
Abstract

Three-dimensional diffuse optical tomography (DOT) attempts to map in vivo tissue blood oxygena-

tion and blood volume levels by reconstructing the spatial distribution of the optical absorption co-

efficient from intensity measurements on the surface of the body. This problem is typically ill-posed

due to the large attenuation and scattering of the diffuse wave. In addition, certain applications, such

as breast mapping from a planar array of optical sources and detectors, increase the ill-posedness

of the problem by restricting the views of the sources and detectors. Also, unlike CT or MRI, the

interaction of the diffuse wave with the medium can not be restricted to two dimensions. Thus all

three spatial dimensions must be considered to accurately account for the diffuse wave propagation.

This results in problems that are typically highly underdetermined as well.

We first present a comparison of the currently employed linear model reconstruction techniques,

to both identify the most promising class using a linear model approach and to provide a baseline for

the comparison of the reconstruction performance of the additionally constrained algorithms. Our

approach to improve the reconstruction fidelity of this highly underdetermined and ill-posed prob-

lem has been to incorporate a priori constraints on the solution. We have developed two types of

constrained reconstruction algorithms. The first takes advantage of the necessity of collecting data

at two optical wavelengths to implement a constraint on the boundaries and value of the absorp-

tion anomaly. The second algorithm is an admissible solution approach where we have examined

a number of convex constraint functions on the solution. Using the admissible solution approach
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in a simulation scenario with the right constraints we have been able to produce good reconstruc-

tions from two-dimensional simulations that approximate the properties of the three-dimensional

problem.
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Chapter 1

Introduction

Diffuse optical tomography (DOT) imaging is a relatively new technique for imaging inside bio-

logical tissues. By using near infrared (NIR) light this technology can potentially map, in three

dimensions, the blood volume and oxygenation of biological tissues to depths of up to 10 cm. A

number of significant technical hurdles must be solved before DOT imaging is at a level appropriate

for widespread use in the medical community. Primary among them are the ill-posedness of DOT

imaging in general and the typically underdetermined nature of the three-dimensional reconstruc-

tion problem. Both of these properties lead to poor quality reconstructions of optical absorption

and ultimately of blood volume and oxygenation. To address these problems we have chosen an a

priori constrained reconstruction approach, which we have implemented through several different

algorithms. Our constrained reconstruction techniques have significantly enhanced the reconstruc-

tion fidelity of both the position and magnitude of the optical absorption coefficient in simulation

studies.

The use of NIR light to image inside the human body has received significant interest in the last
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decade1. The interest in DOT has been motivated by several factors. These include:

� the ability of NIR light to penetrate relatively deeply (i.e. several centimeters) into tissue

without causing harm to the tissue

� the sensitivity of IR light to the physiologically important concentrations of oxygen-carrying

components of blood, oxy-hemoglobin and deoxy-hemoglobin

� the low relative cost of the equipment for this type of imaging, compared to Computerized

Tomography (CT) or Magnetic Resonance Imaging (MRI) for example.

To expand on these three factors, we note that near IR light (700-900nm wavelength) can propagate

significant distances within tissue because of the relatively small rate of absorption by water and

hemoglobin at these wavelengths. However, as we will explore in detail later in the thesis, although

the absorption of photons in this band is reduced compared to that at surrounding wavelengths, the

amount of scattering at these wavelengths is significant. Photons typically only propagate on the

order of 10-100 micrometers before being scattered. This highly scattering medium, also known

as a diffuse medium, requires a different approach to modeling than is typically applied in wave

propagation imaging such as radar, sonar, or in other fields of optics.

The sensitivity of DOT imaging to the oxygen carrying components of blood results from two

facts. First both oxy-hemoglobin and deoxy-hemoglobin have optical absorption coefficients at

these wavelengths which, although low, are higher than that of water in typical concentrations

found in tissue. Additionally, around 800nm oxy-hemoglobin and deoxy-hemoglobin exchange
1As with many new technologies being investigated by many different groups of researchers, this imaging technique is

known by several names such as diffuse optical tomography (DOT), photon migration imaging (PMI), and diffuse photon
density wave (DPDW) imaging. We will use the first acronym to identify this technology throughout this thesis.
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roles as the primary absorber, allowing for the spectroscopic discrimination of the two species of

hemoglobin.

The low relative cost of the equipment results from the common availability of inexpensive

IR sources and detectors. The relative cost of the optics and electronics may vary considerably,

however, depending on whether one uses low-cost, steady-state frequency domain techniques, or

relatively high-cost, early-arrival time-domain techniques that require short pulses and fast detec-

tors [1, 2].

1.1 DOT imaging

The unique sensitivity of IR light to the two types of hemoglobin provides for several interesting

medical applications. The simplest of these devices, in clinical use for more than ten years now,

are pulse oximeters. These devices measure the arterial oxygen saturation of the tissue under the

measurement region, rejecting the response from other hemoglobin sources, without imaging. In

other words, they simply measure an average property of the tissue between transmitter and receiver,

using the presence of the pulsatile blood to discriminate arterial from venous and background blood

and measurements at two frequencies to discriminate oxy-hemoglobin from deoxy-hemoglobin. By

“imaging”, in contrast, we mean the use of multiple sources and receivers to sample a region of

tissue in such a way that we can use mathematical algorithms to reconstruct a localized distribution,

rather than bulk average, of absorption.

The motivating goal of DOT imaging as we apply it here is to generate a three-dimensional,

quantitative map of both the fraction and oxygenation of blood within a region of biological tissue.
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These quantities can be inferred from the spatial distribution of the optical absorption coefficient

provided that measurements are made at at least two wavelengths within the 700-900 nm range.

