information. The ad-
vantage of this method is that one can adjust the
influence of the structural information by appropri-
ately weighting the structural component of the cost
function.

The key challenge with our method is the develop-
ment of a useful approach for choosing multiple op-
timal regularization parameters. Methods for
space-varying regularization have been considered in
a number of contexts in the recent past including
DOT14 and geophysical exploration.15 Both meth-
ods are appropriate for problems in which the param-
eter is smoothly varied over a region of space. Our
method is a bit different because we wish to choose
one parameter for the ROI and a second for the rest
of space: This multiple regularization parameter
problem is not well studied; see, e.g., Ref. 16 for an
overview. Here we explore a hybrid method that
combines the L-curve approach for finding one pa-
rameter with a signal-to-noise ratio �SNR�-type of
maximization for the second.

In Section 2 we present a formulation for imple-
menting this prior spatial constraint into the DOT
problem. In Sections 3, 4, and 5 we present simula-
tion results that indicate the utility of this spatial
constraint and the methodology for choosing optimal
regularization parameters. Finally, in Section 6 we
demonstrate the use of the method on simultaneously
acquired clinical 3-D x-ray mammography and opti-
cal breast imaging data. We believe that this mul-
timodality approach will allow DOT to enter into the
screening and diagnostic breast imaging arena by
allowing functional �provided by the optical absorp-
tion�scattering spectroscopy� interpretation of the
x-ray structural images, potentially leading to im-
proved sensitivity and specificity over x-ray alone.
Our simulation results show that the contrast and
resolution of diffuse optical images could be improved
in the presence of high noise given the soft structural
constraint provided by a 3-D x-ray mammogram.

2. Theory

The formulation of the forward and inverse problem
for DOT is well documented in the literature.2,13

The soft constraint is incorporated into the linearized
DOT problem through minimization of the objective
function f �x�:

f �x� � �y � Ax�2 � �1��I � S�x�2 � �2�Sx�2. (1)

The optical image to be reconstructed is indicated by
x, the system matrix is given by A, which is the
projection from the image domain to the measure-
ment domain; y is a vector of the optical measure-
ment data; I is the identity matrix; and S is a
diagonal matrix, the diagonal of which describes the
hypothesized support of the tumor as indicated by the
x-ray image. More specifically, in discrete form, the
ith element of the diagonal is a 1 if the ith voxel is
identified as part of the tumor by the x-ray image and

0 otherwise. �1 and �2 are the two regularization
parameters that control the degree of regularization
in the background and lesion, respectively. This ob-
jective function has three separate terms: the resid-
ual between the optical measurement and the
theoretical estimate of the measurement, the norm of
the image whose pixels are not selected by a struc-
tural�spatial prior and thus are suspected of having
weak optical contrast �i.e., �1 is large�, and the norm
of the image whose pixels are selected by the struc-
tural prior and thus are suspected of having strong
optical contrast �i.e., �2 is smaller�. Note that, if �2
is set equal to �1, the formulation is reduced to the
conventional Tikhonov regularization scheme.

The minimization of Eq. �1� is given by

x � �ATA � I��r���1ATy. (2)

In the conventional Tikhonov regularization scheme,
� is a scalar. Here, ��r� is allowed to vary spatially
across the pixels of the image and is derived from the
�1 and �2 in Eq. �1�. This type of spatial regulariza-
tion for DOT was first introduced by Arridge and
Sehueiger17 and elaborated by Pogue et al.14 When
r is within the pixels having low lesion probability as
indicated in matrix S �region 1�, ��r� will be assigned
�1. When r is within the pixels having a high lesion
probability �region 2�, ��r� will have the smaller value
�2. That is,

��r� � ��1 if r is in region 1
�2 if r is in region 2.

