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Abstract
Spectroscopic diffuse optical tomography (DOT) can directly image the
concentrations of physiologically significant chromophores in the body.
This information may be of importance in characterizing breast tumours
and distinguishing them from benign structures. This paper studies the
accuracy with which lesions can be characterized given a physiologically
realistic situation in which the background architecture of the breast is
heterogeneous yet highly structured. Specifically, in simulation studies, we
assume that the breast is segmented into distinct glandular and adipose regions.
Imaging with a high-resolution imaging modality, such as magnetic resonance
imaging, in conjunction with a segmentation by a clinical expert, allows the
glandular/adipose boundary to be determined. We then apply a two-step
approach in which the background chromophore concentrations of each region
are estimated in a nonlinear fashion, and a more localized lesion is subsequently
estimated using a linear perturbational approach. In addition, we examine the
consequences which errors in the breast segmentation have on estimating both
the background and inhomogeneity chromophore concentrations.

1. Introduction

Near-infrared (NIR) light is beginning to show great promise as a means of noninvasively
probing tissue. NIR light is able to penetrate several centimetres through the body, and the
differences between the spectra of oxy-haemoglobin (HbO) and deoxy-haemoglobin (HbR)
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make spatially localized functional imaging of the body’s haemodynamics possible. In
addition, H2O and lipids have spectral peaks in this region, in principle making possible
the imaging of these chromophores as well (Cubbedu et al 1999). In contrast to imaging
modalities such as x-rays and MRI, NIR imaging can be accomplished using non-ionizing
radiation and low-cost, potentially portable, electronic components. However, imaging the
body’s chromophore distributions, which we will refer to here as diffuse optical tomography
(DOT), is made quite difficult by the highly turbid nature of NIR light propagation within
tissue, with photons generally experiencing many scattering events in their paths.

Near-infrared spectroscopy and imaging has been applied to a number of biomedical
applications (Boas et al 2001a), including functional brain imaging (Chance et al 1998,
Franceschini et al 2000), monitoring of strokes (Vernieri et al 1999), neonatal hymodynamics
(Hebden et al 2002) and the imaging of breast tumours (Dehghani et al 2003, Franceschini et al
1997, Grosenick et al 1999). In the domain of breast imaging, DOT, by virtue of its ability to
directly measure physiologically significant parameters, may prove to be a valuable adjunct
to x-ray mammography, a technology that is currently prone to a high rate of false-positive
tumour detections (Elmore et al 1998, Banks et al 2004, Fletcher and Elmore 2003).

In DOT, tissue is illuminated by NIR light sequentially at a number of source locations,
generally coupled to the body by means of fibre-optic components. In frequency-domain DOT,
the light is RF modulated, producing diffuse photon density waves (DPDWs) within the body.
The resulting attenuation and phase shifts are measured at a number of detector positions, with
photomultiplier tubes (PMTs), avalanche photodiodes (APDs) or charged-coupled devices
(CCDs) used for light detection. The significant problems of sensor calibration are described
elsewhere (Boas et al 2001b, Oh et al 2002). The measured amplitude and phase shifts (with
respect to a theoretically known background) are used to reconstruct the optical properties,
specifically the absorption and reduced scattering coefficient, µa(λ) and µ′

s(λ), at a given
wavelength of light, λ. This reconstruction is typically accomplished using either linearized
methods, which make a number of assumptions with respect to inhomogeneity size and/or
contrast, or through the use of nonlinear optimization approaches (i.e. gradient-descent or
Newton-based), which can be very computationally costly.

Although DOT holds a great deal of promise for breast-cancer screening, it presents
very difficult technical problems. The most significant limitations of DOT imaging are the
smoothing and nonlinear properties of the light propagation model, the consequences of which
are the ill-posedness and nonlinearity of the inverse problem, respectively. This ill-posedness
can be ameliorated by means of regularization, but this introduces the further difficulty of
regularization operator and regularization parameter selection.

Early work in this field concentrated on reconstruction of the medium’s optical properties
for a given wavelength of light (Jiang et al 1996, 1997, Milstein et al 2002). Recently,
researchers have begun to combine measurements taken at a number of wavelengths,
reconstructing an image at each wavelength and using a least-squares fit in order to estimate
the distribution of chromophores within the body (McBride et al 1999, Pogue et al 2001).