With measurements at a single wavelength, relative or qualitative observations can be made. With

imaging, a wide variety of potential new applications includes anatomical and functional brain imag-

ing and detection of carcinomas. Human brain imaging can be grouped into at least two types of

applications. In one, DOT imaging is used to assess the size and nature of a stroke. Within this

application area, research is also being conducted on using DOT imaging to assess the appropriate-

ness of pharmacological intervention, which for certain drugs need to be administered immediately

following a stroke [3, 4]. The other type of application to brain imaging involves localization of

cerebral function by imaging hemodynamics in the outer layers of the brain. Brain imaging can

also be applied to neonates with better imaging depth due to the thinner skull of a newborn. This is

especially useful in the monitoring of brain oxygen levels in premature infants [5].

The other major application area of current interest besides brain imaging is the detection of ma-

lignant breast tumors. Breast cancer detection is the application that has been the primary motivation

for the investigation presented in this thesis. This motivation derives from the expected difference

in the functional parameters of cancerous tissue with respect to normal tissue. Specifically, greater

vascularization of tumors, and lower blood oxygenation, can indicate the presence and even perhaps

aggressiveness of malignant carcinomas [6, 7, 8]. By taking advantage of its ability to map oxygen

saturation and blood volume, researchers hope to use DOT imaging to identify cancerous regions

within the human breast.

There are several important aspects of DOT imaging that deserve mentioning. First, unlike other

imaging modalities such as computerized tomography (CT), magnetic resonance imagining (MRI),
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ultrasound, or positron emission tomography (PET), IR light propagates in a highly scattered man-

ner. This results in an inherently three-dimensional problem even if the sources and detectors are

restricted to two dimensions. Second, a typical measurement scenario involves amplitude modu-

lating the IR light source with a radio frequency (RF) sinusoid. This results in a “photon density”

wave at the RF modulation frequency that can be modeled as the envelope of the electromagnetic

wave. This photon density wave propagation can, in the proper circumstances, be well modeled by

the diffusion equation, hence the name diffuse photon density wave. The resulting wavelength of

the diffuse photon density wave is dependent upon the optical parameters (absorption and scattering

coefficient) of the tissue, the index of refraction, and the modulation frequency, but typical scenarios

in tissue result in wavelengths that are much larger than both the objects of interest and the spacing

between sources and detectors (i.e. wavelengths on the order of tens of centimeters). Thus we are

dealing with an effectively near-field imaging problem. A final aspect worth mentioning is that

to compute quantitative information about the blood volume and oxygenation from the absorption

coefficient, measurements need to be made at multiple wavelengths. This is necessary to discrim-

inate the absorption responses from oxy-hemoglobin and deoxy-hemoglobin, using spectroscopic

techniques as mentioned above.

1.2 Technical challenges of DOT imaging

Reconstruction of the optical absorption coefficient presents several difficult technical problems

which are typical of many inverse scattering problems. The problem is ill-posed due to two factors.

First, due to the physics, there is a high degree of attenuation experienced by the diffusive wave as
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it propagates through the medium. Second, a typical measurement is affected by a large amount

of tissue. A perturbation in the optical absorption coefficient in a region will have similar effects

on most measurements made in the vicinity of that region. One way to think of this is that the

large amount of photon scattering results in a blurring of the diffuse photon density wave. The

general consequence of both factors is that inverse solutions need to amplify small differences in

the measurements to recover detail in the reconstructions, and thus are extremely sensitive to noise in

the measurements and error in assumed models and parameters. One specific consequence of the ill-

posedness is the resulting ill-conditioning of the forward model matrix when a linear approximation

is used.

Another significant technical problem is that the linear problem is generally severely underde-

termined for three-dimensional reconstructions. Since a typical measurement is affected by a large

volume, we must account for any small region in the large volume which may affect the measure-

ments. Thus using a reasonable reconstruction voxel size results in many voxels per measurement.

We are limited in techniques that we can apply to directly address this aspect of the measurements.

First, there is a practical limit to increasing the number of measurements to reduce the underdeter-

mined nature of the problem. This is a consequence of the ill-posedness of the problem. Specifically,

trying to address the underdeterminedness by making a large number of measurements in a small

region does not help much because each measurement “sees” a very similar environment. Another

approach could be to use a wide range of source and detector locations to help address the underde-

terminedness. But since we are limited to placing the sources and detectors on the skin surface, we

cannot achieve a large amount of spatial heterogeneity in the sources and detectors.
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1.3 Background

The development of DOT imaging is based on investigations in a number of areas, some closely

related, such as the modeling of photon propagation in diffuse media, and others indirectly related,

such as regularization and convex optimization. In the following subsection we explore some of the

important contributions in fields relevant to DOT imaging.

1.3.1 Modeling of photon propagation in highly scattering media

Direct modeling of electromagnetic propagation in many applications generally follows one of two

models, either based on Maxwell’s equations describing the electric and magnetic fields, or based on

geometric optics. The choice of model depends on the size of the objects the radiation is interacting

with, relative to the wavelength. However neither of these methods is computationally feasible

when the number of distinct interactions being considered is very large, as is the case with the

highly scattering medium we are trying to model. Rather we require a technique that models this

large number of interactions by some aggregate approach.

One technique that has been developed to deal with a large number of field-media interactions

is linear transport theory [9, 10]. In this approach light is treated as particles propagating through

the medium that can be either absorbed or scattered by the particles composing the medium. Light

particles are not modeled as interacting with each other, and thus there is no correlation between the

fields the particles represent. The implication of this approach is that powers, instead of fields, are

additive. This model also does not take into account polarization effects2. The equation defining
2A model that does take into account polarization is available [10] but it is not typically employed in the derivation of

the diffusion equation for light propagation in a diffuse medium, our ultimate goal here.