A smaller value for ��r� reduces the penalty for the
reconstruction of optical contrast and thus increases
the probability of finding contrast in the designated
region. Unfortunately, it will also increase the im-
age noise in the designated region. We explore the
trade-off between these factors while searching for
the optimal regularization parameters. The formu-
lation presented in Eq. �2� is easily modified to handle
a soft structural constraint from a 3-D image from
x-ray computed tomography, MRI, or US.

3. Simulation Results

Simulations were performed to explore the improve-
ment in DOT image performance with prior spatial
information incorporated by use of this spatial regu-
larization scheme. Transillumination through a
6-cm slab was simulated. The optical properties
were �a � 0.05 cm�1 and �s	 � 5 cm�1 for the ab-
sorption and reduced scattering coefficient, respec-
tively. A spherical heterogeneity with a radius of 1
cm and �a � 0.1 cm�1 and �s	 � 5 cm�1 was posi-
tioned in the center of the otherwise homogeneous
medium �see Fig. 1�a��. Sixteen sources and 16 de-
tectors were positioned on opposing 4 
 4 grids with
a 2-cm spacing to collect transmitted data. The
modulation frequency of the laser sources was 200
MHz. Electronic noise and photon shot noise were
added to the simulated measurements generated by
the first Born approximation for an absorbing heter-
ogeneity in a slab geometry.18 The amplitude SNR
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ranged from 30 to 80 dB �or approximately 0.01% to
10%� across different source–detector pairs and the
phase noise varied between 0.2 and 2 deg.19–21 The
tomographic optical images were reconstructed by
use of the Rytov approximation. Both the conven-
tional Tikhonov regularization ��1 � �2� and the spa-
tial prior Tikhonov regularization ��2 � �1� were used
to solve the inverse problem. For the spatial prior,
we collocated the position of the optical contrast and
the 3-D x-ray structural contrast. That is, the re-
gion regularized by �2 is exactly the region with the
true optical contrast. For the regularization param-
eters we used values of �n � �n max�ATA� with �1 �
0.5 and �2 � 0.06. From a comparison of the recon-
structions of the absorption perturbation we see
clearly the improved resolution, contrast accuracy,
and contrast-to-noise ratio �CNR� in the reconstruc-
tion with the spatial prior �see Figs. 1�b� and 1�c��.
In Fig. 1�d� we show a different kind of spatial prior
result when we obtained the prior by thresholding
the optical image shown in Fig. 1�b� halfway between
the background value and the peak contrast value.
This type of spatial prior might have some advantage

when structural information cannot be provided by
another imaging modality. Note that the resolution
of Fig. 1�d� is not as good as when we used the higher
resolution spatial prior in Fig. 1�c�. Here we recon-
struct only the absorption perturbation image, as-
suming that the scattering coefficient is spatially
uniform.

To study the effect of variation of the �1, �2 regu-
larization parameters on the quality of the image
reconstruction, we first introduce a few objective
measures. The contrast-to-background noise ratio
�CBNR� is defined as the ratio of the mean value of
the image in the �2 region to the mean image stan-
dard deviation in the �1 region arising from the sim-
ulated measurement noise. The contrast-to-object
noise ratio �CONR� is defined as the ratio of the mean
value of the image in the �2 region to the mean image
standard deviation in the �2 region. We introduce
the full width at half-maximum �FWHM� of the object
imaged along the axial direction and along the lateral
direction to describe the resolution of the image.

The CBNR and the CONR are shown in Figs. 2�a�
and 2�b� versus �2 for a fixed �1 �i.e., �1 � 0.7�. Note