Most recently, a method has been proposed to directly image the chromophore
concentrations within the body (Gaudette et al 1999, Hillman 2002, Li et al 2004, 2005)
without first estimating the optical properties. Simulation results have shown a reduction in
cross-talk and improvement in resolution made possible by this ‘direct’ form of spectroscopic
imaging as compared to the ‘indirect’ approach previously reported in the literature.

The issue of the heterogeneity of breast tissue, with respect to tissue optical properties,
has only recently begun to be examined. One study (Shah et al 2004) directly examined
this question, making use of NIR frequency-domain spectroscopy at seven wavelengths for
31 patients. Significant, reproducible, spatial heterogeneity was observed for haemoglobin
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(a) (b) (c)

Figure 1. Slices of a fat-suppressed MRI scan at several depths. (a) z = 1.2 cm, (b) z = 2.4 cm
and (c) z = 4.0 cm.

concentration, H2O concentration and lipid concentration, with the degree of heterogeneity
being somewhat age dependent. As this research made use of spectroscopy rather than diffuse
optical imaging, the question of how the heterogeneity within the breast is spatially distributed
has not yet been clearly answered. A study (Cubbedu et al 2000), making use of time-domain
data, also found significant differences between measurements of total haemoglobin, oxygen
saturation, and amounts of H2O and lipids made at different points on the surface of the breast,
as well as differences between reflectance and transmission measurements. Another study
(Shah et al 2001), making use of frequency-domain data for four wavelengths over a wide
range of modulation frequencies, found variations in breast haemoglobin concentration, µ′

s ,
and breast water content to be correlated with age. These variations were postulated to be a
result of the breast’s changing composition, and specifically with the atrophy of the glandular
tissue as a woman ages. A larger study (Cerussi et al 2001), using measurements at seven
wavelengths, confirmed these results and found breast lipid content to be correlated to age as
well. Two studies (Srinivasan et al 2003, Durduran et al 2002) investigating the bulk properties
of the breast found a correlation between body mass index (BMI) and total haemoglobin
concentration. It therefore seems reasonable to postulate that there are significant optical
differences between the glandular and adipose tissues present in the female breast, although
this assumption has not been definitively validated by empirical investigations.

In this paper, we assume that the breast is composed of distinct glandular and adipose
regions with piecewise constant optical properties, and that the boundary between them can
be determined by concurrent imaging with a higher spatial resolution imaging modality, such
as x-ray imaging, ultrasound or magnetic resonance imaging (MRI). The existence of these
regions, whose size and properties vary as a woman ages and, most likely, at different points
in the menstrual cycle, is clear from MRI scans, as shown in figure 1. In our simulations, we
examine the effect on reconstruction quality of significant differences between glandular and
adipose tissues in blood volume and in lipid concentration.

A number of papers have addressed the use of prior information in the solution of the
inverse problem. Researchers (Pogue and Paulsen 1998) showed that haemodynamic imaging
of a rat cranium could be improved by including anatomical information from a high-resolution
MRI scan. Li et al (2003) examines the linear inverse problem with a spatial constraint,
incorporating the spatial prior by means of a second regularization parameter in the region
in which the anomaly is believed to reside. Simulation results showed that the suggested
multiple regularization parameter selection algorithm is robust to incorrect prior information.
Others (Hero et al 1999) introduced an algorithm to make use of noisy information about
the shape of a region’s boundary in estimating the radionucleide uptake within the region. A
number of studies (Huang et al 2003, Brooksby et al 2003) have combined NIR imaging
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(a) True segmentation (b) Dilated glandular (c) Eroded glandular

Figure 2. Breast geometries used in the simulation. (a) Geometry derived from manually
segmented MRI image, (b) geometry with a dilated glandular region and (c) geometry with an
eroded glandular region.

with other modalities and have quantified the improvement in anomaly characterization,
using measurements at a single wavelength, achieved by means of incorporating prior spatial
information from coregistered MRI and ultrasound images. The use of prior spatial and
spectroscopic prior information has been reported (Intes et al 2004), as well as a Bayesian
approach to the inclusion of a priori anatomical information (Guven et al 2005).

