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Abstract: We present 3D linear reconstructions of time-domain (TD) 
diffuse optical imaging differential data. We first compute the sensitivity 
matrix at different delay gates within the diffusion approximation for a 
homogeneous semi-infinite medium. The matrix is then inverted using 
spatially varying regularization. The performances of the method and the 
influence of a number of parameters are evaluated with simulated data and 
compared to continuous-wave (CW) imaging. In addition to the expected 
depth resolution provided by TD, we show improved lateral resolution and 
localization. The method is then applied to reconstructing phantom data 
consisting of an absorbing inclusion located at different depths within a 
scattering medium. 
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1. Introduction 

 
In complement of traditional techniques such as functional Magnetic Resonance Imaging, 
Diffuse Optical Tomography (DOT) is emerging as a low-cost and portable method for non-
invasive cerebral imaging [1-3]. Based on the measurement of diffuse near-infrared light 
attenuation through the scalp, skull and brain, DOT assesses local optical absorption due 
essentially to the concentrations in oxy- and deoxy-hemoglobin. Modeling of light 
propagation through the head and solving of the inverse problem enable imaging of total 
hemoglobin concentration and oxygenation in the brain. 

Most DOT instruments used in neuroscience are continuous wave (CW) systems, but 
time-domain (TD) technology is a recent promising alternative with advantages compensating 
for its increased cost and difficulty of implementation. These advantages include absolute 
characterization of tissue optical properties [4,5] (both absorption coefficient μa and reduced 
scattering coefficient μs’), depth resolution with single source-detector separation [6,7], and 
better sensitivity to cortical activation [8,9]. TD systems introduce short pulses of light into 
the tissue (up to tens to hundreds of picoseconds) and measure the temporal point spread 
function (TPSF) of photons exiting after propagation through the tissue. 

One application of TD system is the determination of the absolute optical properties μa 
and μs’ of a tissue. One to several source-detector pairs are placed on the surface of the 
studied organ. The measured TPSFs [10,11], or moments of these TPSFs [12-14] are fit non-
linearly with a model of light propagation in a homogeneous medium [4,11], a two-layer 
medium [15,16], a more realistic tissue-type segmentation of the head [17], or a complete 
voxelized volume in the case of tomographic imaging [18,19].  

However, for functional studies, differential imaging between a baseline state and an 
activated state is sufficient, and a linear relation between changes in absorption and changes 
in intensity is generally assumed valid for the small absorption changes associated with brain 
function. In the backprojection method widely used for CW data reconstruction [20-23], the 
change in intensity between each source and detector is translated into a local change in 
absorption. A two-dimensional image is obtained by interpolation of all local absorption 
changes. The method is based on a modified Beer-Lambert law where a differential path 
factor (DPF) accounts for larger propagation length than source-detector separation [24]. 
Hiraoka et al. extended the concept to inhomogeneous media [25], by introducing partial 
DPFs describing the optical pathlengths in different tissue types, hence taking into account the 
contribution from different layers to the change in attenuation. However, no depth 
information is available with single distance CW data, and both cerebral and superficial 
activations are projected on a single imaging plane. 

This limitation of NIRS imaging in terms of depth resolution can be overcome with TD 
data, where depth information is contained in the photons’ time of flights. Steinbrink et al. 
applied the concept of partial DPFs to the time domain by introducing time-dependant mean 
partial pathlengths (TMPP) [6]. They used a model of fifteen 2 mm thick layers, and 
performed Monte Carlo simulations to calculate the time-dependant sensitivity to each layer. 
They thus obtained a sensitivity matrix which they inverted by singular value decomposition. 
They could distinguish between extra and intra-cerebral signals during brain activation, with a 
single source-detector pair measurement. Liebert et al. used a similar method but computed 
the sensitivity of three moments of the TPSF – integrated intensity, mean time of flight, 
variance – to each layer [26]. They showed depth-resolved time-course of local perfusion 
after dye bolus injection on healthy subjects and stroke patients [27]. We used a simplified 3-
layer model – scalp, skull, and brain – and showed that we could experimentally distinguish 
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between superficial systemic signals and cerebral activation signals during a motor stimulus 
on a single source-detector pair [8]. In all these studies, depth resolution has been shown, but 
no 3D imaging was implemented, since a single source-detector pair was used. The technique 
can be extended to 2D imaging with depth resolution by simple interpolation of all source-
detector pair’s measurements [28]. However, this approach limits the lateral resolution to 
approximately the source-detector separation. 

