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Diffuse optical imaging can measure brain activity noninvasively in humans through the scalp and skull
by measuring the light intensity modulation arising from localized-activity-induced absorption changes
within the cortex. Spatial resolution and localization accuracy are currently limited by measurement
geometry to approximately 3 cm in the plane parallel to the scalp. Depth resolution is a more significant
challenge owing to the limited angle tomography permitted by reflectance-only measurements. We
combine previously established concepts for improving image quality and demonstrate, through simu-
lation studies, their application for improving the image quality of adult human brain function. We show
in a three-dimensional human head model that localization accuracy is significantly improved by the
addition of measurements that provide overlapping samples of brain tissue. However, the reconstructed
absorption contrast is significantly underestimated because its depth is underestimated. We show that
the absorption contrast amplitude accuracy can be significantly improved by providing a cortical spatial
constraint in the image reconstruction to obtain a better depth localization. The cortical constraint makes
physiological sense since the brain-activity-induced absorption changes are occurring in the cortex and
not in the scalp, skull, and cerebral spinal fluid. This spatial constraint is provided by segmentation of
coregistered structural magnetic resonance imaging (MRI). However, the absorption contrast deep within
the cortex is reconstructed superficially, resulting in an underestimation of the absorption contrast. The
synthesis of techniques described here indicates that multimodality imaging of brain function with
diffuse optical imaging and MRI has the potential to provide more quantitative estimates of the total and
deoxyhemoglobin response to brain activation, which is currently not provided by either method inde-
pendently. However, issues of depth resolution within the cortex remain to be resolved. © 2005 Optical
Society of America

OCIS codes: 170.3010, 170.5280, 170.6960.

1. Introduction

The application of diffuse optical imaging (DOI) to
the measurement of human brain function has been
growing rapidly within the cognitive, behavioral, and
neuroscience fields1–9, following the early demonstra-
tions that diffuse near-infrared light could be used to
measure the hemodynamic response (i.e., blood flow,
volume, and oxygenation) to brain activation in
adult10,11 and infant12–14 humans, as well as the re-

cent commercial availability of instruments.15–17 This
growth is also, in part, an overflow from the adoption
of functional magnetic resonance imaging (fMRI)18,19

by these communities to study the functional organi-
zation of the human brain. fMRI has created a revo-
lution in the study of the brain by enabling brain
scientists to correlate neurophysical measures of the
brain with behavioral measures. DOI complements
fMRI by enabling functional brain imaging in subject
populations and with study paradigms that are not
easily studied, given the space confining and expense
limitations of fMRI. In addition, DOI has the poten-
tial to provide more quantitative information about
total hemoglobin concentration (proportional to cere-
bral blood volume) and hemoglobin oxygenation, as
provided by optical absorption spectroscopy, than can
be provided by fMRI.20 This potential is further driv-
ing the technological development of DOI.

Diffuse optical methods were first used to measure
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brain activation in 1993.10,11 These first measure-
ments used a maximum of five detector channels to
measure the change in total hemoglobin concentra-
tion and oxygenation induced by a stimulus. The first
diffuse optical images of brain activation were pub-
lished in 1995.21 These first images were obtained by
use of a backprojection method to interpolate the re-
sponse between measurement channels21,22 such that
the image resolution was approximately 3 cm, com-
parable with the distance between light sources and
detectors. In addition, the quantitative accuracy of
these images is limited by the partial volume
effect23–25 in that the backprojection analysis does not
account for the fact that the activation-induced
change in the total hemoglobin concentration and
oxygenation is occurring only in a small region of the
tissue sampled by the diffuse light. The resolution
and quantitative accuracy limitation can be overcome
only by performing diffuse optical tomography (DOT),
which uses a model of photon migration through the
head to obtain an optimal image26 of brain activation
that is consistent with the set of measurements. To
date, there are only a few published examples of DOT
images of brain activation, for example, in
rodents,27–30 in newborn human babies,14 and in
adult humans.31,32