Here, we study the importance of accurately modelling the background structure to
localizing a tumour and characterizing its spectroscopic properties. To this end, information
from other imaging modalities can be used to demarcate the boundary between the two tissues,
and the estimation of the spectral properties of each tissue type is reduced to a low-dimensional
nonlinear optimization problem. In a realistic imaging situation, our information about the
breast structure is likely to be imperfect, due to a number of factors: noise in the underlying
x-ray or MRI measurements and image artefacts in the reconstructions for these imaging
modalities, segmentation errors and errors in the simultaneous co-registration of several three-
dimensional images.

In this work, we examine, both qualitatively and quantitatively, the sensitivity of the
tumour spectroscopic reconstruction with respect to errors in our prior knowledge of the breast
background structure. Four cases are explored: assuming that the breast is homogeneous,
assuming a dilated glandular region, assuming an eroded glandular region and knowledge
of the true background structure. In the dilated and eroded cases, the estimated glandular
segmentations are greater and smaller in volume, respectively, than the true glandular region,
as shown in figure 2. Given our segmentation, we first estimate the overall chromophore
concentrations of the two regions directly, using a Gauss–Newton optimization approach,
and then estimate the inhomogeneity using a linear, perturbational algorithm. Thus, errors in
estimation of the tumour’s spectroscopic properties will occur in two places: error in computing
the mismatch between the expected and actually measured data and error in the sensitivity
matrices used in the linear perturbational model.

Our results qualitatively show that even incorrect information about the background
structure is useful in quantifying tumour chromophore concentrations and in reducing imaging
artefacts, particularly for perturbations in oxy-haemoglobin and deoxy-haemoglobin (HbR and
HbO), which are assumed to be much greater than the differences in blood volume and oxygen
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saturation between the two tissue types. As we have assumed that glandular and adipose tissues
differ more sharply in their lipid content, reconstruction of perturbations of the same order is
more problematic. We also quantify the reconstruction error as a function of regularization
parameter, both within and outside the tumour, for all four cases, assuming perturbations
in individual chromophores within the tumour. We find that large errors in the estimation
of one chromophore’s perturbation tend to be relatively isolated within that chromophore’s
reconstruction.

2. Methods

2.1. Forward modelling

In the simulations that follow, we make use of the diffusion approximation (Arridge 1999,
Boas 1996) to model the steady-state intensity and phase distribution due to a modulated
source, making use of a zero partial flux boundary condition (Aronson 1995, Haskell et al
1994) to model the air–tissue interface:{

−∇ · D(r)∇φ(r, ω) +
(
µa(r) + jω

v

)
φ(r, ω) = S0(r, ω) r ∈ �

1
2Rφφ(r) − D(r)Rj n̂ · ∇φ(r) = 0 r ∈ �̄\� (1)

where the diffusion coefficient, D(r) is 1
3µ′

s (r)
, µa(r) is the absorption coefficient and µ′

s(r)
is the reduced scattering coefficient. The photon fluence is φ(r, ω), a function of position, r,
and modulation frequency, ω. The isotropic source intensity is S0(r, ω) and v is the speed of
light in tissue. The dependence of all the parameters on the wavelength, λ, is implicit. The
spatial extent of the diffusive region is �. The Fresnel boundary reflection coefficients for
the photon density and current are Rφ and Rj , respectively, and n̂ is the direction normal to
the boundary.

In a typical DOT experiment, tissue is illuminated at M source positions, and, for each
source, measurements are made at N detector positions. This procedure is repeated for a
number of wavelengths. It is also possible to make use of a number of modulation frequencies,
but we will assume that all experiments use a modulation frequency of 70 MHz. We further
make the assumption that the absorption at each point in space is a linear combination of C
chromophores whose spectra have been experimentally determined (Li et al 2005):

µa(r, λ) =
C∑

j=1

εj (λ)cj (r) (2)

where εj (λ) is the extinction coefficient of chromophore j for light of wavelength λ and
cj (r) is the chromophore concentration. Specifically, we assume that the absorption at each
wavelength is due to the following four chromophores: oxy- and deoxy-haemoglobin, H2O
and lipids. Motivated by Mie scattering theory, the reduced scattering coefficient is modelled
as follows:

µ′
s(r, λ) = a(r)λ−b(r) (3)

where a(r) represents the scattering amplitude and b(r) is related to average particle size.
In our simulations, the following wavelengths of light have been used: 685, 750, 808,

830, 906 and 980 nm. The first four wavelengths are intended to quantify concentrations of
HbR and HbO, and the last two are situated near peaks in the spectra for H2O and lipids, and
are intended to discern their concentrations. The discretized absorptions and concentrations
have the following relationship:

µa = Ec (4)
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where µa and c are stacked vectors of absorption and concentration values for each voxel:
µa = [µa(685) µa(750) µa(808) µa(830) µa(906) µa(980)]T , c = [cHbO cHbR cH2O cL]T .
The matrix E transforms an image in terms of chromophore concentrations into an image in
terms of absorptions at each wavelength.

2.2. Inverse problem solution

As the inverse problem for DOT is generally severely underdetermined and ill-posed, some
form of regularization, or prior information, is necessary in order to stabilize the inversion
procedure. Thus, the inverse problem is often reduced to minimization of the following
functional (Arridge 1999, Milstein et al 2002, Li et al 2003):

L = arg min
c,a

‖y − h(c, a)‖2
Σ−1

n

+ r
(∥∥c

∥∥2
2 + ‖a‖2

2

)
(5)

where Σn is the measurement noise covariance matrix (assumed to be diagonal in this
paper), y = [y685 y750 y808 y830 y906 y980]T , and h = [h685 h750 h808 h830 h906 h980]T ,

hλ being the hypothesized measurements at wavelength λ, which can be generated by means
of the finite-difference method. The regularization parameter is denoted by r. We note that,
in this work, we are making use of an identity regularization functional.

The adjoint method (Arridge 1995, 1999) can be used to compute, with fairly low
computational cost, a first-order linear perturbational approximation for the change in the
model solution, h, with respect to changes in each voxel’s chromophore concentrations and
scattering amplitude relative to a known background:

h ≈ h0(c0, a0) + J(c0, a0)p (6)

where

J = [
block diag

(
J685

µa
J750

µa
J808

µa
J830

µa
J906

µa
J980

µa

)
E | Ja

]
(7)

and

p =
[

cp

ap

]
(8)

with cp = [cp,HbO cp,HbR cp,H2O cp,L] being the vector of concentration perturbations, and ap

being the vector of perturbations in scattering amplitude. The vector h0(c0, a0) is the incident
field, which is dependent on an assumed background chromophore distribution c0 and the
background scattering amplitude distribution a0. The Jacobian matrix at wavelength λ with
respect to absorption perturbations is Jλ

µa
(c0, a0), where the dependence on c0 and a0 will be

assumed to be implicit, and the Jacobian matrix with respect to scattering amplitude is

Ja = [(
J685

a

)T (
J750

a

)T (
J808

a

)T (
J830

a

)T (
J906

a

)T (
J980

a

)T
]T

. (9)

In order to simplify the exposition of our simulations, we assume in our simulations that all
tissues have the same scattering amplitude. The least-squares solution to the linear inverse
problem is then

p̂ = JT Σ
− 1

2
n

(
Σ

− 1
2

n JJT Σ
− 1

2
n + rI

)−1
Σ

− 1
2

n (y − h0(c0, a0)). (10)

In equation (10), we note than an error in our knowledge of the background concentrations
can cause a systematic reconstruction error, by introducing an error in our estimate of the
incident field, h0(c0, a0), and by causing inaccuracies in the Jacobian, J. It is these systematic
errors that are analysed in the simulation results that follow.

The direct spectral reconstruction approach to the inverse problem does impose an
additional computational cost compared to more traditional processing schemes. Rather than
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solving for the absorption and scattering perturbations at each wavelength independently, we
solve for all chromophore concentrations simultaneously, making use of measurements at all
wavelengths. In the case of an identity regularization function and our particular configuration
of sources and detectors, the solution is still computationally feasible with non-specialized
computing hardware, and, if a more complex regularization function is employed, iterative
methods, such as the LSQR algorithm (Paige and Saunders 1982), may be employed.

In this paper, we make use of the generalized cross-validation (Golub et al 1979, Golub
and von Matt 1997) approach to regularization parameter selection, which is based on the
Bayesian criterion of minimizing expected reconstruction error.

