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Abstract

Diffuse optical tomography (DOT) is a new and effective technique for
functional brain imaging. It can detect local changes in both oxygenated
and deoxygenated haemoglobin concentrations in tissue based on differential
absorption at multiple wavelengths. Traditional methods in spatio-temporal
analysis of haemoglobin concentrations in diffuse optical tomography first
reconstruct the spatial distribution at different time instants independently,
then look at the temporal dynamics on each pixel, without incorporating any
temporal information as a prior in the image reconstruction. In this work,
we present a temporal haemodynamic response function model described by
a basis function expansion, in a joint spatio-temporal DOT reconstruction of
haemoglobin concentration changes during simulated brain activation. In this
joint framework, we simultaneously employ spatial regularization, spectral
information and temporal assumptions. We also present an efficient algorithm
for solving the associated large-scale systems. The expected improvements in
spatial resolution and contrast-to-noise ratio are illustrated with simulations of
human brain activation.

1. Introduction

Diffuse optical tomography (DOT) is a relatively new functional imaging technique that can
provide three-dimensional mapping of the blood volume and oxygenation in biological tissues
to depths of up to several centimetres, based on the interaction of near-infrared light and human
tissue. This is of significant benefit for the non-invasive monitoring of cerebral haemodynamics
and oxygenation (Villringer et al 1993, Hoshi and Tamura 1993, Villringer and Chance 1997).
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Compared with functional magnetic resonance imaging (fMRI), DOT has several advantages,
including higher temporal resolution and lower cost, and also disadvantages, in particular
lower spatial resolution.

In DOT, one needs to solve a tomographic inverse problem. This inverse problem is
generally ill-posed because of the highly scattering nature of tissue in the near-infrared
wavelength range and the limited number of measurements, which result in serious
amplification of the data noise in the solution. In addition, although the haemodynamic
(and therefore the optical) properties of interest may change in time, the model used in
tomographic reconstructions is usually spatial, not temporal. Traditional methods used
to analyse this spatio-temporal process follow separate spatial and temporal processing
(Barbour et al 1999, 2001). This strategy usually includes three steps: first the spatial
distribution of the optical properties, such as absorption and/or scattering coefficients, is
reconstructed at each time instant independently based on measurement data and the system
model; then the results are transformed to spatial maps of haemoglobin concentration changes
using spectroscopic analysis (Delpy et al 1988); finally temporal analysis is applied to
the time courses at each pixel or on some region of interest. To address the ill-posed
inverse problem in the spatial reconstruction, regularization methods have been widely
used, e.g. Arridge er al (1993), O’Leary (1996), Pogue er al (1999) and Gaudette et al
(2000). These methods tend to employ spatial prior knowledge or assumptions to restrict the
solution space. Although some work has suggested combining the first two steps together,
resulting in a direct reconstruction of haemoglobin concentration changes from optical data
(Hillman 2002, Li et al 2004, 2005), spatial and temporal processing have still been done
separately.

In contrast, some work has been reported recently employing temporal information for
joint spatio-temporal reconstruction in DOT. In Kolehmainen et al (2003), temporal evolution
of the optical properties was modelled by a state-space model, and the whole spatio-temporal
process was estimated using a fixed-interval Kalman smoother algorithm. In Prince et al
(2003), temporal changes of the optical properties were first modelled with the sum of
several sinusoidal functions with known frequencies, chosen to correspond to different
physiological factors, then the linear coefficients of these sinusoids became the new unknowns
which evolved in time according to a state-space model. A comparison work among several
joint spacetime regularization methods for discrete, linear inverse problems can be found in
Zhang et al (2005).

In fMRI data analysis, haemodynamic response function (HRF) models have been used
for some time as a convenient and flexible means to directly model the temporal dynamics of
the haemoglobin concentration (Friston et al 1994, 1998, Rajapakse et al 1998, Gossl et al
2001, Marrelec et al 2002). These models are based on the assumption that the underlying
‘brain activation’ system is linear and time invariant, and the HRF is the transfer function (in
the frequency domain) or the impulse response function (in the time domain) of the system.
The haemodynamic changes are modelled as the convolution of the HRF and the stimulus
function, which is generally a boxcar function and corresponds to the experimental stimulus
paradigm. Pixelwise estimation of the HRF parameters leads to either a linear or a nonlinear
optimization problem, depending on the parametrized model used for the haemodynamic
response function.

The assumption of stationarity and linearity of the underlying physiological process in
HREF is a good approximation to the real system as long as the inter-stimulus interval does not
decrease beyond a few seconds (Dale and Buckner 1997, Buckner 1998). In addition, this
assumption has been justified by the observation of additivity in the fMRI signal (Boynton et al
1996), and it is believed that the assumption holds in a wide range of experimental conditions
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(Glover 1999). The HREF is thought to vary across different subjects, different areas of the
brain and different stimulations (Aguirre e al 1998).