Improvements in DOT image resolution and local-
ization accuracy of brain activation will result from
an increase in the number of measurements such
that there are overlapping measurements of the same
tissue regions.26,32 The quantitative accuracy of DOT
is ultimately limited by the structural resolution. In-
accurate knowledge of the structural properties of the
tissue will result in inaccurate models of photon mi-
gration through the tissue and thus in an inaccurate
estimate of the brain-activation-induced change in
the hemoglobin concentrations. In addition, the opti-
cal density and size of the adult human head pre-
cludes transmission measurements but permits
reflectance measurements of diffuse light, which are
predominantly sensitive to the superficial tissues. As
a result, images are often biased toward the surface of
the head, producing systematic depth localization er-
rors and thus errors in the quantitative accuracy of
the reconstructed hemoglobin concentrations. These
limitations are perhaps best overcome by prior struc-
tural information.33–35

In this paper we describe the results of photon
migration imaging simulations on a three-
dimensional (3D) anatomical head model provided by
MRI. We implement concepts developed in the pho-
ton migration imaging community for improving im-
age quality in general and specifically demonstrate
their application to the problem of imaging adult hu-
man brain function. We demonstrate the improve-
ment in localization accuracy and image resolution of
cortical increases in optical absorption through the
use of overlapping measurements. We also demon-
strate that a spatial prior that constrains the optical
image reconstruction to the cortex provides a signif-
icant improvement in the quantitative accuracy by
forcing the image to be reconstructed at the appro-

priate depth. While the results presented here are a
straightforward implementation of previous re-
search, we believe that these results are a necessary
and important step toward specific experimental im-
plementation of the concepts for functional imaging
of the human brain.

2. Methods

We perform a Monte Carlo simulation of photon mi-
gration through a 3D head model provided by MRI.
This simulation provides the predicted photon migra-
tion measurements (the forward solution) and the
imaging operator for the inverse problem. These
methods and the quantitative imaging metrics for
assessing improvements in image quality are de-
scribed in Subsections 2.A–2.E.

A. Tissue Segmentation of a Three-Dimensional
Anatomical Magnetic Resonance Image

For our 3D model of the human head, we use a seg-
mentation of an anatomical MRI based on an exten-
sion of the methods developed by Dale and Sereno,36

Dale et al.,37 and Fischl et al.38 Dale and Fischl have
implemented a multiflip angle MRI pulse sequence
that provides intrinsic T1 and proton density maps
with 3D isotropic 1�mm3 resolution. We have used
these T1 and proton density anatomical maps to pro-
duce the tissue segmentation shown in Fig. 1 by using
a multispectral extension of the probabilistic segmen-
tation approach described in Fischl et al.38 The seg-
mentation shows the scalp, skull, cerebral spinal
fluid, and gray and white brain matter. For our sim-
ulation study, we assign a reduced scattering coeffi-
cient, �s�, and absorption coefficient, �a, to each tissue
type, the values of which are indicated in Table 1.
These values are the same ones that we have used
previously25 and are intermediate values of the wide
variation of �a and �s� parameters that have been
reported.39–41 We do not distinguish the optical prop-
erties of gray and white matter because our prelim-

Fig. 1. Three-dimensional perspective of the head acquired by
MRI is shown on the left. A coronal slice through the head is shown
on the right, with the scalp, skull, cerebral spinal fluid, and gray
and white matter indicated from dark to lighter shades of gray.
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inary analysis has indicated that white matter prop-
erties do not significantly alter the results.

B. Photon Migration Forward Method

The appropriate treatment of the complex, nonplanar
air–tissue and internal tissue boundaries is critical
for accurate modeling of photon migration through
the human head. Given the structural information
provided by MRI, we can then solve the photon dif-
fusion equation or radiative transport equation by
using numerical approaches such as the finite differ-
ence, finite-element, and Monte Carlo methods. In
this paper we use our implementation of a Monte
Carlo solution of the radiative transport equation.42

This solution allows for spatially varying optical
properties. This Monte Carlo code allows us to obtain
results in a complex 3D head model with a signal-to-
noise ratio greater than 100 at distances of up to
30 mm with a 1�mm2 detector and with 108 photons
propagated within 5–10 h of computer time on a Pen-
tium III 1000�MHz CPU (faster with today’s newer
desktop computers). Example results obtained with
this Monte Carlo code can be found in Refs. 25, 42,
and 43.