CHAPTER 1. INTRODUCTION 8

linear transport theory, known synonymously as the linear transport equation, the radiative transport

equation, or the Boltzmann transport equation, is a conservation equation of the light particles and

is given by

��

�
��
����� �������� ���� �� ���� � ������ ��� �� ����� ��� ����

�

�

	���� ��� ��

	�
�� � ���� ��� ����� (1.1)

where ���� ��� �� is the radiance (the power per unit area and unit solid angle) at position � in the

direction �� at time �; �� � �� � �� are the optical transport, scattering, and absorption coefficients

respectively; ����� ���� is the scattering phase function; ���� ��� �� is the radiant source function; and

� is the electromagnetic propagation speed in the medium. Although the linear transport equation is

applicable to a wide range of media, analytical solutions are only available for simple scenarios be-

cause of the integro-differential structure of the equation. Numerical solutions to the linear transport

equation are computationally intensive due to the dependence on space, angle, and time.

Photon diffusion equation

We can use the diffusion equation as an approximate solution to model the light propagation de-

scribed by the linear transport equation if two criteria are met: that the reduced scattering coefficient

is much larger than the absorption coefficient and that the reduced scattering coefficient does not

have significant spatial variation. The reduced scattering coefficient is given by

��� � ��� 
��� (1.2)

where 
 is the mean cosine of the phase function given by


 �

�
��
����� ������� ����� (1.3)
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The reduced scattering coefficient specifies the equivalent scattering rate to achieve a uniformly

random scattering function.

Detailed derivations of the photon diffusion equation from the linear transport equation are given

in Ishimaru [10], Haskell et al. [11], Boas [12], and Arridge [13] among others. We briefly show

where these important assumptions apply in developing the diffusion equation below.

If the reduced scattering coefficient is much greater than absorption, the radiance can be ex-

pressed by the first two terms of the Taylor series for the radiance given by

������ �� �
�

��
	��� �� �




��
���� �� � ��� (1.4)

where 	��� �� is the photon fluence rate, which is the integral of the radiance without respect to

direction

	��� �� �

�
��
���� ��� �� ���� (1.5)

and ���� �� is the photon flux; that is, the first order directional component of the radiance

���� �� �

�
��
���� ��� ���� ���� (1.6)

Requiring that the reduced scattering coefficient be much greater than the absorption coefficient

results in a radiance that is almost uniform, having only a relatively small flux in the direction ��.

Expressing the radiance in this form allows for the simplification of the linear transport equation to

the form

�� �
�	��� �� � ���	��� �� �
		��� ��

	�
� ����� ��� (1.7)

where ���� �� is the isotropic source component given by

���� �� �

�
��
������ �� ��� (1.8)
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and 
 is the diffusion coefficient given by


 �
�


��� � 
���� � (1.9)

If we can assume that 
 is invariant with respect to space, which allows us to move 
 outside of

the Laplacian operator, we arrive at the photon diffusion equation

�
��	��� �� � ���	��� �� �
		��� ��

	�
� ����� ��� (1.10)

There is also some discussion in the community as to whether the denominator of the diffusion

coefficient should also contain an additive term 
�� [14, 15]. In our work we have chosen to use

the expression Eq. (1.9) [14].

Several aspects of this model deserve additional discussion. Near the boundary between a dif-

fuse and non-diffuse medium (i.e. the air-tissue interface) the diffusion approximation does not

hold, since any photons scattered out of the medium will never have a chance of being scattered

back into the medium. This must be handled as a special case as described in Section 1.3.4. Addi-

tionally, the distance between sources and detectors should be much greater than the mean transport

length ������ � ��� so that enough scattering events occur to generate a diffuse field. Finally, ex-

plicit use of the linear transport equation does become necessary when some region of the medium

being interrogated is not diffuse, for example the cerebral spinal fluid in the head [16].

Frequency domain photon diffusion equation

Taking the Fourier transform of Eq. (1.10) with respect to time gives the frequency domain photon

diffusion equation which is in the form of the Helmholtz equation

�
�� � ��

�
	��� �� �

��


���� ��� (1.11)
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where � is the complex wavenumber given by,

�� �
���� � ��



� 
���

�
��� � � �

�

�
(1.12)

Note that Eq. (1.12) is derived using the Fourier transform defined as � ��� �
��
�� �����

��� ��.

This is a slightly different form than is commonly used in engineering texts in that the ��� term is

positive. This has the consequence that the Fourier transform of the time derivative term becomes

���	��� �� instead of ��	��� ��.

1.3.2 Validation of the photon diffusion model

Early work in investigating the diffusion model of photon propagation focused on validating the

model with experimental evidence. O’Leary et al. [17] and Boas [12] showed that diffuse photon

density waves refract at a boundary just like electromagnetic waves. They conducted an experiment

in which a two layer medium of differing optical scattering coefficients was probed using amplitude

modulated diffusive light. By measuring the amplitude and phase of the modulated photon density

wave throughout the volume they were able to show good agreement with expected refraction at

the boundary layer predicted by the Helmholtz equation. Fishkin and Gratton [18] performed a

similar experiment showing that diffuse photon density waves diffract at an absorbing straight edge.

As in the experiment by O’Leary et al. [17], they used an amplitude modulated light source in a

highly scattering medium. In the medium they placed an absorbing straight edge and measured the

amplitude and phase in the volume. They used both the Helmholtz equation and a Monte Carlo

model to predict their results and achieved good agreement with their measurements.
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1.3.3 Solutions to the diffusion model

Solutions to the diffusion equation for basic geometries have been explored by several groups. Boas

et al. [12, 19] presented a spherical harmonic solution for the case where a spherical inhomogeneity

is present in an infinite medium. In this instance a closed form infinite series solution can be ex-

pressed and a reasonable approximation can be calculated numerically. Additionally they compared

their calculations to experimental results where a perfect absorber was placed in a large diffuse re-

gion. They were able to show good agreement between the experimental measurements and those

predicted by their analytical solution. Walker et al. [20] extended the spherical results described

above to a cylindrical inhomogeneity. They were able to show good agreement between an an-

alytical solution to the diffusion equation and experimental measurements made in an intralipid

phantom.