Fig. 1. �a� Absorption anomaly to be reconstructed. �b� Absorption image reconstruction of simulated data by use of conventional
Tikhonov regularization �image units are in reciprocal centimeters�. �c� Image reconstructed with a spatial prior for the regularization.
The spatial prior has the correct spatial information for the location of the heterogeneity. �d� Image reconstructed with the original optical
image in �b� as a spatial prior, as described in the text. The field of view of the image is 6 cm 
 6 cm, and image slices are shown every
centimeter.
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that �2 will always be less than �1 so as to impose less
regularization on the region of interest. Generally,
with increasing �2 the CBNR decreases and the
CONR increases. Thus a balance must be found be-
tween CBNR and CONR. It is important to note
that decreasing �2 relative to �1 can significantly
increase the CBNR before causing an appreciable de-
crease in the CONR. The axial FWHM and lateral
FWHM are shown in Fig. 3�a� and 3�b� and show the
expected result of a smaller regularization parameter
resulting in a smaller FWHM. The �2 regulariza-
tion parameter has a more significant effect on the
axial resolution than on the lateral resolution, as is
expected for a transmission measurement that gen-
erally laterally localizes an object well. Without the
spatial prior, i.e., �1 � �2, the CBNR  CONR  3.6,
and the FWHM � 3.1 and 2.5 cm along the axial and
lateral directions, respectively.

4. Choosing the Optimal Regularization Parameters

We have shown that a spatial prior can improve the
contrast and resolution of the reconstructed image.
We next explore a method to choose optimal regular-
ization parameters objectively. The procedure is
composed of two steps. First, we use the L-curve
technique20,22,23 to determine �1. In this step, �2 is
kept equal to �1. The L-curve technique is an a
posteriori method that uses only the measurement
and the forward model. It can be applied to select
the value of the regularization parameter that bal-
ances the trade-off between the minimization of the
measurement residual and the minimization of the
image noise. To create the L curve, we parametri-
cally plot the log of the image norm �x� versus the log
of the measurement residual as a function of �1 �see
Fig. 4�a��. The arrow in Fig. 4�a� points to the so-

Fig. 2. Plot of objective measures of the reconstructed images versus regularization parameter �2. �a� CBNR versus �2, and �b� CONR
versus �2.

Fig. 3. Plot of the FWHM of the reconstructed absorbing heterogeneity in the �a� lateral and �b� axial directions versus regularization
parameter �2.
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called L corner, the value at which �1 is said to be
optimal. Next we find an appropriate �2 to impose
the x-ray constraint. Here we need to find a com-
promise between two competing factors: �1� high
resolution and contrast, and �2� increasing image
noise. To do so, we plot CNR versus �2, where
CNR � 2��1�CBNR � 1�CONR�. The �2 that max-
imizes the CNR function is a good choice �see Fig.
4�b��.

5. Misalignment between the Optical and the X-Ray
Contrast

In our previous simulations we assumed that the
optical contrast is well correlated with the x-ray con-
trast �i.e., that the contrasts are aligned�. Yet the
actual correlation between optical and x-ray contrast
is still unexplored. Therefore, it is possible that
these two are only partially correlated or in fact un-
correlated. An example of this is shown in Figs. 5�a�
and 5�b�, in which the x-ray and optical contrast cen-
ters are laterally displaced by 3 cm and both have a
1-cm radius. We see that the optical contrast is re-
constructed in the correct lateral position but that
greater image noise is apparent in the position of the
x-ray prior owing to the reduced regularization in
that region for the CNR method described above we
chose an optimal value of �2 � 0.05�. In this case the
image resolution is comparable with the case of no
spatial prior as shown in Fig. 1�b�, since the spatial
prior provides information inconsistent with the op-
tical data. This inconsistent prior should act to bias
the optical reconstruction. Indeed, for simulations
in which the optical and x-ray centroids are laterally
displaced by less than 3 cm, we observed that the
position of the optical contrast is incorrectly recon-
structed toward the center of the x-ray prior.

Misalignment of the optical and the x-ray contrast

in the axial direction is difficult to resolve because of
poor axial resolution when imaging through a slab
with a transillumination geometry. An example of
this is shown in Figs. 5�c� and 5�d�, in which the x-ray
and optical contrast centers are axially displaced by 2
cm and both have a 1-cm radius. The optical con-
trast is centered at z � 2.0 cm, and the x-ray contrast
is centered at z � 4.0 cm. We observed that optical
contrast is reconstructed in the correct lateral and
axial positions but that the maximum is recon-
structed axially toward the position of the x-ray prior.
In this case, for the CNR method described above we
chose an optimal value of �2 � 0.08.