2.3. Estimation of background chromophore concentrations

Before the linear inverse problem can be solved, we must first estimate the incident field,
h0(c0, a0), in equation (10). Here, we assume that the breast is piecewise constant, with
distinct glandular and adipose regions, and we must estimate the chromophore concentrations
in these regions. We solve this optimization problem using the Gauss–Newton method, solving
for the parameter vector g = [g1,HbR g1,HbO g1,H2O g1,L g1,a g2,HbR g2,HbO g2,H2O g2,L g2,a]T ,
where the adipose and glandular regions are labelled region 1 and region 2, respectively.

Now, we define the following indicator vectors, assuming a lexicographic ordering of the
breast voxels in the forward problem:

(ij )k =
{

1, voxel k is in region j

0, voxel k is not in region j .
(11)

The Jacobian with respect to changes in background chromophore concentrations is computed
as follows:

Jg = J




i1 0 0 0 0 i2 0 0 0 0
0 i1 0 0 0 0 i2 0 0 0
0 0 i1 0 0 0 0 i2 0 0
0 0 0 i1 0 0 0 0 i2 0
0 0 0 0 i1 0 0 0 0 i2


 (12)

where J is the Jacobian with respect to voxelwise changes in concentration and scattering
amplitude.

Estimation of the parameter vector, g, then proceeds by means of the Gauss–Newton
algorithm, with a cubic line search.

2.4. Reconstruction error analysis

In this section, we analyse the image reconstruction error in the case of Gaussian noise,
decomposing it into deterministic and stochastic components. Firstly, we assume that
y = ym +n, where ym is known and n is a zero-mean vector of Gaussian noise, with covariance
matrix Σn. For the sake of clarity, we assume in the analysis that follows that h0, n, J and y
have been pre-multiplied by Σ1/2

n .
The expected mean-squared reconstruction error for a given regularization parameter can

be written as follows:

C = E‖M(c0 + p) − M(ĉ0 + JT (JJT + rI)−1(ym + n − h0))‖2
2 (13)

where c0 is the true background, p is the true perturbation, ĉ0 is the estimated background and
M is a selection matrix, focusing on a particular region of interest.
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(a) Source geometry (b) Detector geometry

Figure 3. Source and detector configurations used in the simulations. (a) Source configuration
and (b) detector configuration.

Assuming that the noise is statistically uncorrelated with c0, p, ĉ0, ym and y0, we can
show that

C = Cbias + Cvariance (14)

where

Cbias = ‖M(c0 + p) − M(ĉ0 + JT (JJT + rI)−1(ym − h0))‖2
2 (15)

Cvariance = tr((JJT + rI)−1JMT MJT (JJT + rI)−1). (16)

Thus, mean-squared error is comprised of two components: Cbias, the bias, represents the
deterministic component of the error and Cvariance, the variance, represents the stochastic
component of the error, which originates from the amplification of the measurement noise.
In the results that follow, we will be primarily interested in the bias that results from making
incorrect assumptions about the breast background structure.

3. Results and discussion

An MRI image of a healthy breast, shown in figure 1, was manually segmented into air,
glandular and adipose regions and interpolated onto a 2.5 mm uniform grid as shown in
figure 2(a). The simulation results presented here were generated by a finite-difference
forward model with 2 mm uniform grid spacing. A tumour of diameter 2 cm was simulated,
centred at (x = 13 cm, = 10 cm, z = 2.5 cm). The breast thickness is 7.5 cm, and we made
use of simulated 70 MHz frequency-domain measurements, using 40 sources and 9 detectors,
with a geometry as shown in figure 3. We assumed the following chromophore concentrations
for the adipose and glandular regions, respectively, 20 µM HbO, 5 µM HbR, 30% H2O,
40% lipid and 22 µM HbO, 5.5 µM HbR, 40% H2O, 10% lipid. The true chromophore
distributions of breast tissue are yet to be determined experimentally, but we have chosen
values to be consistent with published results (Shah et al 2004). The following chromophore
concentrations were simulated for the tumour, which has a greater blood volume and a lower
oxygenation than the surrounding tissue (Fishkin et al 1997): 40 µM HbO, 15 µM HbR, 20%
H2O, 10% lipid. The simulated tumour has a 50% perturbation in H2O content, and has the
same lipid concentration as the surrounding glandular tissue. Amplitude-dependent Gaussian
noise with a variance of 1% was added to the measurements, and an identically distributed
Gaussian phase uncertainty with a variance of 1◦ was assumed (Zhang et al 2001).
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(a) Adipose tissue (b) Glandular tissue

Figure 4. Estimated background chromophore concentrations. (a) Adipose tissue and (b) glandular
tissue, with the true chromophore concentrations of the tumour shown for the purpose of
comparison.