1.3.4 Boundary modeling and diffuse sources

Sources used for DOT are typically laser beams incident on the diffuse medium. This creates a

complex source function that is typically approximated by an isotropic point source one transport

length ��� � ����� into the medium [11, 12]. Correct modeling of any boundary between diffuse and

non-diffuse regions is of great importance to accurately predict the fluence rate distribution in the

medium. This is particularly important when the sources and detectors are near a diffuse/non-diffuse

interface such as the case in which we are interested. Haskell et al. [11] compared three models for

the air-tissue boundary: a zero boundary condition, an extrapolated zero boundary condition and a

partial current boundary condition. The partial current boundary condition is physically the most
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rigorous of the three but difficult to implement computationally. They showed that the extrapolated

boundary condition matches the partial current boundary condition up to the quadrupole moments.

Thus we have based our simulations on the extrapolated boundary condition. The extrapolated

boundary condition implements a zero fluence rate boundary at specified distance from the true air-

tissue interface. This distance is a function of the optical parameters and the change in index of

refraction between the two media. The expression for the extrapolated boundary distance is

�� �






�
�

��� � ��

�
�
�
� ��	


���	



�
(1.13)

where �	

 is the effective Fresnel reflection at the surface given by

�	

 �
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��� ��� � (1.14)
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�	��	���� ��� (1.16)

and �
�	��	� is the Fresnel reflection coefficient for unpolarized light.

Pogue and Patterson [21] examined the effect of inaccurately modeling the shape of the bound-

ary of the diffuse medium. Specifically, they modeled finite volumes consisting of slabs, cylinders,

and spheres and then compared the reconstruction of the optical properties from a half space bound-

ary assumption. When the volume of the diffuse medium was larger than 5 cm in width for the slab

geometry and 5 cm in diameter for the cylindrical and spherical geometries, they found good agree-

ment between semi-infinite medium assumption and the true solution. In particular, for a medium

with a scattering coefficient of 1.0 mm�� and absorption coefficient of 0.01 mm�� they reported

errors in the scattering coefficient estimate of less than 0.2 mm�� for the spherical geometry and
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much less than that for the slab geometry. The absorption coefficient estimates for the same scenario

were within 0.003 mm�� for the spherical geometry and much less again for the slab geometry.

1.3.5 Optical characteristics of biological tissue

The optical characteristics of biological tissues vary widely depending upon the type of tissue and

have been studied in many investigations. The quantities of interest here are the optical scattering

coefficient, ��, the mean cosine of the scattering phase function, 
, (or equivalently ���), and the

absorption coefficient, ��.

The scattering coefficient varies for both tissue type and as a function of wavelength. Cheong

et al. [22] compiled a comprehensive set of optical parameter coefficients from a large number of

earlier publications. Most of the data compiled at that point was either in the visible range, 500-650

nm, or at infrared wavelengths over 1000 nm. Mitic et al. [2] presented in vivo measured data of

breast tissue from six female volunteers using a time-gated approach at 800 nm. They reported a

reduce scattering coefficient of 7.2-10.0 cm��. Bevilacqua et al. [23] presented in vivo results from

human brain measurements. They examined several types of brain tissue at 674, 811, 849 and 956

nm. At the two wavelengths nearest the ones we have employed here, 780 and 830 nm, they found

reduced scattering coefficients of 8.2-9.5 cm�� at 811 nm, and 7.6-9.2 cm�� at 849 nm.

The optical absorption coefficient, at our wavelengths of interest, is primarily affected by the

concentration and type of hemoglobin present in the tissue being examined. Mitic et al. [2] found

bulk optical absorption coefficients of slightly compressed breast tissue in the range of 0.017-0.032

cm��. If we assume that the absorption coefficient is entirely due to hemoglobin then the absorption

coefficient of tissue for a given blood volume and oxygenation can be computed using the optical
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Figure 1.1: Hemoglobin absorption coefficient per mole as a function of wavelength. Note the
relatively low absorption between 700 and 1000 nm and the crossover point around 800 nm. Data
taken from Prahl [24]

.

coefficients for pure blood. Prahl [24] compiled data from variety of sources to present the absorp-

tion coefficient of whole oxy-hemoglobin and deoxy-hemoglobin versus wavelength, as shown in

Figure 1.1.

1.3.6 Imaging using DOT

Imaging using DOT consists of computing a spatial map of the optical scattering coefficient, ab-

sorption coefficient, or both. From these maps other biological characteristics are often derived,

such as a map of blood volume. Imaging of the optical characteristics can be broadly classified

into two categories, linear model based imaging and non-linear imaging. In general, linear model
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based imaging attempts to use a linearized model approximation of the photon diffusion equation

(Eq. 1.10) to create a simpler relationship between the measured radiance and the medium optical

parameters. On the other hand, non-linear techniques typically use the photon diffusion equation

directly and, through an iterative process, try to find the optical parameter map that best matches the

measured data (and possibly meets some other additional criteria).

Linear model based imaging techniques

Linear model based imaging techniques typically employ either the first order Born or Rytov ap-

proximations [25] to create a linear relationship between the optical parameter of interest and the

measured light. In all of the published studies we have examined, only the absorption coefficient

has been imaged using linear model based techniques.