6. Preliminary Clinical Result

For this tomographic optical breast imaging feasibil-
ity study we used a coregistered frequency-domain
diffuse optical imaging system and a 3-D tomosyn-
thesis x-ray mammography system.24 We used a ho-
modyne frequency-domain optical imaging system
with 780-nm lasers modulated at 70 MHz. A time-
division multiplexing scheme was applied to distrib-
ute the laser light to 40 source positions. Nine
avalanche photodiodes detect the output light, and
in-phase and quadrature-phase demodulation con-
vert the detected signal to amplitude and phase. In
the tomosynthesis system, an amorphous Si-based
flat panel detector locates in the same way as the film
cassette in a conventional film-screen mammography
system. It has 1800 
 2304 pixels with a 100-�m
pixel size. Tomosynthesis reconstruction uses 11
projections taken over a 50° angular range above the
base, with a 5° angular step.24,25 The breast is com-
pressed as in standard mammography. The probe is
a combination of a standard x-ray compression plate
and a removable optical fiber assembly. After the
breast is appropriately positioned and compressed,

Fig. 4. �a� Plot of the L curve for the Tikhonov regularization reconstructed in Fig. 1�a�. Here �2 has the same value as �1. The arrows
point to the L corner and indicate the direction of increasing �1. �b� CNR versus �2. �1 � 0.7 remains constant at the value determined
in �a�. The arrows point to the maximum CNR. The filled circles indicate the CNR for the x-ray constraint. The open circles indicate
the CNR when the optical image is used as the spatial constraint.
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optical measurements are acquired. The optical fi-
ber assembly is then removed and 11 x-ray projec-
tions are taken �the breast remains in the same
position and compression�. The whole data collec-
tion takes 1.5 min, and the optical data and x-ray
data are precisely coregistered. The optical imaging
data are calibrated by use of homogeneous phantoms
before and after each patient measurement.

A slice of the 3-D x-ray image from our 65-year-old
patient is shown in Fig. 6. A vague density is seen in
the upper outer quadrant of the left breast of this
patient. After undergoing an excisional biopsy, pa-
thology showed it to be an invasive carcinoma. The
malignant region shown in this figure is the densest
part of the lesion, measuring approximately 1.0 cm 

0.9 cm, circled by a thick solid line. Outside this
area, multiple branches of the disease spreading to
normal tissue can easily be seen, circled by a light
solid line. The breast was compressed to a thickness
of 6.2 cm. The source and detector positions are
shown by the circles and squares, respectively, in Fig.
6 with the sources at z � 0 cm and the detectors at z �

Fig. 5. Absorption image reconstruction of simulated data by use of an incorrect spatial prior in the lateral direction �image units are in
reciprocal centimeters�: �a� true target �white region� and ROI �gray region� and �b� reconstructed image. The centers of the spatial prior
and the real object are displaced laterally by 3 cm along the x axis. The reconstruction of simulated data with an incorrect spatial prior
in the axial direction: �c� true target �white� and ROI �gray� and �d� reconstructed image. The centers of the spatial prior and the real
object are axially displaced by 2 cm along the z axis. The field of view of the image is 6 cm 
 6 cm, and image slices are shown every
centimeter.

Fig. 6. Slice �z � 3.6 cm� of the 3-D x-ray image from the patient.
The circles indicate the positions of the 40 sources and the squares
indicate the positions of the nine detectors. The lesion is indi-
cated by the thick dark line with diffuse extension indicated by the
thin dark line. The field of view is 12 cm 
 9 cm.
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6.2 cm. The optical image is reconstructed only
within the breast tissue within the entire region re-
vealed in Fig. 6.