This computer code is used to calculate the
continuous-wave detected photon fluence, �o�rs, rd�,
and the photon absorption sensitivity profile,
G3pt�rs, r, rd�, for each source–detector pair. As de-
scribed in Refs. 26 and 42, this sensitivity profile,
otherwise known as the three-point Greens’ function,
is calculated from the product of the fluence distribu-
tion �src�rs, r� from the position of the light source, rs,
into the 3D volume of the head, r, and the fluence

distribution, �det�r, rd�, from the position of the de-
tector, rd, into the head. An example of these sensi-
tivity profiles is given in Fig. 2.

The Rytov approximation indicates that the fluence
in the presence of small spatial variations in the ab-
sorption coefficient is given by26,44

�(rs, rd) � �o(rs, rd)exp���pert(rs, rd)�, (1)

where �o�rs, rd� is the fluence calculated for the base-
line properties of the head. The perturbation,
�pert�rs, rd�, in the detected photon fluence caused by
a localized change in the absorption coefficient ��a�r�,
is given by

�pert(rs, rd) �
1

�o(rs, rd)

� ��src(rs, r)��a(r)�det(r, rd)dr. (2)

Thus, given the Monte Carlo estimates of
G3pt�rs, r, rd� � �src�rs, r��det�r, rd� and a spatial dis-
tribution of the localized changes in the absorption
coefficient ��a�r� caused by brain activation, we can
calculate the perturbation in the measurement
�pert�rs, rd�. Brain activation produces only small ab-
sorption changes, and thus the Rytov model is ex-
pected to provide accurate results.

For the purposes of this paper, we consider a dis-
tribution of ��a�r� given by a 3D Gaussian with an
isotropic full width at half-maximum of 1.0 cm, as
illustrated below in Fig. 4, with a maximum of ��a

� 0.01 cm�1. The forward problem was calculated
with 2 mm � 2 mm � 2 mm voxels throughout the
medium for the forward and inverse problems.

C. Geometry of Sources and Detectors

We use a hexagonal arrangement of 15 sources and
32 detectors as shown in Fig. 3(a), which enables us
to measure light from the 62 first and 52 second
nearest-neighbor sources for a total of 114 measure-
ments with a reasonable dynamic range requirement.
The nearest-neighbor spacing between each source
and detector is 2.5 cm, while the second nearest spac-

Table 1. Optical Properties Used for Each Tissue Type in the Monte
Carlo Simulationa

Tissue �s� �cm�1� �a �cm�1�

Scalp 6.6 0.191
Skull 8.6 0.136
Cerebral spinal fluid 0.1 0.026
Gray and white matter 11.1 0.186

aThe optical properties of the white matter are set equal to those
of the gray matter in our simulations because the large variation
in the properties of the white matter had a negligible effect on the
measured fluence.

Fig. 2. (a) Source fluence distribution �src�rs, r�. (b) Detector fluence distribution �det�r, rd�. (c) Measurement sensitivity profile for the
given source and detector is given by the product of (a) and (b). The lighter curving structure inside the head indicates the gray matter.
The color bar indicates the relative log10 decay of the sensitivity profile. Notice the logarithmic decay in sensitivity with depth. These
results were calculated with a 1�mm3 resolution.