Table 1. Estimates of background chromophore concentrations.

HbO (µM) HbR (µM) Water (%) Lipid (%)

Adipose region
True concentrations 20 5 30 40
Homogeneous assumed 21.09 5.29 36.21 22.63
Dilated glandular assumed 19.18 4.81 27.07 49.96
Eroded glandular assumed 20.20 5.05 31.22 36.30

Glandular region
HbO (µM) HbR (µM) Water (%) Lipid (%)

True concentrations 22 5.5 40 10
Homogeneous assumed 21.09 5.29 36.21 22.63
Dilated glandular assumed 21.72 5.43 38.14 15.23
Eroded glandular assumed 22.47 5.64 42.13 4.02

We estimated background chromophore concentrations and reconstructed perturbations
for four cases: true knowledge of the breast background structure, an assumed homogeneous
background structure, a dilated glandular region and an eroded glandular region. In the latter
two cases, we increased and decreased the volume of the glandular part of the breast using
erosion and dilation operators, as shown in figures 2(b) and (c). The true volume of the
glandular tissue is 355 cm3 and that of the adipose tissue is 817 cm3. We dilated the glandular
tissue to a volume of 544 cm3 and eroded it to a volume of 239 cm3.

The results of the background concentration estimation for the four cases are shown in
table 1. These results are graphically illustrated in figure 4. We note the fairly large variation
in the estimates, particularly in the concentrations of H2O and Lipids, for which there is a
greater difference between the two regions. In figure 4(b), the true tumour chromophore
concentrations are also shown for the purpose of comparison.

In each of the above cases, we computed the Jacobian using these estimated background
properties and solved the linear inverse problem to reconstruct an image of the perturbation,
making use of equation (10). The regularization parameter was chosen using the GCV
criterion. The true solution, for the z = 2.5 cm slice is shown in figure 5, and the
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Figure 5. True solution for absorption concentrations.

reconstructions, for the same slice, can be seen in figure 6. We note that an excellent
spectroscopic reconstruction of a tumour in an inhomogeneous background can be obtained,
provided that the background structure is known with a high degree of accuracy, as shown
in figure 6(a). On the other hand, the reconstruction assuming a homogeneous background
is plagued by large image artefacts, as shown in figure 6(b). In comparing the dilated and
eroded glandular cases, as shown in figures 6(b) and (c), with the homogeneous case, we note
that even imperfect prior information is useful in reducing image artefacts. In addition, the
reconstructions for HbR and HbO in figures (c) and (d) are superior to the reconstruction for
H2O concentration, which is to be expected given the larger difference between the adipose
and glandular tissue in their H2O content. We believe that the superiority of reconstruction
in the case of the assumed eroded glandular structure as compared to the case of the assumed
dilated structure is not a general result, but rather is an effect introduced by particular cases
studied in our simulations.

In order to further quantify the effect of imperfect background information on
spectroscopic image reconstructions, we have computed the image reconstruction bias for
each of the four cases, using equation (15), for perturbations in individual chromophores only.
This bias is essentially computed by generating a linear reconstruction for each value of the
regularization parameter, without any noise added to the measurements (zero-mean random
noise manifests itself only in the variance). By using a perturbation in a single chromophore
only, we can directly examine the reduction in bias as a function of the regularization parameter
and also examine cross-talk, which is the leakage of a perturbation in one chromophore into
the reconstruction for another chromophore.