In this paper, we describe an actual 3D linear reconstruction for differential imaging, 
based on inversion of the forward sensitivity matrix calculated in different delay gates, in a 
similar way that is sometimes implemented in CW DOT imaging [29]. We discuss the 
performance and limitations of the reconstruction technique with simulated data. As already 
demonstrated in previous papers, we show that TD offers the ability to localize the depth of 
absorption contrast, which is not achievable with single distance CW data. Furthermore, we 
demonstrate improved lateral resolution and localization for TD compared to CW. We then 
apply the reconstruction technique to phantom data obtained with our time-gated system [30]. 
 
2. Reconstruction principle 
 
In this section, we describe the formalism implemented for the image reconstructions. 
 
2.1 Medium and probe geometry 
 
For computational simplicity, the studied medium is modeled as a volume of 10 cm by 10 cm 
laterally, and 3 cm in depth, divided into nvox voxels of 2.5 × 2.5 × 2.5 mm3 (see Fig. 1(a)). 
The background optical properties were set to μs’ = 10 cm-1 and μa = 0.1 cm-1, unless 
otherwise stated. The probe set on the surface of the medium has a square geometry of 4×4 
sources and 3×3 detectors (source-detector separation 2.5 cm) as shown in Figs. 1(a) and 1(b). 
Only nearest neighbor source-detector pairs are taken into account for the reconstructions. 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 1. (a) 3D representation of the modeled medium and probe. (b) Probe geometry. Three 
lateral locations of the inclusion commonly used in the following simulations are also displayed 
(c) Simulated TPSF for one source-detector pair, with the delay gates used in the 
reconstruction. 

 
2.2 Forward problem 
 
We model light propagation in the medium with the analytical solution of the diffusion 
equation for a semi-infinite homogeneous medium, calculated with the image source 
technique [4], and extrapolated-boundary condition [31]. Figure 1(c) shows the resulting 
TPSF obtained for one source-detector pair, all source-detector pairs yielding identical 
TPSF’s since the medium is assumed semi-infinite and homogeneous. Since our experimental 
TD device described in Ref. 30 is based on a time-gated detection of the TPSF, we use in our 
simulations gated detection. The measurements consist in the intensity at nGates delay gates, 
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integrated over the gate width wGate. The gates considered in our simulations are presented in 
Fig. 1(c). To comply with our experimental parameters [29], each gate width was set to 300 ps 
and the delay between two gates to 500 ps. 

Differential images are obtained using the normalized Born approximation for a change 
in absorption: ΔI/I0 = A Δμa, where the sensitivity matrix A linearly relates the changes in the 
absorption coefficient to the changes in intensity. Δμa is the vector of absorption changes at 
each voxel, of length nvox, and ΔI/I0 is the vector of changes in the normalized measured 
intensity, of length the number of measurements nMeas = nSD nGates where nSD  is the number of 
source-detector pairs and nGates the number of delay gates for each pair. In the time domain, 
the terms of the sensitivity matrix A can be computed by convolution of the direct and adjoint 
Green’s functions [32]: 

( ) ( )∫
+∞

∞−

′′−′= ττττ
τ

d,,,,
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)()(

)()(
, iiSjjiD

iiDiS
ji GG
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where G(rS, rD, τ) is the time domain Green’s function (GF) solution of the diffusion equation 
at delay τ for a source at position rS and a detector at position rD, rj is the position of the jth 
voxel, and rS(i), rD(i) and τi are respectively the source position, detector position and delay of 
the ith measurement. 

In practice, we first calculated the GFs solutions of the diffusion equation at each voxel of 
the medium in the frequency domain [32], for each optode (source or detector), at 101 
frequencies (0 to 20 GHz, frequency step 200 MHz). The frequency-domain solutions were 
then Fourier-transformed to yield the GFs in the time domain with a 25 ps time step. To 
obtain the sensitivity matrix for each source-detector pair at a specific delay τ, the source 
forward GF at time τ’ and the detector adjoint GF at time τ-τ’ were multiplied, the result 
summed for τ’ varying between 0 and τ, and then integrated over the width wGate of the 
detection gate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Sensitivity profiles of a single source-detector pair for the 8 delay gates presented in 
Fig. 1(c) in (a) a vertical plane along the source and detector and (b) a (x,y) plane located at 
depth  0.75 cm. The sensitivity is given per unit volume (cm3) and unit change in absorption 
(cm-1). 
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Note that alternative methods to compute the sensitivity matrix could be used, in 
particular analytical solutions in the time-domain for a perturbation, like described in 
Ref. [33] for a transmission geometry. 