The HRF has been estimated in fMRI data analysis using several methods. Among
them, different sets of basis functions have been used to span the HRF subspace, resulting
in a least-squares solution for the linear coefficients (Friston et al 1998); parametric methods
have assumed a family of functions for the shape of the HRF and estimated the parameters
(examples including Poisson functions (Friston et al 1994), Gaussian functions (Rajapakse
et al 1998), truncated Gaussian functions (Gossl ef a/ 2001) and joined half-cosine functions
(Woolrich et al 2004)); and a Bayesian framework was generated to directly estimate the HRF
or its parameters (Marrelec et al 2002, 2004).

Among these methods, the generalized linear model (GLM) is perhaps the most popular.
In this work, we explore the use of the GLM framework with basis function expansions
in a spatio-temporal DOT reconstruction. To use such a model in DOT, we face several
obstacles, due to differences between fMRI data analysis and DOT reconstruction. First, in
optical tomography, we need to solve an ill-posed inverse problem and the forward model
is a spatial, but not a temporal, mapping. In contrast, in fMRI, the pixelwise time series
of the blood-oxygenation-level-dependent (BOLD) signal can be directly used to model
haemodynamic changes. Second, in optical techniques, we need to translate temporal changes
of optical properties into changes of haemoglobin concentrations by using chromophore
spectral information at multiple wavelengths, while in fMRI this is not necessary. Third, fMRI
selectively detects only deoxy-haemoglobin concentration variations, while optical methods
are sensitive to both oxy-haemoglobin (HbO) and deoxy-haemoglobin (HbR), as they are the
two dominant absorbers in the near-infrared wavelength range. Thus, for DOT separate HRFs
for HbO and HbR are required.

Based on these considerations, in this work we derive an ordinary least-squares solution,
using a linearized forward model, in which we simultaneously employ spatial regularization,
spectral information and temporal basis assumptions for reconstruction. The resulting
framework leads to a large system of equations, even if the spatial dimension of the problem
is small or moderately sized. We have developed an efficient algorithm that can reduce the
computational complexity back to that of the spatial dimension only by iteratively solving the
system while exploiting its embedded blockwise Kronecker product structure.

The paper is arranged as follows. In section 2, we will describe the use of an HRF model in
fMRI time-series analysis, and derive the framework exploiting HRF for DOT reconstruction.
Also our efficient computational algorithm will be presented. In section 3, we illustrate the
improvement in simulations of human brain activation. A discussion section and a conclusion
section follow.

2. Methods

In this section, we will first describe the use of an HRF model in fMRI data analysis, then
derive how to use such a model in DOT spatio-temporal reconstructions of haemoglobin
concentration changes.

2.1. HRF model in fMRI data analysis

In fMRI data analysis, we can model the BOLD time-series signal x; (¢) at the ith pixel as the
convolution of the unknown haemodynamic response function 4; (¢) with the stimulus function
s(t) as

x;(t) = (h; x5)() +u;(t) (1)



4628 Y Zhang et al

where u; (t) is the model noise. If we sample the stimulus function and the HRF at time points
qg=12,..., 0, and the BOLD signal at time points n = 1, 2, ..., N, the resulting discrete
convolution model is

0
Xn,i = ZSQ—q+nhq,i + Up,i (2)

q=n
for each pixel i and time index n. This can be rewritten in a matrix—vector form as
x; = Sh; + u; (3)

where x; is the column vector of the BOLD signal at the ith pixel, S € RV*€ is the stimulus
matrix, whose rows are stimulus time series with shifted lags, and h;, u; are the HRF time
series and the measurement noise vector, respectively.

Assuming we use L temporal basis functions, {b,(¢), ..., by (¢)} to span the HRF space
and supposing the same set of basis functions is used for all pixels, we can write

cl,z

hy=[b;---b.]-| : |=Bc, 4)

cL,t

where the matrix B contains the basis function time series in its columns and ¢; is the linear
coefficient vector for the ith pixel. Substituting equation (4) into equation (3) and setting
F =SB, F € RV*L we have

x; = Fe¢; +u;. ®))

This is the basic GLM model in fMRI time-series analysis, first developed by Friston
et al (1994). The matrix F is known as the design matrix and represents the convolution of the
stimulus function with the HRF temporal basis functions. For the time series for each pixel,
the parameter vector ¢; can be obtained from an ordinary linear least-squares solution. Note
that in the original work, an unknown constant variable was added as a parameter to take the
constant baseline level into account, and thus the design matrix was augmented by a constant
column vector whose entries were all 1’s. In this work, we will not consider the constant
level.

As examples of the selection of the basis functions for the HRF model (or avoiding the
detour of the convolution and directly selecting the columns of the design matrix F), discrete
cosine transform basis functions were used in Friston et a/ (2000), and mixtures of gamma
functions with their derivatives were used in Friston ef al (1998).

2.2. HRF model in DOT reconstruction

As noted in section 2, the use of an HRF model in DOT reconstruction differs from that in
fMRI data analysis in three major aspects:

(i) In fMRI, the data analysis is based on a series of 2D brain pseudo-anatomical images,
where the brightness values of the pixels represent the BOLD signals. Thus, the time
series at each imaging pixel can be used to directly model the haemodynamic changes. In
contrast, in DOT we measure the transmitted light intensity at detectors on the boundary
and need to solve an inverse problem using a forward propagation model. This forward
model maps and mixes the optical properties of the brain tissue to the light measurements,
and is a mapping in space, not in time.
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(i) In general, we are more interested in functional parameters such as changes of
haemoglobin concentrations than optical parameters, and thus the reconstructed spatial
distributions of the optical properties at multiple wavelengths need to be translated to
those of concentration changes of HbO and HbR, given extinction coefficients or spectral
information on the biological tissues (Boas et al 2002).