1 April 2005 � Vol. 44, No. 10 � APPLIED OPTICS 1959



ing is 4.3 cm. As shown in Fig. 3(b), this probe is
conformed to the curvature of the head over the left
and right hemispheres of the parietal cortex. Con-
forming to the head causes a maximum deviation of
these separations of less than 2 mm. From our mea-
surements on adult human subjects with our
continuous-wave imaging system,17 we estimate that
the signal decrease from the shorter to the longer
separation is roughly a factor of 10. As detailed in
Ref. 32, we utilize a hexagonal arrangement because
of a reduced dynamic range requirement for achiev-
ing overlapping measurements relative to a rectan-
gular geometry.

D. Inverse Imaging Method

As described above for the photon migration forward
method, for small changes in the spatial variation of
the absorption coefficient, there is a linear relation
between the perturbed photon fluence and the vari-
ation in the absorption coefficient. This relation can
be written in matrix form as y � Ax, where the ith
element of the vector y corresponds to the perturbed
photon fluence for the ith measurement, the jth ele-
ment of the vector x corresponds to the change in the
absorption coefficient for the jth voxel of the head,
and the matrix A is derived from G3pt�rs, r, rd� [Eq.
(2)] and is the transformation from the image space to
the measurement space. The forward method derives
y given x. The inverse method is to estimate x given
y.26 This inversion is ill posed because the inversion
process tends to amplify noise from y in the image x.
Furthermore, the inversion is underdetermined be-
cause we have only 114 measurements in y and more

than 10,000 unknowns in x. As a result, the inverse
problem must be regularized.

We estimate the optimal solution of x by using26

x̂ � AT(AAT � 	
y
2)�1y � By, (3)

where 
y
2 is the measurement covariance matrix (as-

sumed to be diagonal) and 	 � � maximum [diagonal
�AAT�] is the scalar regularization parameter. The
standard deviation of the measurements used to gen-
erate 
y

2 was 0.1% for the nearest measurements and
1% for the second nearest measurements. This devi-
ation is relative to the total measured fluence � from
Eq. (1). All the images presented below are produced
with noise-free data and with � � 0.01 and the 
y

2

given by assumed 0.1% and 1% standard devia-
tions. The measurement noise is considered in the
image contrast-to-noise ratio (CNR) metric used to
evaluate image quality and the trade-off between
image noise and resolution. The matrix B is the
pseudoinverse of A.

The matrix A can be written as A �
�Anoncortex Acortex�, where Anoncortex has all voxels that are
not within the cortex and Acortex contains voxels only
from the cortex. The inversion in Eq. (3) produces an
image within all of the voxels of the head. We can
impose a spatial prior to indicate that brain activa-
tion and the corresponding absorption change occurs
only in the cortex by replacing A in Eq. (3) with Acortex.
We compare the image quality of these full head re-
constructions with the cortically constrained recon-
structions.

We also compare the images reconstructed within
the head geometry against the images reconstructed
assuming a semi-infinite medium, because this is a
common approximation when the true geometry is
not known.14,32 In this case we use the flat arrange-
ment of sources and detectors depicted in Fig. 3(a)
and calculate the matrix A by using the analytic so-
lution of the diffusion equation for a semi-infinite
medium,26 assuming �s� � 10 cm�1 and �a

� 0.1 cm�1. In the semi-infinite medium we assume
that the absorption changes are occurring in a plane
beneath the plane of sources and detectors at a depth
of 1.5 to 2.0 cm. The voxels are 0.1 � 0.1 cm in the
lateral coordinates and 0.5 cm thick in depth. The
plane of voxels only extends as far as the extent of
sources and detectors.

To facilitate visualization of the 3D head recon-
structions and comparison with the semi-infinite re-
constructions, we perform a maximum intensity
radial projection on each coronal slice of the absorp-
tion change image. An example of this is depicted in
Fig. 4(a), which shows a single coronal slice of the
absorption change with radial projections from the
center of the head. The flattened projection image is
depicted in Fig. 4(b), with the x coordinate depicting
the distance along the scalp and the y coordinate
depicting the different coronal slices.