We retrieved the x-ray spatial prior from the x-ray
images by assigning a threshold �see Fig. 7�b��. For
the background optical properties the reduced scat-
tering coefficient was 7.0 cm�1 and the absorption
coefficient was 0.05 cm�1. The optical image with-
out the spatial prior is shown in Fig. 7�a� ��1 � �2 �
0.0075�. This optical image shows a laterally ex-
tended increased absorption in the region of contrast
identified in the x-ray image and does not resolve the
contrast in the axial direction. A region of reduced
absorption is noted above the lesion closer to the
chest wall that corresponds with the reduced contrast
observed in the x-ray image.

The image reconstructed with the spatial prior is
shown in Fig. 7�c�. For the regularization parame-
ters we used values of �1 � 0.0075 and �2 � 0.00065
as determined by the L curve and optimal CNR pro-
cedure described for the simulations above and
shown in Figs. 8�a� and 8�b�. Here we see that the
lesion is reconstructed with better lateral and axial
resolution and that it exhibits a greater absorption
relative to the background. It is interesting to note
that the more sharply resolved optical contrast is not
centered on the main lesion identified in the x-ray
image by the thick solid line in Fig. 6 but is shifted
down and to the left still within the diffuse part of the
lesion. More importantly, the reconstructed optical

absorber is confined to a volume significantly smaller
than the x-ray spatial prior, suggesting that the op-
tical image is not just an artifact of the spatial prior.
In contrast, when we use the original optical image
�Fig. 7�a�� to produce a spatial prior as shown in Fig.
9�a�, the new spatially constrained optical image �Fig.
9�b�� is strongly correlated with the spatial prior.
Figure 9�b� was produced with the spatial prior
shown in Fig. 9�a� with �1 � 0.0075 and �2 � 0.0019
�chosen by maximization of the CNR as described
above�. As expected, Fig. 9�b� has the same spatially
structure as Fig. 7�a� since no new spatial informa-
tion was provided, but has an improved spatial res-
olution in agreement with the simulation results
shown in Figs. 1�b� and 1�d�. Using the x-ray image
as a spatial prior has the potential to provide new
spatial information that then results in a quantita-
tively different image. A more thorough study of
multiple lesions is required to determine whether the
x-ray image as a spatial prior produces quantitatively
more accurate images or on the other hand produces
image artifacts.

It is possible that the reconstructed lesion is an
artifact that results from a mismatch in the x-ray
spatial prior and the optical contrast. We thus
varied the spatial prior to examine the effect it had
on the reconstructed image. First, we increased
the volume of the spatial prior as shown in Fig.
10�a�. The resultant image shown in Fig. 10�b� is
not significantly different from that shown in Fig.

Fig. 7. �a� Absorption image reconstruction of the clinical data by use of conventional Tikhonov regularization. �b� The 3-D x-ray images
after a threshold was assigned to define the spatial prior. The black voxels indicate the regions suspected of having a lesion. �c� The
reconstruction of the clinical data by use of the spatial prior from �b� for regularization.

1 September 2003 � Vol. 42, No. 25 � APPLIED OPTICS 5187



7�c�. We also tried an artificial spatial prior in a
different region of the breast by placing a 4-cm-
diameter sphere centered at �x, y, z� � �12, 4, 3.1�, 2
cm above and 2 cm to the right of the real lesion.
The reconstruction from this incorrect spatial prior
is shown in Fig. 11 and reveals a biased image that
clearly resembles artifacts with large positive and
negative amplitude variations. For this recon-
struction the optimal �2 � 0.001. The magnitude
of the contrast at �9, 6, 3.1� cm is comparable with
that we obtained when no spatial constraint was
used. When we used a spatial low-pass filter on
the image with the incorrectly positioned ROI �Fig.
11�, the noise in the ROI was reduced, the optical
contrast at �9, 6, 3.1� cm became more apparent,
and the image closely resembled the original image
without a spatial prior �Fig 7�a��.