(iii) The BOLD signal in fMRI is a function of only one metabolic quantity: concentration
changes of deoxy-haemoglobin A[HbR], due to the fact that deoxy-haemoglobin is
paramagnetic while oxy-haemoglobin is diamagnetic. So one needs only the HRF
of deoxy-haemoglobin. But in DOT, concentration changes of both oxy- and deoxy-
haemoglobin will affect the absorption of the tissue, and thus the detected light intensity.
The temporal dynamics of HbO and HbR are known to be different (Villringer and Chance
1997, Franceschini et a/ 2000), so one needs to employ two different HRFs, one for HbO
and one for HbR, respectively.

To include these changes, we must first model the relationship between the light intensity
measurement and the linear coefficients of HRF basis functions of both HbO and HbR, then
solve the inverse problem. Assume we have two sets of temporal basis functions, where
one has L basis functions for the HRF of HbO, {bl(t), .o br, (t)}, the other has L, basis
functions for the HRF of HbR, {d1 ®),...,dr, (t)}:

- i
hbo, = [b;-- by, ]-| : |[=B-v

)/Ll,l

- L (6)
hbr; =[d;---d;,]-| : |=D-o;

_O'qul_

where hbo; (hbr;) is the HbO (HbR) HRF time series of the ith pixel, matrix B € R¢*11
(D € R9*L2) contains the HbO (HbR) basis functions in its columns and ~; (¢;) is the linear
coefficient vector at ith pixel for HbO (HbR). Accordingly, the time series of oxy-haemoglobin
concentration changes, A[HbO], and deoxy-haemoglobin concentration changes, A[HbR], at
the ith pixel can be represented as

A[HbOJ; = Fupo +v; +u;

@)
A[HbR]; = Fypr - 0; + m;,
where Fyyo = SB € RV*I1 and Fypr = SD € RV*12 are the design matrices for HbO and
HbR, respectively. That is, these design matrices are the convolution of the same impulse
function matrix S with each basis function matrix, B or D.

The next step is to translate concentration changes of HbO and HbR to changes in
absorption coefficient u,, denoted here by x. We assume in this work that only absorption
coefficients are of interest in DOT reconstructions, and that the scattering coefficients are
constant and known. At one pixel at one time instant, the changes of p, at two different
wavelengths A, A, are related to A[HbO] and A[HbR] by

417 [emo € | [A[HDBO] ®
x| T | e || A[HBR]
HbO HbR

E
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where E is the extinction coefficient matrix. Substituting equation (7) into (8), and stacking
all the time-series values for one pixel together, we have

Al
X; A[HDbOJ; Frvo +vi +w;
LI;Z} E®Iv [A[HbR]i] Eely) [FHbR cop+m; ]’ )
where ® denotes the Kronecker product, defined so that the ijth block of [A ® B] = a;;B
(Graham 1981); and Iy denotes the N-dimensional identity matrix. Now we arrange all the

time series and the parameters of all the pixels together to obtain

)()Ll FHbor +U
[Xh} — (E®1y) [FHsz vl (10)

The dimensionalities are: X* € RV*? is the time-by-space s, distribution matrix at
wavelength A;, where N and P are the number of time points and the number of imaging
pixels, respectively; and T' € RLF and ¥ € RE**P are the basis-by-space parameter
matrices for HRFs of HbO and HbR, respectively. U, M are the model noise matrices.

To relate the absorption coefficient distributions to the measurement data, we employ
a linearized forward model in the reconstruction. Such a linear model can be obtained
by linearization, e.g. using a Born or Rytov approximation (Kak and Slaney 1988),
and discretization of the underlying differential equation model, based on the diffusion
approximation for light propagation in a highly scattering medium such as human tissues
(Ishimaru 1978).

Note that it will be convenient to apply the forward model if we change X* from a form of
time-by-space to a form of space-by-time. To achieve this, we write equation (11) separately
at each wavelength as

XM = €}l o [Fipol + Ul + €/ [Fing = + M]

A A A (1D
X*? = €HbO [FHbor + U] + GHbR[FHbRE + M]
then transpose both X*'s and stack them together again as
). & r ]__‘TFII_;bO +U”
=ExIp) . 12)
[X} el [ETFabR+MT (

Let Y4 € RM*N represents the space-by-time light intensity measurement matrix at
wavelength A; where M is the dimension of the measurements and A* € R™*” the forward
matrix at wavelength A;, we apply the forward models, at both wavelengths, as

Yo [AM 0 7[xMT
=0 e
AM 0 FTF[zbo ﬁ
- [ 0 A“} E®1e) [ETF{H,R ! [1\71} 4
where fj, M are measurement noise.