Fig. 3. Flattened arrangement of sources (s1, s2, etc.) and detec-
tors (d2, d3, etc.) is shown in (a) such that the hexagonal arrange-
ment is evident, as well as the overlap of the second nearest-
neighbor measurements. The wrapping of the optode array over
the top of the head is indicated in (b).
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E. Metrics of Image Quality

The metrics of image quality that we utilize are im-
age contrast, image CNR, image localization error,
and image resolution full volume at half-maximum
(FVHM). The image contrast and CNR are taken as
the average of the image contrast and image noise
over the FVHM. The image noise was determined by
propagation of the measurement noise by 
x

2

� B
y
2BT, where 
x

2 is the image covariance matrix
and 
y

2 is the measurement covariance. The localiza-
tion error is determined from the contrast weighted
distance of the voxels in the FVHM from the peak
position and thus also serves as a measure of the
resolution. That is,

position error moment � �
i�1

Nvox xiri

xi
F(xi � 0.5xmax),

where the sum is over all voxels; xi is the contrast of
the ith voxel; ri is the distance of the ith voxel from
the peak position of the true contrast; and the func-
tion F is 1 when xi � 0.5xmax and 0 otherwise, where

xmax is the maximum contrast in the reconstructed
image x.

3. Results

Example image reconstructions are shown in Figs.
5–7. The full head and cortically constrained images
with only 62 nearest-neighbor measurements is
shown in Fig. 5. The same with the 114 overlapping
measurements is shown in Fig. 6, followed by the
semi-infinite reconstructions in Fig. 7. The regular-
ization parameter was set to � � 0.01 for all recon-
structions. The quantitative image metrics of
contrast, CNR, and localization error versus the im-
age regularization parameter � are shown in Fig. 8.

The cortically constrained image reconstruction
�� � 0.01�, using overlapping measurements for a
deeper brain activation, is shown in Fig. 9. The cor-
tical constraint forces the contrast reconstruction
into the cortex; however, the contrast is reconstructed
in superficial rather than in deep cortex. A coronal
slice of the image CNR is shown for comparison in
Fig. 9(c). Notice that the CNR image is localized
deeper toward the true activation.37

The image metrics vary with the centroid position
of the true absorption change. This variation within
three different coronal slices is shown in Fig. 10 in
which the value of the image metric is color coded and
displayed in the cortical voxel that corresponds to the
centroid position of the true absorption change. The
position of the three slices relative to the sources and
detectors is indicated in the top panel of Fig. 10.

4. Discussion

A. Improvement in Localization with Overlapping
Measurements and Cortical Constraint

As shown in Figs. 5–7, the inclusion of overlapping
measurements significantly improves the lateral lo-
calization accuracy. Without overlapping measure-
ments, there is ambiguity as to whether the
absorption change occurs close to the source, to the
detector, or in between. Overlapping measurements
resolve this ambiguity with a two-fold improvement
in localization accuracy, as shown in the image metric
in Fig. 8. This improvement has also been quantified
in Refs. 32 and 45.

The example shown in Figs. 5 and 7, with the ab-
sorption change occurring in the void region between
three detectors of the hexagonal probe that is not
strongly sampled with nearest-neighbor sources, is a
worst-case scenario. An absorption change occurring
in this region will be pulled in three separate direc-
tions toward the three different sources in the image
reconstructed with only the nearest-neighbor mea-
surements. There are other probe geometries that do
not create such a large localization ambiguity when
overlapping measurements are not used. In particu-
lar, the rectangular style geometry that is currently
used almost universally for DOI of brain func-
tion.8,9,21,30,45 Nonetheless, even with rectangular
geometries, there is a strong improvement in the
localization accuracy with the use of overlapping

Fig. 4. (a) Coronal section is shown with the true activation-
induced increase in cortical absorption. The maximum intensity
radial projection is calculated slice by slice. The flattened projec-
tion is shown in (b), in which the coronal slice in (a) is indicated by
the horizontal arrows. The lighter region inside the head indicates
gray matter.
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measurements, as has been quantified in Refs. 32
and 45.