Figure 7 shows the per-voxel reconstruction bias for a 10 µM perturbation in HbO only as
a function of the regularization parameter. The square root of the mean bias for voxels within
and outside the tumour is shown using solid and dashed lines, respectively. Each quadrant
shows the bias for all four chromophore reconstructions, for a given background structure
assumption. In the case of perfect background structural information, as shown in figure 7(a),
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(a) Known background (b) Homogeneous background

(c) Dilated glandular (d) Eroded glandular

Figure 6. Linear reconstructions of chromophore concentrations given a number of assumptions
about the breast background. (a) Reconstruction assuming accurate knowledge of background
structure, (b) reconstruction assuming a homogeneous background, (c) reconstruction assuming a
dilated glandular region and (d) reconstruction assuming an eroded glandular region.

for the HbO reconstruction and voxels within the tumour we see the following behaviour: for
a large value of the regularization parameter, the bias is, as expected, 10 µM, meaning that
no perturbation is reconstructed where one is expected. The bias decreases to a minimum
value as we reduce the level of regularization. After this point, discretization error in the
iterative, numerical solution of the forward model tends to be amplified, resulting in image
artefacts. Strictly speaking, this numerical quantization noise is deterministic, but different
forward model implementations will produce quantitatively very different quantization noise
realizations. Thus, our bias calculations for small values of the regularization parameter are
particular to our finite-difference forward model implementation and grid resolution, although
these results are likely to be qualitatively accurate for any numerically computed forward
model. An additional reason for the bias tending to increase exponentially, even in the case
of perfect background structural information, as we decrease the regularization parameter
beyond a certain point, is that the actual measurements used in the inversion make use of a
fully nonlinear model, while our inversion procedure assumes that a first-order linearization
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(a) Known background
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(b) Homogeneous background
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Figure 7. Reconstruction bias for an HbO-only perturbation as a function of the regularization
parameter. (a) Reconstructions bias when the background is known exactly, (b) bias when a
homogeneous background is assumed, (c) bias assuming a dilated glandular region and (d) bias
assuming an eroded glandular region. Note that the bias is given in the units that are natural for
each chromophore (i.e. µM for HbO and HbR and percentage for H2O and lipids). The horizontal
axis shows the logarithm, base 10, of the regularization parameter.

is accurate. Thus, this aspect of the model mismatch is amplified. The bias in the HbO
reconstruction does not reach a minimum of zero because the regularization used here is
not sufficient to overcome the inherent blurring in the forward model. Other regularization
schemes may allow for a further reduction in bias.

For the HbO reconstruction, the value of the regularization parameter at which we see
a minimum in the bias varies approximately two orders of magnitude, depending on the
background structure assumption that is being made. Clearly, the lowest achievable bias is
attained when the background structure is known perfectly, as shown in quadrant (a). We also
see in this quadrant that even with perfect information, at the point that minimizes bias in
HbO there is still a small degree of spectroscopic cross-talk between the HbO reconstruction
and the reconstructions for the other three chromophores. In quadrant (b), where we assume
a homogeneous background, the minimum achievable bias is somewhat higher than in the
case of perfect background information, as expected, and, at the value of the regularization
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Figure 8. Within-tumour bias versus outside-tumour bias, for a perturbation in HbO only, for each
of the background structure assumptions, over a wide range of regularization parameters.

parameter where the bias is minimized in HbO, we are beginning to see considerable bias in the
H2O reconstruction. In figures 7(c) and (d), in which we assume dilated and eroded glandular
structures, respectively, it is somewhat surprising that the minimal achievable bias in HbO is
not much different than in the case of perfect information, but, at this minimal point, we are
beginning to see considerable bias in the reconstructions for the other three chromophores. In
all four cases, the GCV algorithm returned a choice of regularization parameter between 0.1
and 1.0.

The square root of the mean bias for voxels outside the tumour is shown using dashed lines,
essentially quantifying the degree to which image artefacts are reconstructed by our inversion
approach. Given our noise model and background assumptions, the H2O reconstruction shows
the greatest sensitivity to background modelling errors, as the value of the regularization
parameter at which the image artefacts tend to increase exponentially is consistently higher
than for the remaining chromophores. It is also interesting to observe that the value of
the regularization parameter at which the bias seems to increase exponentially differs for
the bias within the tumour as compared to the bias outside the tumour. This indicates that
when there is background modelling error, we have a trade-off between tumour reconstruction
accuracy and background artefact suppression. We note the differences in regularization
parameters at which point the artefacts tend to increase exponentially for the four background
structure assumptions, which clearly show the greater presence of image artefacts as our
knowledge of the background medium worsens. Figures 7(b)–(d) show that a large bias in the
estimate of background lipid concentration can be mitigated, to a certain extent, by the image
reconstruction. It may be that more sophisticated approaches to the inverse problem solution
can reduce the image artefact bias somewhat. For example, penalizing the image gradient
rather than the image norm may tend to produce solutions which are more concentrated in a
single region.