Now the new inverse problem is to estimate parameter matrices I' and 3 given
measurements Y*, forward models A%, extinction coefficients in E and design matrices
Fuvo, Frpr.

If we write the two block equations in equation (13) separately, in a form similar to
equation (11), use the property of Kronecker products that vec(AXB) = (B” ® A) vec(X)
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(Graham 1981) and then put the two separate equations back together, we can vectorize
equation (13) as

[vec(Y*‘)} _ |:6ﬁLoFHbo ® A" € Fir ® AA‘:| [veC(FT)} + [Vec(ﬁ)}

_ o (14)
vec(Y??) €2 Frno ® A2 €2 Fyp ® A vec(ZT) vec(M)

We now have a joint spatio-temporal reconstruction framework in equation (14), where
the new unknowns are the linear coefficients of temporal basis functions for both oxygenated
and deoxygenated haemoglobin concentrations, at all imaging pixels, and the augmented
new forward model involves the original spatial forward mapping, the spectrum information
encoded in the extinction coefficients and the temporal assumptions presented by the design
matrices. An ordinary least-squares solution can be obtained to estimate vec(I'" ) and vec(Z7).

2.3. Gradient-type Tikhonov regularization

Although we incorporate temporal basis functions as prior knowledge in regularization, the
augmented forward model for the whole spatio-temporal reconstruction may still be seriously
ill-conditioned. In this case, we use a Tikhonov regularization method to solve equation (14).

For the regularization matrix, a standard zero-order Tikhonov regularization using an
identity matrix is not suitable, because it will penalize the sum of all the linear coefficients of
the basis functions over all imaging pixels, and thus produce over-smoothed results. In the
absence of prior assumptions about the behaviours of different basis functions, one should use
regularization for each distinct basis, while imposing spatial smoothness on the coefficient
distribution. In particular, we expect the neighbouring pixels to have similar behaviour for
each basis function, and therefore introduce a gradient-type Tikhonov regularization, in which
the regularization matrix has the form as I;,,;, ® G, where G is an approximate gradient
operator which estimates the first variation of the spatial distribution of the linear coefficients
along both X and Y directions. We recall that L, and L, are the number of temporal basis
functions for the HRF of HbO and of HbR, respectively.

2.4. An efficient algorithm for this large-scale system

After inclusion of the gradient-type Tikhonov regularization into equation (14), we have the
following normal equation to solve:

vec(YH) F,@P +I;, ® GG F, ® P, vee(™)
|:V€C(§T‘2)j| - [ FI @P, F;P;+1, ® AzGTGj| [VGC(2T)1| (15
where
Fi = FiyoFmbo
F> = FigoFrr
Fs = FjzFrer
Py = (eéﬁao)zAleAM + (eﬁio)zA,{zAkz a16)

_ M Al T A A T

P> = €qpo€mmrAs, An + Embo€rpr AL, A
(L h \2aT A \2AT

P; = (GHbR) AL A+ (eHbR) ALA,

Vi — M AT whi o AT vhe
Y _GHbOAMY FHbO+€HbOAng FHbO

Vie — oM T yvi A2 T v
Yt = eHbRAMY Frpr + eHbRA)\QY Frpr.
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Equation (15) is very large scale, with dimension of (total number of basis functions) X
(number of imaging pixels). Directly solving the system will involve high computational
complexity and a huge demand on memory. However, the blocks of the normal equation have
a Kronecker product structure, which can be used to reduce the computation. We thus develop
a blockwise iteration method which reduces solving the normal equation to the order of spatial
dimension only, i.e. the number of imaging pixels.

Specifically, we alternatively solve for the coefficient matrices of HbO or HbR,
vec(T'T), vec(=T): suppose after the (k — 1)th step, we have X7 |, then at the kth step
we solve

(F, ® P, + 1, ® A’G” G) vec(T]) = vec(Y" — P,=]_ | FY)

(F3 ® P +1,, ® 12G” G) vec(E]) = vec(Y* — P,TTFy).
This is actually a 2 x 2 block Gauss—Seidel iterative method. During each iteration, the
two systems in equation (17) can be further decoupled into a sequence of independent, even
smaller size systems. To see that, for the first step in equation (17), suppose we have the

singular value decomposition (SVD) of the symmetric matrix Fy, as F; = VHbOEHboV}TIbo s
we can make variable changes as

7 = FZVHbO
W= (ﬁ — P, F}) Vo,
and again use properties of Kronecker products that vec(AXB) = (BT ® A)vec(X) and

AB®CD = (A® C)(B®D). The first equation in equation (17) then reduces to L;
independent systems which have the size of the number of imaging pixels:

a7

(18)

(Buvoli i P1 + MG G)Z.; =W, (19)
where Z.; and W.; denote the ith column of matrices Z and W, respectively, and [Xppo]l; ;
denotes the ith diagonal component of diagonal matrix Xyp0,i = 1,2, ..., L. After solving
all L; systems, the estimate of T’} can be obtained by

I} =ZVi,o. (20)

The transform V0 is orthogonal and thus will keep optimality in the least-squares sense
for both Z and I'] . The second equation in equation (17) can be solved in a similar manner,
with orthogonal transform Vypr obtained from SVD of F3: F3 = VHbREHbRVIT{bR.