Depth localization is quite difficult in DOI of
brain function, given that only reflectance measure-
ments are achievable in adults. Depth resolution
can be slightly improved when source–detector
pairs are utilized at different separations because
measurements with small separations sample only
superficial tissues, while measurements with larger
separations sample deeper tissues.40,46 Better im-
provement in depth resolution can be achieved with
time-resolved measurements of photon transit time
because deeper tissues are sampled with longer
photon transit times.24,46,47 However, this paper fo-
cuses only on continuous-wave measurements, which
currently constitute the majority of published brain
function measurements (there are only a couple of
published examples of depth-resolved brain imaging
with time-resolved measurements24,47–49). As shown
in Fig. 5, the nearest-neighbor image reconstructs
the absorption change at the surface. This is a com-
mon problem with minimum-norm-type image re-
constructions, which bias the reconstructed image
toward regions of maximum sensitivity. Thus im-
ages are biased toward the surface because maxi-
mum sensitivity is found near the surface, near
sources and detectors. The addition of overlapping
measurements pushes the reconstructed absorption

change deeper into the head (see Fig. 6) by provid-
ing additional complimentary information to the
image reconstruction such that image consistency
with the data results in better depth localization.
However, the reconstructed absorption change is
still superficial to the cortex.

Since we know that the absorption change arising
from cortical activation should not happen superficial
to the cortex, a depth prior can be introduced into the
image reconstruction. This can be accomplished sta-
tistically in the form of depth-dependent spatial reg-
ularization50,51 or as a hard structural constraint, as
we do here and as discussed previously in the context
of breast imaging33,52 and brain imaging.34 This is
easily achieved when we are assuming a simple semi-
infinite medium model of the head by reconstructing
the absorption change only in a single slice at the
approximate average depth of the cortex. However, as
we see from Fig. 7, while the peak absorption change
is approximately located in the correct position with
overlapping measurements, there are still strong im-
age artifacts spreading toward the other nearby
sources, presumably as a result of model mismatch
between the human head and the assumed semi-
infinite medium. Anecdotally, we often observe such
image artifacts in our optical brain function images
when assuming a semi-infinite medium, thus render-
ing it difficult to find a good spatial correlation with

Fig. 5. Images reconstructed with the first nearest-neighbor measurements. The true cortical absorption change is shown in (a) coronal
and (d) radial projection views. The reconstructed full head images in (b) and (e) show poor lateral and depth localization of the absorption
change. The cortically constrained reconstruction shown in (c) and (f) still has poor localization as a result of spatial ambiguity arising from
utility of only the nearest-neighbor measurements. The lighter gray region in (a), (b), and (c) indicates the gray matter. The length scale
in (d), (e), and (f) is in centimeters. The scales in each figure are normalized. The quantitative comparison of contrast magnitude is shown
in Fig. 8.
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fMRI.53,54 The proper cortical structural constraint
produces an image that, at least in the maximum
intensity radial projection, looks remarkably similar
to the true image in terms of position and spatial
extent [see Fig. 6(f)]. However, the coronal cross sec-
tion [Fig. 6(c)] reveals that the reconstructed image is
pulled toward the surface of the cortex. This is am-
plified further in the example of a deeper cortical
activation [see Fig. 9(b)].

Improved depth accuracy is found in the CNR
image [see Fig. 9(c)]. However the contrast within
the region of interest defined by the FVHM of the
CN image is significantly reduced relative to the
true contrast as the significant portion of the recon-
structed contrast is pulled to the surface of the
cortex. One could use the CNR image as a statistical
spatial prior within the cortical constraint, similar
to what was done in Ref. 55, to bias the image in
order to reconstruct deeper within the cortex. One
could also use an fMRI image of the blood-oxygen-
level-dependent signal or blood flow response to
brain activation as a statistical spatial prior to the
optical image reconstruction. Both approaches are
left for future work. An additional approach uses
time-domain measurements with �100�ps temporal
resolution of pulsed laser light propagation through
tissue to provide depth resolution. This approach
has been described by Steinbrink et al.24 and Kohl et

al.47 and shows promise for providing depth local-
ization accuracy without prior spatial information.