In order to analyse the minimal bias that is possible, both within and outside the tumour,
we plot the reconstruction bias within the tumour versus the bias for voxels outside the tumour
in figure 8, over a wide range of regularization parameters. The optimal inversion scheme
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would intersect the origin, minimizing both the bias within the tumour and the image artefacts.
For the reasons discussed above, even in the case of perfect background structural knowledge,
we cannot achieve this goal, but our analysis shows the extent to which the best achievable
reconstruction result varies as our knowledge of the background structure worsens. We
note that assuming dilated or eroded background structures increases the within-tumour bias
only modestly, given an optimal means for choosing the regularization parameter, but these
assumptions increase the bias for voxels outside the tumour more substantially. As expected,
the worst achievable result is attained when we assume a homogeneous background structure,
in which case the minimum achievable bias within the tumour is significantly higher than for
the other three cases, and the level of image artefacts is somewhat worse as well.

We have repeated the analysis above for perturbations in HbR, H2O and lipids, obtaining
results that are qualitatively very similar to the case of an HbO perturbation. We have also
computed the variance of the image reconstruction for the four cases of spatial prior information
mentioned above, as we vary the regularization parameter. As expected from equation (16),
in which the background structure estimate does not appear, the variance does not noticeably
depend on the prior information used in the reconstruction.

4. Conclusion and future work

We have described a two-step algorithm for combining a high-resolution segmentation of the
breast into distinct tissue types with a spectroscopic DOT reconstruction. In our approach, the
background chromophore concentrations in the glandular and adipose regions are estimated
using nonlinear Gauss–Newton iterations and the perturbation is estimated with a linearized
spectroscopic reconstruction. If the segmentation is known with precision, we are able to both
localize and characterize the tumour with very high accuracy.

Given that the true structure of the breast, as evidenced by MRI scans, is likely to
be heterogeneous, we have explored the importance of this heterogeneity in linearized
reconstructions. Specifically, we have reconstructed a perturbation when the breast background
is assumed to be heterogeneous, though highly structured. We have examined the case where
the breast is assumed to be homogeneous and cases in which the assumed glandular tissue
volume is ‘dilated’ or ‘eroded’ with respect to the true structure. In each of these cases,
we have first estimated the background chromophore concentrations and then computed a
perturbation assuming this estimate of the background optical properties. Our results clearly
show that even incorrect knowledge of the background can be useful in localizing anomalies,
but that the mismatch between our assumptions and reality can introduce severe bias in image
reconstructions.

It is interesting to note that incorrect spatial prior structural information seems to have
an asymmetric effect on the image reconstruction. This is evidenced by the fact that
the minimum achievable bias within the simulated tumour increases more slowly than the
minimum achievable bias outside the tumour (i.e. the level of image artefacts) as the quality
of our prior structural information worsens. It may be possible to use this tendency in image
reconstruction algorithms, utilizing approaches specifically designed to focus the solution of
the inverse problem within a region of limited spatial support. Further research will also
examine whether the prior information about the background structure can be applied in a
probabilistic manner.

The analysis that we have conducted here gives us a framework for understanding the
effect of our assumptions on reconstruction bias. As we improve our algorithms, the statistical
approach shown here can quantify the reconstruction accuracy gains that are achievable,
potentially justifying the additional computational cost. It is quite clear that, if there is
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significant optical heterogeneity within the breast, some sort of structural background prior
information may be necessary if we are able to obtain quantitatively accurate images using
linearized methods. Future work will address whether this situation is improved if we make use
of fully nonlinear optimization methods, and will also address the question of regularization
parameter selection in the case of model mismatch. We also plan to examine how the results
reported here generalize to the case where not only the constituent components of the breast
are heterogeneous, but its scattering coefficient is spatially variant as well.
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