In summary, the iteration method only needs to solve L; + L, smaller systems which
have the size of the number of imaging pixels at each iteration. In addition, all the matrices in
equation (16), the SVDs of F; and F3, and all L, + L, inverse matrices (in the case that the
regularization parameter A is fixed) can be calculated once at the beginning and used for all
iterations, to save both in computation and memory. The augmented matrix in equation (15)
has to have block diagonal dominance to guarantee convergence, and the convergence speed
is a function of the degree to which the diagonal block matrices dominate. This dominance
turned out to be the case for all our simulations.

3. Simulation results

To illustrate this framework of joint spatio-temporal DOT reconstructions with an HRF model,
and explore possible improvement over the traditional reconstruction method, we present some
simulations of human brain activation.

Simulations were performed in a semi-infinite geometry, with 9 sources and 16 detectors
placed on the air—tissue plane to collect reflection measurements, as shown schematically in
figure 1.
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sources

9
16 detectors !

g Y=6.5cm

X=6.5¢cm

Figure 1. Geometric arrangement of sources and detectors: 9 sources and 16 detectors are put on
the air—tissue boundary plane in a standard ‘9 within 16’ interlaced grid pattern. The minimum
source—source and source—detector separations are 2.0 cm and 1.41 cm, respectively. Continuous-
wave measurements are simulated at two wavelengths: 690 nm and 830 nm.

The minimum source—source and source—detector separations are 2.0 cm and 1.41 cm,
respectively. In real applications, due to the limited dynamic range of the detectors,
measurements on channels (source—detector pairs) with too large a separation are dominated
by noise. So here we only use the measurement of the first (1.41 cm) and the second (3.16 cm)
nearest neighbouring channels, altogether 84 channels. Continuous-wave (CW) measurements
are simulated at two wavelengths: 690 nm and 830 nm. Only the two-dimensional X-Y slice
where an anomalous region is assume to be centred was reconstructed. The thickness of this
slice is 0.25 cm. The area imaged is 6.5 x 6.5 cm?, with the size of the imaging pixel 0.25 x
0.25 cm?, resulting in a grid of 26 x 26 = 676 pixels. The forward matrix A is
obtained from a first-order Born approximation, and the same model is used to generate
simulated measurements (i.e., scattering photon fluence caused by the anomalous region)
and in reconstruction. White Gaussian noise at SNR = 25 dB was added to the simulated
measurements.

The optical properties of the homogeneous medium are p/ = [10,10] em™! and
e = [0.0732,0.0760] cm~! for 690 and 830 nm, respectively. A cubic anomaly with
length 1 cm was positioned in the plane 2 cm below the boundary plane. The shape of the
anomaly is fixed, but its A[HbO] and A[HbR] vary with time, as shown in figure 2. These
assumed true concentration changes were obtained by averaging adult brain activation evoked
by a finger tapping task with 2 s duration (indicated by the solid bar in figure 2), estimated
from multiple-subject measurements, as described in Boas et a/ (2003, 2004). Note we set
the shape of the haemoglobin concentration changes as the same as those presented in (Boas
et al 2003), while making the amplitude comparable to the haemoglobin responses in (Boas
et al 2004). These haemoglobin concentration changes represent a typical response on the
part of the motor cortex, showing the typical pattern with an event-related increase in A[HbO]
accompanied by a smaller decrease in A[HbR], delayed approximately 2 s from stimulus
onset. Following stimulus onset, the A[HbO] peaked at 6 s and the A[HbR] peaked at 7 s. In
addition, to test the effect of the anomaly location, we set two cases of the anomaly position,
centred and off-centred, as shown in figure 3.

We designed three different sets of basis function. In the first case, we used two Gaussian
curves with ‘correct” mean and standard deviation as the basis for HbO: one for the large
positive peak and the other for the later undershoot peak. Similar settings were used for HbR:
one for the decreasing part and the other for the overshoot part. These basis functions are
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= A [HbO] time—course
== A [HbR] time—course

Haemoglobin concentration change (uM)

-5 0 5 10 15 20 25

Times (secs)

Figure 2. Preset concentration changes for both A[HbO] and A[HbR] on the active region. The
assumed true concentration changes were obtained by averaging adult brain activation evoked by a
finger tapping task with 2 s duration (indicated by the solid bar), which represent a typical response
on the part of the motor cortex.

location of source, detector and active region

O O O O

6 k. B N N <

x * x

Y (cm)
*
*
*

O

0 i i
0 1 2 3 4 5 6

X (cm)

Figure 3. X-Y location of centred (solid square) and off-centred (dashed square) active regions,
with source and detector positions shown by asterisks and open circles, respectively.

shown in the panels in row (a) in figure 4 as thin grey lines (thick dark lines in all panels
indicate the true A[HbO] and A[HbR] time courses). These settings represent the ‘best’ case,
in which we know the temporal pattern of haemoglobin concentration changes very well,
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HbO HbR

20 10
s S ‘
210 2 \s7
8 o € -10 (@
L L
< -10 < -20

0 10 20 0 10 20
Time (secs) Time (secs)