Some of these early attempts include the work by O’Leary et al. [26, 27], who examined recon-

struction of both the absorption and scattering coefficient. They used both the SIRT algorithm with

a positivity constraint and a filtered SVD algorithm to compute their reconstructions. They were

able to show that reconstruction of absorption images from frequency domain data is possible.

Another approach used early on was to use interfering diffuse photon density waves to detect

anomalies within the medium. This technique was pursued by Chance et al. [4] and Knuttel [28].

While this technique provided early confirmation that absorbing inhomogeneities could be detected,

it suffers from ambiguity when the a priori information about the number of objects is unknown.

A collaboration between groups at Polytechnic University in Brooklyn, NY, SUNY Health Sci-

ence Center in Brooklyn, and Bioimaging Sciences in New Jersey has been active in developing

linear DOT reconstruction techniques. In one series of articles [29, 30, 31, 32, 33, 34, 35] they
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explored the use of a Monte Carlo based transport theory forward model and several different lin-

ear reconstruction techniques to compute maps of the absorption coefficient for a cylindrical dif-

fuse region. In this work they simulated detector responses for scenarios where there was either

a single cylindrical absorbing inhomogeneity or 13 cylindrical absorbing inhomogeneities. In all

cases the absorption coefficient of the inhomogeneities was infinite. In Graber et al. [29] they

explored the effect of modulation frequency on reconstruction quality using the Simultaneous Al-

gebraic Reconstruction Technique (SART) algorithm. They looked at modulation frequencies of

DC, 1 KHz, 1 MHz, 100 MHz, 1 GHz, 10 GHz, 100 GHz and 1 THz and found that a 1 GHz

modulation frequency provided the most accurate reconstruction of a single off-center rod. Chang

et al. [31] explored the performance of three different linear reconstruction algorithms, Projection

on Convex Sets (POCS), Conjugate Gradient Descent (CGD), and SART. Using these algorithms

applied to three-dimensional reconstructions, two-dimensional reconstructions where the axial in-

variance is known a priori, and two-dimensional reconstructions where it is assumed that only those

voxels in the plane of the detector contribute to the detector measurements, they showed that the

three-dimensional reconstructions provide better images (qualitatively) than the two-dimensional

approaches.

In Chang et al. [32] they explored a positivity constraint on the CGD algorithm and a rescaling

of the forward matrix. In previous work they had applied a positivity constraint by setting any

negative value in an intermediate solution to zero. In this work they examined the constrained

solution at each stage to detect divergence (an increasing residual). If they detected divergence they

would restart the CGD algorithm at the current estimate. Their rescaling of the forward matrix

was accomplished by rescaling each column to have a maximum or average of one. Their results
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showed that to apply a positivity constraint in this manner (setting negative values to zero) requires

the restarting of the CGD algorithm. Without restarting, their images did not converge to anything

resembling the true absorption function. With restarting they were able to generate good quality

reconstructions. Also, the rescaling of the forward matrix produced better quality images than the

CGD algorithm with the unscaled forward matrix. They combined most of the previously described

results in the journal article [33].

In Zhu et al. [34, 35] they examined the total least squares (TLS) solution to the linear perturba-

tion problem. They looked at simulations of one-dimensional and two-dimensional variations and

attempted to reconstruct in two-dimensions using a TLS algorithm. They found that the TLS solu-

tion provided better performance than the least squares solution for the one-dimensional variation

and no improvement in the case where there was two-dimensional variation. They attributed this

result to the fact that they solved an overdetermined system for the one-dimensional variation and

an underdetermined system for the two-dimensional variation.

Non-linear imaging techniques

A number of groups have explored non-linear reconstruction techniques. In these approaches the

researchers have attempted to retain (or approximate) the exact relationship between the measured

fluence rate data and the optical properties of the medium. This approach typically requires a larger

amount of computation than an equivalent linear approach. Additionally the solution is typically

computed through a minimization algorithm and therefore the solution is not guaranteed to be a

global minimum. Jiang et al. in [36] presented a detailed review of their group’s work in non-linear

frequency-domain DOT reconstruction. They used a finite element forward model of a cylindrical
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diffuse medium with a cylindrical inhomogeneity. They reconstructed using both simulations and

experimental data from a phantom. In both cases they modeled an environment that was invariant

in the axial dimension and reconstructed a two-dimensional slice through the volume. The 16

sources and 16 detectors were evenly distributed in a ring around the boundary of the cylinder.

They were able to reconstruct quantitatively accurate maps of both the absorption and reduced

scattering coefficient using both simulated and measured data. Additionally, they examined the

effect of varying the modulation frequency between 50 and 300 MHz and found very little variation

in the quality of the reconstructions.

The group based in Brooklyn, previously mentioned in the section on linear techniques, has

also explored a non-linear technique based on the Born iterative method. In Yao et al. [37] they de-

scribed their implementation of the Born iterative approach and showed noise free two-dimensional

reconstructions that displayed some improvement over a first order Born reconstruction. They also

demonstrated (qualitatively) the degradation in the reconstruction resulting from the addition of

10% noise to the simulated data. Finally, they demonstrated the ability to reconstruct absorption

and scattering images from a set of sources and detectors that only partially spanned the circumfer-

ence of the cylinder. In Yao et al. [38] they described their implementation of a multigrid forward

solver to the diffusion equation and its application to an anatomically accurate geometry derived

from MR based data. They simulated optical inclusions into the geometry and showed they were

able to qualitatively reconstruct the optical parameter maps. In Zhu et al. [39] they described a

wavelet based approach to the inversion step of their reconstruction algorithm. They solved the

inversion at a coarse scale using the CGD algorithm, then using the result from the coarse scale

to initialize the CGD algorithm at the next finer scale they computed the result at that scale. This
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process is iterated until the desired precision is reached. The motivation behind this approach is to

reduce the computation for the inversion step. They show an example where the total computation

is reduced by a factor of seven compared to non-multiresolution reconstruction. In Yao et al. [40]

they combine all of these results into a single article.