7. Summary

We have shown through a simulation study that spa-
tial information provided by another imaging modal-
ity �such as x-ray tomosynthesis, x-ray computed
tomography, or MRI� can be used as a prior in the
diffuse optical image reconstruction to improve the
image contrast-to-noise ratio and resolution. In ad-
dition, we demonstrated a dramatic improvement in
image resolution for clinical tomographic optical
breast imaging data guided by a 3-D x-ray tomosyn-
thesis. We used the prior spatial information to de-
termine the form of the spatial regularization of the
diffuse optical inverse problem as implemented by a
modification of the Tikhonov regularization. We
used the spatial prior to define a two-valued regular-
ization function and showed that the two regulariza-

Fig. 8. �a� Plot of the L curve for the clinical image shown in Fig. 7�a�. Here �2 has the same value as �1. The arrow in the graph points
to the L corner. �b� CNR versus �2. �1 � 0.0075 remains constant at the value determined in �a�. The arrow points to the maximum CNR.

Fig. 9. �a� Spatial prior defined from a threshold of the original optical image in Fig. 7�a�. �b� The reconstructed absorption image using
�a� as the spatial prior. The image units are in reciprocal centimeters. The field of view of the image is 12 cm 
 10 cm, and image slices
are shown every centimeter.
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tion values could be determined objectively and
without knowledge of the true solution by implement-
ing the standard L-curve technique and maximizing
the image CNR. We could, in general, have a con-
tinually varying regularization function derived by
some linear �or nonlinear� function of the spatial
prior, but this would require more confidence in the
relationship between the spatial prior and the optical
absorption and scattering properties of the tissue.
More knowledge of this relationship will be obtained
in the future as more multimodality, coregistered im-
aging is performed.

The results presented here are for reconstruction of
absorption images but the same framework can be
used to image the scattering coefficient. Imaging
simultaneously the absorption and the scattering co-
efficients will introduce a third regularization param-
eter ��3�. A method for choosing the three optimal
regularization parameters will have to be explored,
but perhaps maximization of the image CNR surface
as a function of �2 and �3 will suffice.

The purpose for using a spatial prior as a soft struc-
tural constraint rather than a hard structural con-
straint is to indicate an increased likelihood of optical
contrast in a region of interest rather than to force
the reconstruction of optical contrast in that region.
Such a soft structural constraint does have the po-
tential to bias the image if the constraint is inconsis-
tent with the data. On the other hand, a hard

structural constraint will certainly bias the image if it
is inconsistent with the data. Our simulation re-
sults indicate that image bias will occur when the
spatial prior has a small inconsistency with the data,
but a large inconsistency will not produce image bias.
The image bias was also observed in the clinical re-
sults when a fake spatial prior was constructed.
The bias in this case, however, was obvious as large,
unphysical, amplitude fluctuations were observed to
occur within the region of interest and could be easily
removed by a spatial low-pass filter of the image.

In the absence of a spatial prior provided by an-
other imaging modality, such as x ray or MRI, one
could use the original optical image to define the
spatial prior. This does improve the spatial resolu-
tion of the resultant image in a way similar to the
zonation procedure followed by Eppstein et al.,26 but
it does not incorporate new spatial information into
the image reconstruction. Further research with
larger sets of multimodality breast imaging data is
required to determine if the additional spatial infor-
mation provided by x ray or MRI can be utilized as a
spatial prior to improve the optical image as de-
scribed here. Finally, future studies could attempt
to incorporate spectral priors with these spatial pri-
ors to improve image quality further and perhaps to
improve specificity between malignant and benign
lesions.

Fig. 10. �a� Larger volume 3-D spatial prior derived by use of a lower threshold on the x-ray image. �b� Image reconstruction by use of
the larger volume spatial constraint.

Fig. 11. Absorption image reconstruction of clinical data by use of an artificial spatial prior �image units are in reciprocal centimeters�.
The field of view of the image is 12 cm 
 10 cm, and image slices are shown every centimeter.
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