Figure 4. Different sets of basis functions (thin grey lines) with true concentration changes (thick
dark lines). Basis functions for sets 1, 2 and 3 are shown in rows (a), (b) and (c), respectively.
Panels on left column are for HbO and right for HbR response.

except for a scalar amplitude factor. In the second case, we used six Gaussian curves as basis
functions for HbO, which included the basis in set 1 and four other signals by shifting £2 s, as
shown in row (b) of figure 4. This case mimics the situation in which the peak-value time of
the haemodynamic response will vary across subjects, but the shapes of the response are quite
similar and known. We ‘guess’ the true peak-value time by using multiple similar basis with
different means, and one of the several basis functions happens to be correct. In the third case,
we varied the setting by shifting the basis functions in set 2 by 1 s, such that none of the basis
functions has the correct peak-value time, as shown in row (c) of figure 4. The corresponding
reconstructions are referred to in the sequence as basis sets 1, 2 and 3.

To compare with the proposed framework, we also used traditional Tikhonov
regularization to solve the variations of the haemoglobin concentrations at each time instant
independently, while employing the same gradient-type regularization matrix as a spatial
constraint. Note that we use a direct reconstruction scheme which imposes prior spectral
information into the image reconstruction rather than a two-step process of reconstructing
absorption coefficient and then calculating haemodynamic concentration changes (Li et al
2004, 2005). In this way, the improvement of the proposed framework can be directly
attributed to the temporal information. Afterward, the temporal dynamics of the haemoglobin
concentrations are obtained by extracting time series from the results and are referred to as
Direct Tikhonov.

To further illustrate the performance of the proposed joint spatio-temporal reconstruction
framework, we fit the results of Direct Tikhonov by the three sets of temporal basis functions
described above, with a least-squares criterion. This procedure used a posterior temporal
smoothing based on the same level of prior temporal information, represented by the basis
functions, in contrast with the joint spatio-temporal scheme. These results are referred to as
Tikhonov basis fitting 1, 2 and 3.
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Basis Set 1 Basis Set 2 Basis Set 3

w @ 2

Tikhonov Basis fitting 1 Tikhonov Basis fitting 2 Tikhonov Basis fitting 3

6
€ 4
s N [] []
> 2
0
0 5
X (cm) Direct Tikhonov (X5)

]

Figure 5. Spatial CNR maps of the centred active region for HbO, comparing different sets of
basis functions, Direct Tikhonov regularization with and without posterior basis fitting. All panels
have same colourmap, but CNR values of Direct Tikhonov regularization are amplified by a factor
of 5. The true active region is indicated by the solid square.

To quantitatively compare the basis function model to the Direct Tikhonov method, with
and without posterior basis function fitting, we calculate a spatial map of contrast-to-noise
(CNR) ratio. For each imaging pixel, the CNR is given by the mean difference between the
pre-stimulus and the post-stimulus responses, divided by the mean standard deviation across
different noise realizations. Specifically, suppose at one pixel, we have reconstructed time
courses of either A[HbO] or A[HbR], for multiple noise realizations, and we denote the
selected period of pre-stimulus and post-stimulus responses by pre} and post?, then the CNR
is given by

pre — post
J/Imean(Std,)]* + [mean(Stdyos) 12

where pre and post are the average value over all time instants and all noise realizations,
and Std,. and Std, are the standard deviation of the same intervals of the time courses over
noise realizations. In this simulation, we generated ten noise realizations for each active region
case (centred and off-centred). The duration of the pre-stimulus response was 5 s (—5-0 s)
and the duration of the post-stimulus response was also 5 s (3—8 s for HbO and 4-9 s for HbR),
where O s indicates the onset of the stimulation.

Figures 5 and 6 show examples of the CNR spatial map for the centred active region cases
of HbO and HbR, respectively. The solid square indicates the location of the active region. In
this case, the regularization parameter used in all three sets of basis functions was A = 5 x 1077,
while A = 1 was used for Direct Tikhonov regularization. Since the regularization parameter
could affect the resolution of imaging procedures differently, we altered the regularization

CNR = @1
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Figure 6. Comparison of the spatial CNR map of centred active region for HbR, using different
sets of basis functions, Direct Tikhonov regularization with and without posterior basis fitting.

parameter for each to approximately equalize the full width at half-maximum (FWHM) of the
reconstructed HbO or HbR object at peak-value time. For clear comparison of the results,
we multiply the CNR values of the Direct Tikhonov method by a factor of 5 for both HbO
and HbR results. For all simulation results, we have similar observations for both centred and
off-centred active region cases, so we only show the results of centred one.

One can see that for both HbO and HbR, the basis function model gives a much better
CNR map than the Direct Tikhonov method, which did not use any temporal information,
in terms of magnitude and concentration. The posterior basis fitting on the Direct Tikhonov
solution removed some noisy variation and thus resulted in significantly improved CNR maps,
but not to the same degree as the basis function model, when the same level of temporal
information was used.