A statistical approach to the non-linear DOT reconstruction is described by Eppstein et al. [41].

In this approach they used an extended Kalman filter to estimate the absorption coefficient in a

recursive scheme which they originally developed for geohydrology. They also attempted to reduce

the number of unknowns at each iteration by grouping like voxels together as a large voxel with the

same properties moving the problem from an underdetermined to an overdetermined one.

Parametric approaches have been explored by Kilmer et al. [42] and Arridge et al. [43]. In [42]

the authors take a parametric approach to extracting information about the anomaly present in in the

medium. The anomaly boundary is modeled by a B-spline curve that is updated through a non-linear

optimization approach. In two-dimensional reconstructions they were able to accurately estimate

the size and optical absorption coefficient of a 1 cm deep object.

1.3.7 Related work in other disciplines

Many of the approaches for imaging are derived from other applications of tomography. A pri-

mary reference for our research into tomography has been the monograph Computerized Tomo-

graphic Imaging by Kak and Slaney [25] in which they presented the algebraic reconstruction tech-

niques (Algebraic Reconstruction Technique (ART), Simultaneous Iterative Reconstruction Tech-

nique (SIRT), etc.) and the first Born approximation, of which we have made extensive use in our
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investigation. Many of the matrix techniques that we have employed are well described in Ma-

trix Computations by Golub and Van Loan [44]. Specifically, we have referenced this text for the

Givens rotation algorithm, the QR formulation of the minimum norm solution to an underdeter-

mined system, the Truncated Singular Value Decomposition (TSVD) and the Conjugate Gradient

(CG) algorithm. Shewchuk [45] also presented an accessible introduction to the CG algorithm.

P. C. Hansen has written extensively on the topic of regularization. The L-curve as a method

for choosing a regularization parameter is presented in [46] and references therein. His group has

also presented a modification to the TSVD algorithm that we have adapted for DOT imaging. The

modified (M)TSVD algorithm [47] presents an algorithm to minimize a weighted semi- norm (2-

norm) of the solution subject to the solution matching a regularized version of the data.

The Ellipsoid algorithm is used extensively in the latter part of our study. This algorithm was

originally presented by Khachiyan [48] as a polynomial time solution for linear programming.

Bland et al. [49] present a detailed survey of the ellipsoid algorithm, its development, and its ap-

plication, particularly to linear programming. Boyd and Barratt [50] present the ellipsoid algorithm

in the context of convex optimization with applications in control systems. It has also been used in

our lab to implement an admissible solution approach for the electrocardiographic inverse problem

[51].

1.4 Contributions of this thesis

Our approach, described in this thesis, has been to try to understand the limitations and failings of

the basic linear model reconstruction approach. With those limitations and failings in mind we have
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developed a set of constraints, and algorithms to apply them, that improve reconstruction fidelity

of the optical absorption coefficient. The work described in this thesis has been done as part of a

collaboration among several different groups here at Northeastern University, Tufts University, and

Massachusetts General Hospital. The participants in this group include Dana Brooks, Eric Miller,

and Chuck DiMarzio from Northeastern University, Misha Kilmer from Tufts University, and David

Boas and Tom Gaudette from Massachusetts General Hospital.

In this thesis we have made three primary contributions to DOT imaging. First, we have pro-

vided a detailed analysis of the performance and limits of several three-dimensional linear model

reconstruction algorithms. In this analysis we showed that a class of algorithms which has been

less commonly used for this particular application, based on subspace techniques, outperformed

the more commonly employed algebraic techniques. In addition, in this work we explored several

different measures of performance for the reconstruction algorithms and compared them through a

thorough subjective analysis of the reconstructions. From this analysis we concluded that both mean

square error and position-based object centroid error provide useful although incomplete measures

of algorithm performance. This work has been published in Refs. [52, 53]. A second area of con-

tribution has been in the development of a constrained two-wavelength reconstruction algorithm.

In this approach we have exploited the existing requirement that multiple wavelengths need to be

collected to calculate blood volume and oxygenation. We have developed an efficient algorithm for

applying an a priori constraint on the solutions at each wavelength that improves the reconstruction

performance compared to the individual linear model reconstructions. The final significant area of

contribution is the application of more general constraints to linear model reconstructions through

an admissible solution approach. By applying these a priori constraints, derived from the expected
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behavior of the optical absorption coefficient, we have been able to dramatically improve the fi-

delity of the reconstructions over a wide range of simulation scenarios. In addition we have made

two other contributions. We performed a preliminary comparison of several types of forward models

for DOT imaging, with the primary goal of testing the validity of linear (first Born approximation)

models, and we designed and constructed an extensible, MATLAB-based toolbox for use in DOT

imaging research.

This thesis is structured as follows: Chapter 2 provides a description of the simulation models

used for this investigation. Chapter 3 presents our evaluation of the linear model reconstruction

techniques. Chapter 4 derives the constrained two wavelength approach and presents the results

of applying this algorithm. Chapter 5 derives our admissible solution approach and compares the

performance of this technique to the previously presented algorithms. In Chapter 6 we present the

conclusions of this thesis and our suggestions for future work in the field.