Figure 2 shows profiles of the obtained sensitivity matrix for the 8 delay gates depicted in 
Fig. 1(c) (delays between 0.1 and 3.6 ns with 500 ps between two gates; wGate = 300 ps). 
Figure 2(a) shows profiles of the sensitivity matrix along a source-detector vertical plane, and 
Fig.2(b) shows (x,y) profiles of the matrix at depth z = 0.75 cm. A logarithmic grayscale was 
used to allow visualization of the large dynamic range of sensitivities of all 8 gates. As 
expected, sensitivities at longer delays go deeper inside the medium, and also probe a wider 
lateral region. From this additional information relative to traditional CW sensitivity profiles, 
we can expect both depth resolution and improved lateral resolution and localization. 
 
2.3 Inverse Problem 
 
From the measurements y = ΔI/I0 and the computed sensitivity matrix A, the reconstructed 

image x̂  is calculated by inversion of the sensitivity matrix: x̂  = pAinv y, where pAinv is the 
pseudo-inverse of matrix A, computed with the following regularization: 
                                            pAinv = L-1 BT (BBT + α smax σy

2)-1 ,                                      (1) 
where: 

• B = A L-1, 
• L = diag(diag (AT A + λ)) is used to scale the sensitivity matrix to act as a spatially 

varying regularization [34], giving higher weight to voxels with lower sensitivity. It 
is a diagonal matrix of size nvox × nvox where each diagonal element is the aggregate 
squared sensitivity to the corresponding voxel. The coefficient λ = max(diag(ATA)) / 
β enables a thresholding of the matrix in order not to give large weighting to voxels 
with very small sensitivity. The choice of factor β will be discussed in section 3.4 
below. 

• α is a regularization parameter, set to 10-3 in the simulations unless stated otherwise. 
• smax = max[diag (BBT)] / max(σy

2),  
• σy

2 is the measurement covariance matrix, assumed to be diagonal. In our 
simulations, we assumed a square root dependence of the noise on I with the 
intensity, and thus σy

2 is inversely proportional to intensity. This regularization acts 
to penalize noisier measurements. 

 
2.4. CW reconstructions 
 
CW sensitivity matrix and data were simulated with the same model, by integration of TD 
data over all time steps. CW and TD reconstructions will be compared in Section 3 to assess 
the improvement offered by TD imaging. 
 
3. Simulations: optimization, performance and comparison with CW 
 
In this section, we assume a point-like change in absorption, simulate the corresponding 
measurement vector, and reconstruct the 3D map of the absorption changes. This gives us the 
imaging point spread function of our reconstruction algorithm and enables us to assess the 
performance of the method and compare it to a CW reconstruction scheme. 
 
3.1 Reconstruction examples 
 
Figure 3 shows examples of reconstructions for a point-like inclusion located at the lateral 
position 1, between source and detector, as defined in Fig. 1(a), and with a depth z varying 
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between 0.5 cm and 3 cm by steps of 0.5 cm. Both CW and TD reconstructions are presented. 
The rendered volume shows the contour of 80% of the maximum in the reconstructed 
absorption change. The following parameters were used: 5 gates starting at delays 0.6, 1.1, 
1.6, 2.1, and 2.6 ns with a width wGate = 300 ps (gates 2 to 6 in Fig. 1(c)); β = 20; α = 10-3; 
signal to noise ratio = 100 at the peak of the TPSF. 

The following general observations can be made: the CW data always reconstruct the 
inclusion at the same depth. If a traditional Tikhonov regularization is used instead (i.e. if A is 
used in place of B in Eq.1 ), the CW reconstruction is pulled towards the surface (data not 
shown), where the sensitivity is maximum [35]. The effect of the spatially varying 
regularization matrix L is to force the reconstruction deeper under the surface. However, the 
reconstructed depth is unchanged with different actual depths for the CW data. 

On the contrary, the TD method reconstructs the inclusion deeper as its actual depth 
increases. For the true inclusion at a depth of 1.5 and 2 cm, the reconstructed depth is actually 
slightly over-estimated, which results from the effect of the regularization matrix L. As the 
true inclusion gets deeper, the reconstructed depth becomes under-estimated (see inclusion at 
true depth 3 cm). 