Clearer observations can be obtained from figures 7 and 8 where we plot a one-dimensional
CNR profile along the horizontal line Y = 3.5 cm that passes through the active region centre.
The thin dotted lines indicate the correct range of the active region. For figures 7 and 8, we
do NOT multiply the results of the Direct Tikhonov method by a factor of 5, as was done in
figures 5 and 6, to clearly show the magnitude gap between different methods. With either
the basis function model or posterior basis fitting, basis set 1 gave the best results as expected
because it used the most accurate temporal prior information.

To demonstrate the effect of the regularization parameter, we tested different parameter
values for Direct Tikhonov regularization and the basis function model, and plotted curves of
mean CNR value, FWHM and mean-square-error (MSE) as a function of X in figure 9, for
HbO results of centred active region. Mean CNR value was calculated over the true active
region area in the spatial CNR maps; FWHM was estimated from the reconstructed object at



4638 Y Zhang et al

HbO

200 - T ‘
180 L :| 4©- Basis function: Set 1

: | =¥ Basis function: Set 2

: Basis function: Set 3
160 :| = = Direct Tikhonov

:| “©- Tikhonov basis fitting 1
140 : | =¥ Tikhonov basis fitting 2

:| - Tikhonov basis fitting 3
120 - : : R

£ 100
o

Figure 7. Comparison of CNR values on horizontal line for ¥ = 3.5 cm, for HbO results. The
true active region range is indicated by the thin dotted lines.
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Figure 8. Comparison of CNR values on horizontal line for ¥ = 3.5 cm, for HbR results. The
true active region range is indicated by the thin dotted lines.

peak-value time; MSE was defined by the difference between the reconstructed time series at
the pixel of true active region centre and the true temporal changes in figure 2. For FWHM
and MSE values, the reconstructed object and temporal courses are average over results of 10
noise realizations.

From figure 9, one can see that the two different imaging methods, Direct Tikhonov
regularization and the basis function model, used very different ranges of regularization
parameters. For the mean CNR value curve, when the regularization level was low, CNR
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Figure 9. Curves of mean CNR value over active region area, FHWM of reconstructed object and
MSE of time courses at active region centre as a function of regularization parameters, for HbO of
centred active region case.

values were small due to the large variation across noise realizations. As more regularization
was used, solutions became more stable and resulted in an increasing CNR. After an optimal
regularization level, the solutions became too smooth and CNR values decreased due to the
reduced contrast between pre-stimulus and post-stimulus responses. This observation was
true for both basis function models and the Direct Tikhonov method. When an appropriate
A was applied, basis function models can give much better mean CNR values than the Direct
Tikhonov method.

In the FWHM curves, when regularization level was very low, the reconstructed spatial
map was very noisy and resulted in a small FWHM, or a map containing multiple FWHM
contours which were far from the true active region shape so that one cannot calculate the
full width (this case corresponds to regularization parameter smaller than 10~%). As more
regularization was applied, the reconstructed objects became more smooth, resulting in a
larger full width at half-maximum level. (In the extreme case of infinite regularization,
the reconstructed image is totally homogeneous and the full width is also infinite.) This
observation is true for both basis function models and the Direct Tikhonov method.

For the MSE curves of time courses at the active region centre, there is an optimal level
for regularization associated with the minimum MSE. Away from this level, the MSE will
increase because of either noisy (corresponding to under-regularization) or over-smoothed
(corresponding to over-regularization) time courses. Here, the optimal regularization level for
the MSE curve is at the left boundary, for both basis function models and the Direct Tikhonov
method.
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To evaluate the spatial resolution of overall reconstruction results, we plotted FWHM
against mean CNR value for HbO and HbR in figures 10 and 11, respectively. One can see
that for fixed spatial resolution (FWHM), the basis function models gave a much larger CNR
value for HbO, with relatively small improvement for HbR, than Direct Tikhonov results. The
smaller improvement of CNR values for HbR is due to the weaker contrast in HbR response.
And as expected, results of the basis model with set 1 were better than those of sets 2 and 3,
while the latter two sets gave similar results. For the Tikhonov solution with temporal basis
fitting, the contrasts at fixed spatial resolution were worse than the basis function model, when
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the same set of basis function were used. Note that the actual FWHM for the true active
region area is V2~ 1.4 cm, but all methods gave bad CNR values at this resolution, due
to the ill-posedness of the inverse problem. Regularization based on gradient-type constraint
was used to suppress the amplification of the measurement noise but it simultaneously added
smoothness to the solutions, resulting in a larger FWHM.

4. Discussion

From the simulation results, we see that when appropriate regularization has been applied on
the linear coefficients space, the basis function model can give better solutions in terms of much
higher CNR values and better spatial resolution, compared with the Direct Tikhonov method,
with or without posterior basis fitting. We have similar observations for both centred and
off-centred active region cases. Note that the reconstructed time courses of the basis function
model are more stable (or smooth) than those of the Direct Tikhonov method without posterior
basis fitting, because they are linear combinations of the basis functions and are smooth due
to the smoothness of the basis. In contrast, results of the Direct Tikhonov method generally
will have more variability in time due to the fact that there is no smoothness assumption or
constraint applied on the time course. In the bottom panel of figure 9, we show the mean-
square-error of reconstructed time courses at the active region centre, but there we compared
the averaged time courses over ten noise realizations to the true haemoglobin concentration
time series, so it is hard to judge the smoothness of individual time course.