Chapter 2

Simulation models

All of the results presented in this thesis are derived from computer simulations of several different

DOT measurement scenarios. In this chapter we present the measurement scenarios and mathe-

matical models we used to examine the DOT reconstruction algorithms we have developed. The

measurement scenario consists of the geometric layout of the sources and detectors and their rela-

tionship to the diffuse medium. Also in this section we discuss the resulting sensitivity of particular

geometries. The mathematical models consist of the diffuse photon density wave propagation equa-

tions and approximations, used for both simulation of the forward problem and for constructing a

model for the inverse problem. We also describe the noise models we have used to simulate the

noise expected in laboratory and clinical measurements.

24
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2.1 Measurement scenario

The general measurement geometry explored in our work was a planar array of sources and detectors

placed at the air tissue interface. The motivation for studying this geometry was the examination of

the human female breast for the detection and characterization of tumors. It is expected that for this

scenario the subject would be lying on her back with the source-detector array placed on top of the

breast. A simple schematic of this scenario is shown in Figure 2.1. The sources, identified by the

circles, are generally interspersed between the detectors. A set of measurements is made by exciting

one source and measuring at all of the detectors, and the process is then repeated with a different

source turned on. The sources can be excited by either DC current or a sinusoidally modulated

current (in the tens to hundreds of MHz range) to produce a spatially and temporally varying photon

density wave. If a modulated source is used, both the amplitude and phase are measured through

the use of a quadrature demodulator. Additional sources of different wavelengths are simulated in

some of the experiments. These can either be collocated with the original sources or in different

locations at the air-tissue interface. All of these possibilities allow for a wide range of measurement

scenarios, many of which we have explored in this thesis.

With this type of measurement geometry the spatial sensitivity of a particular source-detector

pair traces out what are sometimes called “banana patterns.” Two examples of these are shown in

Figures 2.2 and 2.3. Each image in these figures shows the sensitivity, over the spatial region being

plotted relative to a unit source, of the specified source-detector pairing. Another interpretation of

these figures is the relative probability for a photon to travel through a given region. The sensitivities

are plotted on a dB scale with the range for each source-detector pair set at 100 dB. The first (upper
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Figure 2.1: A schematic of the geometric layout for some of the simulations in this thesis. The
sources (small green circles) and detectors (blue triangles) lie on the tissue-air boundary (z=0 cm).
The entire volume was 7 cm x 7 cm x 5.5 cm deep. The absorption anomaly (red sphere) is 2.5 cm
into the medium at x=2 cm and y=3 cm with a radius of 1 cm. The grid size used to discretize the
volume for some of the inverse computations is illustrated by the grid shown in the figure.

left) image in each figure shows the vertical plane passing through the line connecting the source

and detector. Subsequent images show the sensitivity (on the same scale) for planes at increasing

distance from the source-detector plane, using increments of 0.25 cm, labeled in the title of each

image. The source was simulated at the origin of the coordinate system. Figure 2.2 shows the case

where the detector is 1 cm away from the source at (1,0,0). This set of images shows that with a

close source-detector separation the region sampled is relatively local to the source and detector. On

the other hand, Figure 2.3 shows the case where the detector is 5 cm away from the source at (5,0,0).

In this case we can see the volume sampled by this source-detector distance is relatively large. The

surface where sensitivity falls to -40 dB relative to peak sensitivity is at about 3 cm deep into the

medium in the source detector-plane and extends out to at least 2 cm out of the source-detector

plane. This image displays clearly why DOT imaging is a three-dimensional problem. There is a



CHAPTER 2. SIMULATION MODELS 27

large diffusive wave interaction outside of the source-detector plane.

2.2 Propagation models

To understand how diffuse photon density waves interact with the optical parameters of the medium

we needed a propagation model for the density wave. Both the forward problem (i.e. simulating

measurements) and the inverse problem (i.e. creating maps of the optical parameters from mea-

surements) require a model of diffuse photon density wave propagation through a heterogenous

medium. Furthermore, we have explored a linear model which is an approximation to the true non-

linear relationship between the measured fluence rate and the spatially varying optical absorption

parameter we wish to reconstruct. The motivation for exploring a linear approximation model was

to develop a computationally less intensive reconstruction approach than is required by a full non-

linear inversion. In this section we first present the details of the techniques we used to model diffuse

photon density wave propagation. Following this we show how we have discretized the model so

that it could be solved numerically. Finally, we present a validation of the model by comparing it to

spherical harmonic and finite difference solutions of the full non-linear model.

The optical absorption function that represents the scenario described in the previous section

can be expressed as

����� � �
�
� ������� (2.1)

where ����� describes the optical absorption as a function of space, �, ��� specifies the background

value of the absorption parameter, and ������ specifies the spatial deviation of the absorption

parameter. Substituting Eq. (2.1) into the equation for the spatial wavenumber in the frequency
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Figure 2.2: Source-detector sensitivity for a 1 cm source-detector separation.
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Figure 2.3: Source-detector sensitivity for a 5 cm source-detector separation.
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domain photon diffusion equation Eq. (1.12) gives

����� � ��� ������� �
�� � ����



�
��



������ (2.2)

where we have expressed the squared wavenumber as the sum of a background component, ��� ,

due to the background optical parameters and ������ due to the absorption deviation. Substituting

Eq. (2.2) into the frequency domain photon diffusion equation Eq. (1.11) gives

�
�� � ��� �������

�
	��� �

��


����� (2.3)

Note that we have also dropped the explicit dependence on the temporal frequency � present in

Eq. (1.11). Since our measurement procedure is to collect steady state frequency domain data at

one or more discrete frequencies that we specify, we have left in � only as a parameter.