We also observe that the reconstructed volume at 80% of the maximum contrast is 
smaller for TD than for CW reconstructions, showing improved lateral resolution for this 
location of the inclusion. 

More quantitative and systematic assessment of the effect of different parameters and of 
the improvement of TD over CW will be investigated in the following paragraphs. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. CW and TD reconstructions of a point-like inclusion located at position 1 and at a depth 
z varying between 0.5 cm and 3 cm. The volumes show the contour of 80% of the maximum 
reconstructed change in absorption. 
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3.2 Performance assessment 
 
The reconstruction performances were assessed by a number of parameters. The location of 
the center of mass (COM) of the reconstructed inclusion was calculated by taking into 
account all voxels with a contrast above 80% of the maximum contrast in absorption: 

( ) ( )∑∑ ≥≥
=

80%Voxi,80%Voxi,COM iii RR rr , where ri and Ri are respectively the position and 

absorption contrast of the ith voxel. We define the localization error as the distance between 
the true inclusion and the COM, both in depth and laterally. We call lateral resolution the 
contrast-weighted sum of the lateral distances to the COM, over all voxels with a contrast 

above 80% of the maximum contrast: ( ) ( )∑∑ ≥≥
−=

80%Voxi,80%Voxi, iCOMii RRseR ρρ , where 

ρi and ρCOM are the lateral positions of the ith voxel and the COM respectively. 
 
3.3 Optimal number of gates 
 
We studied the influence of the number of gates included in the reconstruction. Figure 4(a) 
shows the evolution of the reconstructed depth (depth of the COM) as a function of the true 
depth of an inclusion located at lateral position 1, for different number of gates included 
(starting from gate 1 on Fig. 1(c)). The reconstruction improves, more strikingly for deep 
inclusions, as more late gates are included, up to 6 gates, after which the reconstruction does 
not improve anymore as we include more noisy data. The first gate only brings minor 
improvement for superficial inclusion (data not shown), and does not contribute to the data 
reconstruction for deep inclusions. We tried other combinations (data not shown), and found 
that the best one with our parameters was 5 gates every 500 ps from 0.6 ns to 2.6 ns. 

With these parameters, the inclusion can be reconstructed with a depth error under 15 % 
down to approximately 2.5 cm. The reconstructed depths of deeper inclusions continue to 
increase, but with larger errors, e.g. an inclusion at 3 cm is reconstructed at 2.3 cm (an 
underestimation of almost 25%). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Reconstructed depth of the COM as a function of the inclusion true depth, for a point-
like inclusion in position 1, for (a) different delay gate combinations (β = 20), and (b) different 
threshold coefficients in the spatially varying regularization matrix L (gates 2 to 6 in Fig. 1(c)). 

 
3.4 Influence of the spatially varying regularization 
 
By penalizing more the voxels with higher sensitivity, the L matrix enables us to reconstruct 
the inclusion better than a simple Tikhonov regularization [34]. However this matrix has to be 
thresholded so that regions far from a source-detector pair do not inappropriately receive 
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larger weighting. The effect of this threshold is presented in Fig. 4(b), where the depth of the 
reconstructed COM is plotted vs. the true depth of the inclusion, for CW data and TD data 
with the 5-gate combination discussed above, and for a β factor of 10, 20, 50 and 100. With 
CW data, the absorption is reconstructed at a constant depth whatever its true depth, and this 
reconstructed depth simply increases as β increases. For TD data, a smaller threshold (large β) 
enables better reconstructions for deep inclusions (z > 2.5 cm), but also leads to an 
overestimated reconstructed depth for medium-deep inclusions (z around 1.5 to 2.5 cm). 
Moreover, for inclusions very close to the surface (under 1 cm) located just underneath a 
source or detector as in position 3 from Fig. 1(b), a large β also leads to strong artifacts (data 
not shown). A β = 20 was used in the following simulations, enabling a good compromise for 
reconstruction of different depths between 1 and 3 cm. 
 