B. Variation of Image Metrics with Regularization

As shown in Fig. 8, with regularization of � 
 0.1
the cortical constraint image reconstruction of over-
lapping measurements underestimates the correct
absorption contrast by only 10%, compared with 40%
for the nearest-neighbor measurements only and 90%
without the cortical constraint. The large error ob-
served without the cortical constraint clearly occurs
because the contrast is reconstructed closer to the
surface where there is greater sensitivity to an ab-
sorption change. Likewise, the cortical constraint of
only nearest-neighbor measurements reconstructs
the contrast closer to the scalp surface where the
sensitivity is greater and thus produces a smaller
contrast image. The contrast reconstructed with the
semi-infinite medium model is not shown as model
error in the structure of the optical properties of the
medium; in particular, the depth of the cortex pro-
duces an image error of more than an order of mag-
nitude. This severe sensitivity to depth has been
discussed in Ref. 56.

Of interest is that, while the best contrast is recon-
structed for the cortical constraint of overlapping
measurements with � 
 0.1, this image has the
smallest CNR. This is a result of the image being

Fig. 6. Images reconstructed with overlapping (first and second nearest-neighbor) measurements show much better localization relative
to images reconstructed with only the first nearest measurements (Fig. 5). In particular, the projection of the cortically constrained
reconstruction (f) is strikingly similar to that of the true projection. The discontinuity observed in (b) reflects the structure of the cerebral
spinal fluid in which the measurement sensitivity is reduced relative to the surrounding tissue. The lighter gray region in (a), (b), and (c)
indicates gray matter. The length scale in (d), (e), and (f) is in centimeters.
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reconstructed in a region of less sensitivity relative to
the three other image conditions. Increasing the reg-
ularization increases the CNR but reduces the recon-
structed contrast, usually at the expense of image
resolution but also by pulling the reconstructed con-
trast to regions of higher measurement sensitivity.
Notice that as the regularization increases, the over-
lapping measurement image metric converges to that
of the nearest-neighbor measurement. This happens
because increasing regularization first acts on the
more distant measurements, which have a smaller
signal-to-noise ratio. A regularization parameter of
0.01 
 � 
 0.1 provides the best trade-off between an
accurate contrast and a decent CNR.

For � 
 0.1 the positional error moment is approx-
imately 5 mm for the cortically constrained recon-
struction of overlapping measurements. Increasing
the regularization parameter diminishes this accu-
racy because the reconstructed contrast is pulled to-
ward regions of higher measurement sensitivity.

C. Spatial Variation in Image Metrics

The spatial variation in the image CNR shown in Fig.
10 shows the expected result that CNR is greater

Fig. 7. (a) True head geometry, (b) first nearest-neighbor mea-
surements, (c) first and second nearest-neighbor measurements.
Semi-infinite reconstructions show poor spatial localization of the
activation, even with the overlapping measurements, owing to
model mismatch between the true head geometry and the homo-
geneous semi-infinite medium. The length scale is in centimeters.

Fig. 8. Variation in image contrast and CNR with regularization
is shown in (a) and (b), respectively. The contrast is shown in units
relative to the peak absorption change of 0.01 cm�1. The CNR is
given in standard deviation units such that a CNR of 100 means
that the reconstructed contrast is 100 times greater than the stan-
dard deviation in the image contrast. The variation in localization
error and FVHM with regularization is shown as the moment of
the positional error in (c). The positional error is given in units of
millimeters. Nearest-neighbor results are shown by the solid
curves. Overlapping measurements are shown by the dashed
curves. The cortically constrained results are distinguished from
the full head results by the curves with filled circles.
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where the measurement sensitivity is greater. This
occurs near the sources for the hexagonal geometry
because each source is measured by 12 detectors. Al-

ternatively, each detector sees four different sources.
Thus the region near a source is sampled 3 times more
than a region near a detector, and thus we find greater
image CNRs near the sources. The image CNR drops
exponentially with depth in concert with the exponen-
tial drop in measurement sensitivity with depth.