The efficient algorithm we developed employs a very simple blockwise iteration method
and takes advantage of Kronecker product structure in the blocks of the normal equation. We
note that the Kronecker product and its properties have been used in optical reconstruction
algorithms, see Ren and Dekany (2004) for an example. It significantly reduces the high
computational complexity and huge memory burden of the proposed framework. Simulations
with different noise realizations show stable, fast convergence results requiring less than 20
iterations (approximately 1 min on a 1.50 GHz Pentium computer).

Selecting the regularization parameters in both the Direct Tikhonov method and the
proposed joint spatio-temporal framework is still an open problem. This regularization
parameter controls the confidence level between data fidelity and constraint satisfaction, and
thus will significantly affect solutions, as the simulation results show.

Basis functions in set 1 gave the best results among the three different choices of base,
as expected, while sets 2 and 3 gave comparably good results, showing that the proposed
framework worked well in these simulations. This indicates that in the realistic situation when
the timing of the peak value of haemoglobin changes is unknown or varies across subjects, but
the basic shape of the response is known, we can still get good estimates with basis function
model by introducing several shifts of the basis functions.

HRF with a basis function expansion, on one hand, can incorporate prior knowledge of
the response shape into the reconstruction; on the other hand, it may impose constraints or add
bias to the solution, and it is hard to reconstruct solutions which happen to be far from the basis
function space. One possible solution to address this problem is to use parametric models,
solving a nonlinear optimization problem, an alternative also frequently used in fMRI data
analysis. This model can add more flexibility in the reconstruction of more complex shape
response (Izzetoglu et al 2005). Another solution is to design HRF model directly from the
underlying physiological process, e.g. the Balloon model proposed by Buxton et al (1998) to
describe the dynamics of the deoxy-haemoglobin, cerebral blood volume and cerebral blood
flow.
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Note that the basis functions in either set cannot approximate the true haemoglobin
concentration changes exactly, and a small error will remain in the least-squares solution in
fitting the true curves. This intrinsic error cannot be reduced by any regularization, but the
basis functions used in all three sets in our simulation only result in a very small error, i.e., the
true haemodynamic changes mostly fall into the basis function subspace.

For real experimental data in a functional brain imaging study, we need to solve several
problems before using this framework. First, the measurements are sensitive to cerebral
haemodynamic fluctuations of systemic origin. Such systemic fluctuations are associated,
for instance, with arterial pulse, respiration and heart rate fluctuations (Franceschini et al
2000, Obrig et al 2000, Toronov et al 2000), which appear as interfering signals, obscuring or
even overwhelming the activation-evoked response. We need to reduce this physiological
interference before, or while, performing the reconstruction. Second, one needs more
overlapping channels for the inverse tomographic problem. In the case that only a few
channels are available, a simplified linear model, such as the modified Beer—Lambert law
(MBLL), can be employed to estimate the haemodynamic response measured with individual
channels and then interpolate them to produce spatial images (Franceschini et al 2000, Fantini
et al 1999). Third, to deal with real experimental data, the accuracy of the head modelling is
also crucial to reconstruction results. In this simulation, we simplify the scenario to a case
that a homogeneous active region with time-varying haemoglobin concentration variation
is embedded in a different homogeneous background medium. With this model, we can
only obtain relative haemoglobin changes in settings where we use real measured data. To get
absolute changes, more complicated and accurate modelling, or the inhomogeneity of the head
such as the use of a layered model structures, should be included into the method (Strangman
et al 2003, Boas and Dale 2005). Finally, in real experiments, accurate reconstructions need to
model different basis functions, since in principle the HRF may vary across different subjects,
different areas on the brain or different tasks. This in turn requires more prior information
about the HRF basis.

In spite of these difficulties, we believe the proposed method is very promising based
on our simulation results. The simulation scenario, although it makes some favourable
assumptions and uses measurements free of physiological interferences, has taken some
practical considerations into account, such as not knowing the true peak-value time and
using shifted basis functions. Moreover, the true HRF used is actually calculated from
measured data (Boas er al/ 2003, 2004), and this is not exactly matched by the Gaussian-bump
model employed. The geometrical arrangement of the source—detector pairs is very similar
to a real experimental setting and only the measurement of the first and the second nearest
neighbouring channels is used in reconstruction, which is also close to a realistic case. In
addition, the efficient algorithm successfully keeps the computational complexity to the order
of the spatial dimension and is linear in the number of total basis functions. So in practice,
one can try quite a large number of different bases while not worrying overly about heavy
computation.

5. Conclusion

In this work, we present a joint spatio-temporal reconstruction scheme which incorporates
spatial regularization, temporal information and spectral information together for diffuse
optical tomography in functional brain imaging. The proposed method shows significant
improvements in contrast-to-noise ratio and spatial resolution compared with traditional
frame-by-frame Tikhonov regularization solutions in which no temporal information was
used, based on simulation results. Moreover, when the same level of temporal information in
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basis functions is available, it is shown that the proposed method is better than posterior basis
fitting of the Tikhonov solution.
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