3.5 Influence of background optical properties 
 
The evaluation of the baseline optical properties of a medium is subject to uncertainty [36]. 
Therefore, we tested the influence of an error in the background optical properties on the 
reconstruction. We do not present data for this study, but enunciate general results we 
observed. An overestimation of the scattering coefficient (μ’s,recon > μ’s,true) by 20% led to an 
inclusion being reconstructed closer to the surface by approximately 1 to 3 mm, and vice 
versa for an underestimation of the scattering coefficient. We did not observe an effect of an 
over- or under-estimated absorption coefficient (by up to 50%) on the reconstructed depth. 
For these results, the true depth of the inclusion was varied between 0.5 cm and 3 cm. 
 
3.6 Variation of depth localization error with lateral position 
 
One major advantage of TD data is the depth information provided by the time of flight of 
photons. In Fig. 4(a), we showed the evolution of the reconstructed depth as a function of the 
true depth for one particular lateral position. In Fig. 5, we present the evolution of the 
reconstructed depth as a function of the lateral position of the inclusion, for a 1 cm and 2 cm 
deep inclusion. In both cases, the depth error is small (within 20% at 1 cm, and about 5% 
away from the edges of the medium at 2 cm). 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Depth of the COM for (a) a 1 cm deep and (b) a 2 cm deep inclusion reconstructed with 
TD data (5 gates) as a function of the inclusion lateral position. 
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For the inclusion located at 2cm below the surface, it also worth noting that the 
reconstructed depth varies very little with the lateral position of the inclusion. This means that 
the reconstruction method has no “blind zone”, and the depth reconstruction performance 
remains good for any position of the inclusion. Note that we do not compare the depth error 
with that obtained by CW measurements as no depth information is provided without 
overlapping or multi-distance CW measurement. 
 
3.7 Lateral localization and resolution 
 
In this section, we study the performance of the reconstruction method in terms of lateral 
localization and lateral resolution, and compare it with a CW reconstruction method. Figures 
6 and 7 show the evolution of, respectively, the lateral localization error and the lateral 
resolution, for CW (left) and TD (right) reconstructions, at two different depths of the 
inclusion (1 cm, top, and 2 cm, bottom) as a function of the inclusion lateral position. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Lateral error (cm) for a 1 cm deep inclusion (top) and a 2 cm deep inclusion (bottom) 
reconstructed with CW (left) and TD (right) data, as a function of the inclusion lateral position. 

 
For both depths, TD shows reduced error in the lateral localization and better lateral 

resolution. Importantly we also note that both the lateral resolution and the lateral localization 
for TD reconstructions are more uniform with the lateral position of the inclusion relative to 
the probe than with a CW reconstruction.  

These improvements of TD over CW for the lateral localization and resolution can be 
explained intuitively based on the sensitivity profiles presented in Fig. 2. For later delay gates, 
the sensitivity profile of a given source-detector probes deeper into the medium giving us 
depth resolution, but also probes a larger region laterally providing additional information to 
improve lateral localization and resolution. 
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Fig. 7. Lateral resolution (cm) for a 1cm deep inclusion (top) and a 2 cm deep inclusion 
(bottom) reconstructed with CW (left) and TD (right) data, as a function of the inclusion lateral 
position. 
 

3.8 Contrast to noise ratio improvement 
 
We have shown in a previous study [8] that CW and TD systems yield similar contrast to 
noise ratio (CNR) for typical depths of cerebral activation (1 to 2 cm) and source-detector 
separations (2 to 3 cm) used in functional brain imaging, with CW even giving slightly better 
CNR. The intuitive explanation of this result is the following: even though TD data yield 
better contrast to deep inclusion by selecting photons which have traveled deep inside the 
medium, these measurements are also impeded by a much higher noise due to the low level of 
light at late delays. However the CNR of an image has to be evaluated in regards to other 
metrics of the image, in particular its resolution. 

In this section, we varied the regularization parameter α between 10-4 and 10, both for 
CW and TD reconstructions, and studied the evolution of CNR and lateral resolution. Figure 8 
is a parametric curve of the image CNR as a function of the lateral resolution. The true 
inclusion is located at position 1, and at a depth z = 1.5 cm. We compute the CNR as the 
average contrast to noise ratio for all voxels of contrast above 80% of the maximum contrast. 
The image noise was obtained by propagation of the measurement noise by: 
σx

2 = pAinv σy
2 pAinv

T, where σx
2 is the image covariance matrix. 