The positional error increases with depth since
deeper absorption changes are pulled toward the sur-
face of the brain. It is interesting that the positional
error is fairly uniform for a given depth into the
brain, indicating that the lateral localization accu-
racy varies little with lateral position relative to the
sources and detectors when overlapping measure-
ments are used. This is in significant contrast to the
large spatial variation in lateral positional error ob-
tained when imaging with only nearest-neighbor
measurements.32

D. Uncertainty in the Background Optical Properties

Uncertainty in the estimate of the static background
optical properties of each tissue will cause a systematic
error in the predicted optical measurement sensitivity
to brain activation in the cortex. As a result, the re-
constructed image contrast and position have a sys-
tematic error. We explored the magnitude of this effect
in a simplified geometry in Cheng and Boas.56 In this
paper we found that a 20% uncertainty in the static
optical properties of the medium caused an approxi-
mately equal uncertainty in the estimated change in
the absorption coefficient. We repeated this estimate
for the more complex head geometry shown in Fig. 1,
varying the absorption and scattering properties of
each tissue type individually, and similarly found that
the systematic error in the image contrast was approx-
imately equal to the systematic error in the optical
properties of each tissue type. We did not compile those
results here because they were quite similar to the
simplified geometry discussed in Ref. 56.

We are working on using time-domain measure-
ments guided by structural MRI to accurately charac-
terize the static optical properties of each tissue type.
Our simulation study has shown that an estimate of
the static optical properties with an uncertainty less
than 20% is reasonably achieved with current instru-
ment specifications.35 This estimate, however, does not
account for systematic error in the segmentation of the
structural MRI into distinct tissue types. This will
have to be addressed in the future.

5. Summary

We have combined concepts established in the liter-
ature for improving image quality and have quanti-
fied through simulations the improvement afforded
for the specific application of imaging adult human
brain activation. We have shown in a 3D realistic
head model that overlapping continuous-wave mea-
surements provide significant improvements in lat-
eral localization and some improvement in depth
localization without a cortical constraint. However,
the depth of the cortical absorption increase is still

Fig. 9. Cortically constrained reconstructed contrast (b) of a
deeper (true) activation shown in (a) is pulled toward the outer
surface of the cortex where measurement sensitivity is greatest.
The image CNR shown in (c) reveals a better depth localization
than the image contrast. The lighter gray region in (a), (b), and (c)
indicates gray matter.
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significantly underestimated. This depth underesti-
mation then results in a significant underestimation
of the absorption contrast. With continuous-wave
measurements, a spatial cortical constraint is re-
quired to localize cortical absorption changes in the
cortex. We have shown that with a cortical constraint
it is possible to reconstruct the absorption contrast
with quantitative accuracy when the true absorption
contrast is near the superficial cortex close to the
skull. However, when the true contrast is deeper,
despite the cortical constraint, the absorption con-
trast is reconstructed more superficially within the
cortex, leading to an underestimation of the absorp-
tion amplitude. While the CNR image does slightly

improve the depth localization accuracy, it is likely
that a functional MRI spatial constraint within the
cortex is required to achieve an accurate estimate of
the absorption contrast. Time-domain measurements
have been shown to provide depth-resolution accu-
racy and may provide an alternative approach to
achieving quantitatively accurate estimates of corti-
cal absorption changes.

D. A. Boas thanks Simon Arridge for many useful
conversations related to the general ideas presented
in this paper. This study was supported by National
Institutes of Health grants P41-RR14075, R01-
EB002482, and R01-EB00790.

Fig. 10. Image metrics vary with position in the brain. This variation is shown for the image CNR (standard deviation units) and the
positional error (in millimeters) in three coronal slices with different positions relative to the sources and detectors. The image CNR is
greatest in regions near the sources, whereas the positional error increases rapidly with depth but shows little variation at a given depth.
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