The plot illustrates the trade-off between CNR and resolution: as the regularization is 
increased, the CNR of the reconstructed inclusion increases, but is counter-balanced by a 
worsening of the lateral resolution. We observe that for an identical CNR of the image, the 
lateral resolution is improved by TD reconstructions compared to CW. Similarly, at identical 
lateral resolution, TD reconstruction enables a much higher CNR of the image. 
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Fig. 8. CNR versus lateral resolution for a regularization parameter α varying between 10-4 and 
10. CNR is given per unit volume (cm3) and unit change in absorption (cm-1) of the inclusion. 
Regularization parameters of 1, 10-2 and 10-4 are indicated on the plot. 

 
4. Phantom reconstructions 
 
4.1 TD instrument 
 
Our TD system, based on a Ti :Sapphire pulsed laser and an intensified CCD camera acting as 
a parallel time-gated detector, has been described in previous publications [8,29]. At each 
detector position, we use a bundle of 7 fibers of different lengths by increment of 10 cm, 
enabling simultaneous detection in 7 delay gates by steps of 500 ps. For functional brain 
imaging, we developed a flexible probe consisting of a 4×4 array of sources and 3×3 array of 
detectors in a square geometry each, with a source-detector separation of 2.5 cm (same 
geometry as used for the above simulations and presented in Fig. 1(a)). 
 
4.2 Phantom experiment 
 
The system was tested on a liquid phantom containing a spherical absorbing inclusion. One 
half of the probe was set over a tank (19×19×9 cm3) filled with a solution of intralipid and ink 
(estimated optical properties: μa = 0.14 cm-1, μs’ = 10 cm-1), containing a hollow glass sphere 
of diameter 15 mm. The sphere was filled with the same intralipid solution with 70 times 
higher ink concentration. Images were acquired for 30 seconds with the sphere located at 
position 2 (as defined on Fig. 1(b)), followed by 30 seconds of acquisition with the sphere 
outside of the field of view of the probe. This procedure was repeated 5 times to increase 
signal to noise ratio. We repeated the experiment for three different depths of the inclusion: 
top of the sphere at a depth of 9.5 mm, 18.5 mm and 32.5 mm below the surface. 
 
4.3 Phantom reconstructions 
 
We calculated the contrast of the image as the percentage change in intensity between the 
“off” state when the sphere is outside of the field of view, and the “on” state when it is under 
the probe. We averaged the contrasts obtained from the 5 successive on/off states and used 
these data to reconstruct an image. We used a regularization parameter α = 10-2 for the first 
two depths of the sphere. However, for the deepest inclusion, the contrast to noise ratio was 
very low, and we had to change the regularization parameter to 10-1 to obtain a reasonable 
reconstruction. Figure 9 shows the reconstructions for all 3 depths of the inclusion, as well as 
the true position of the top of the absorbing sphere. 

TD 

CW 
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Fig. 9. Phantom reconstruction for three different depths of the glass sphere. The rendered 
volumes show the contours at 80% of the maximum absorption contrast. The small circles 
represent the top of the 7.5 mm radius sphere. 

 
The superficial inclusion is reconstructed at a depth of 7.5 mm, the second at a depth of 

12.5 mm, and the deepest at 22.5 mm. In all cases the reconstruction is closer to the surface 
than the true inclusion, even for medium-deep inclusions, which differs from our simulations. 
Note that our simulations used a point absorption at a particular depth, while the experimental 
setup consists of a 15 mm diameter inclusion. Moreover our hypothesis of small perturbation 
breaks down as the solution in the glass sphere is strongly absorbing, hence the linear 
assumption is probably not valid anymore. In addition, we had to use a larger regularization 
parameter α than in the simulations because of the increased noise level of the experimental 
data. The effect of a higher regularization parameter is also to pull the reconstruction towards 
the surface (simulation data not shown). However, the formalism developed here enables 
reconstruction of experimental differential data at three different depths down to 3 cm of the 
true inclusion. 
 
5. Conclusion 
 
We presented a 3D reconstruction technique of differential TD gated data, and showed with 
simulated data that the method allows both depth resolution and improved lateral resolution 
and lateral localization compared to traditional CW reconstruction. With our typical 
experimental parameters, we also showed that only a limited number of gates is useful for 
optimal image reconstruction. The technique was used to reconstructed dynamic phantom 
images, where a spherical absorbing inclusion was embedded at various depths within a 
scattering intralipid solution. The technique presented here for gated measurements would be 
easily adaptable to moments of TPSF, provided that careful treatment of the covariance 
matrix is used in the reconstruction regularization. 
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