We have already described approaches previous groups have taken to solving the frequency

domain diffusion equation for special cases in Section 1.3.3. When the variation in the absorption

coefficient is not spherical or cylindrical and the change in spatial wavenumber is not too large

compared to its average or background value, we can apply a perturbation approach to solve the

Helmholtz equation Eq. (2.3) with the wavenumber given by Eq. (2.2). The perturbation approach

that we chose to apply is known as the first Born approximation [25]. We first rewrite Eq. (2.3) as

�
�� � ��� �������

� 	
	���� � 	����



�
��


����� (2.4)

where we have expanded the fluence rate as the sum of the incident fluence rate, 	���� and a scat-

tered fluence rate, 	����. The incident fluence rate is that resulting from the source acting on the

medium with the spatially varying wavenumber parameter set to zero. The scattered fluence rate

is the fluence rate remaining to correctly solve the complete equation and can be thought of as the

fluence rate that scatters from the inhomogeneities.
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If we consider only the source acting on the homogeneous medium we have the equation for the

incident fluence rate given by

�
�� � ���

�
	���� �

��


����� (2.5)

Subtracting the homogeneous medium equation Eq. (2.5) from (2.4) we are left with the scattered

fluence rate equation

�
�� � ���

�
	���� � �������

	
	���� � 	����



� (2.6)

Making the assumption that 	���� � 	���� allows us to drop the �������	���� term from

Eq. (2.6). This is the first order Born approximation and results in

�
�� � ���

�
	���� � �������	����� (2.7)

Thus we now have a linear relationship between the scattered fluence rate 	���� and the variation in

the absorption coefficient through ������. Physically this approximation amounts to treating each

point in an inhomogeneity as if it existed in isolation from the rest of the inhomogeneity, ignoring

the contributions of perturbations of the scattered fluence rate from one part of an inhomogeneity

on the fluence rate incident on another part.

To solve Eq. (2.7) we have used the method of Green’s functions [54] which when discretized

(as described below) provides us with a system of linear equations relating the scattered fluence rate

and optical absorption. The Green’s function solution for Eq. (2.7) is given by

	���� �

�
�

 ��� ���	������������ ���� (2.8)

where the integral is over the entire volume ! . To calculate the incident fluence rate in Eq. (2.7) we

need to solve for the homogeneous medium given in Eq. (2.5). Again we use the Green’s function
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solution given by

	���� �
��



�
�

 ��� ������� ���� (2.9)

In our simulations one simply computes only the scattered fluence rate; in practice, of course, this is

usually impossible. Hence, in practice some approximate homogeneous fluence rate is estimated by

first estimating the background optical parameters and then subtracting the homogeneous fluence

rate estimate from the measurements.

For a free space geometry the Green’s function for the Helmholtz equations Eq. (2.7) and

Eq. (2.4) is given by [55]

 
 ��� �
�� �

��
����� ����

���������� (2.10)

Thus if we assume that the source function is modeled by an isotropic point source at ���� then

equation for the incident fluence rate is

	���� �
�




�

����� ������
������������ (2.11)

For the half space geometry described above we can use the method of images to impose the

Dirichlet boundary defined by the extrapolated boundary condition when we calculate both the

incident and scattered fluence rates. A diagram of the geometry of the method of images under the

extrapolated boundary condition is shown in Figure 2.4. This approach results in two sources for

each source simulated, the original source and its image which has a negative amplitude with respect

to the original source. Any anomalies in the medium also need to be reflected across the extrapolated

boundary. For the reflected anomalies the sign of the amplitude of the object parameter is the same

as the true object. This symmetry results in zero fluence rate in the extrapolated boundary, the

condition we are trying to achieve.
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Extrapolated Boundary

Air-tissue interface

Image of air-tissue interface

+

-

Figure 2.4: Method of images diagram for the extrapolated boundary half space. The true air-tissue
interface is represented by solid black line, the dashed red line shows the position of the extrapolated
boundary, the green circle represents a source, and the blue polygon represents a anomaly in the
diffuse medium. The dotted line objects show the position and orientation of the images of the true
object.
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The method of images can also be implemented directly in the Green’s function by adding

a second term that accounts for the image source. This additional term results directly from the

application of superposition of the two sources. The equation for the half space Green’s function is

given by

 ���� �
�� �

��
����� ����

��������� �
�

���� � ����
��������

�

�
�� (2.12)

where ��� is the image point of �� with respect to the extrapolated boundary.

2.2.1 Discretization of the propagation model

We now have a linear approximation that can be used to compute the forward problem if �����

is known and can also be used to construct an inverse problem if 	��� is known and we wish to

estimate �����. To solve Eq. (2.8) numerically we need to discretize the integral. We performed this

by discretizing the volume into uniform voxels. The integral was approximated by assuming that

the Green’s function, incident fluence rate and wavenumber perturbation were constant over each

voxel, with the value of each function taken at the center of the voxel. Making this assumption leads

to a summation approximation to the integral

	���� �
�
���

 ��� ����	
��������

������� (2.13)

where the summation is over all voxels in ! and �� is the center of the ��� voxel. To construct

the discrete inverse problem from multiple measurements we stacked the summations of Eq. (2.13)

from each measurement. This gave us a matrix vector equation

�� � ��� (2.14)
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where ��
� is the scattered fluence rate from "�� measurement, �� is the ������� for the ���

voxel, and ���� is given by

���� �  ���� ���	
����� (2.15)

where �� is the position of the"�� measurement and �� is the position of the ��� voxel.

When sources are amplitude modulated the frequency domain measurements are represented

as complex values from a quadrature demodulation at the modulation frequency. In general when

computing the inverse solution this could result in a complex valued �which would imply a complex

valued optical absorption coefficient. To restrict the elements of � to the real line we separate the

real and imaginary parts of �� and � and stack them. In matrix-vector notation this is given by

��� �

�
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������

������

�
���� � ��� �

�



�
�����

�����

�
����� (2.16)

2.2.2 Validation of the propagation model

Because the linear propagation model presented in the previous section is an approximation of

the frequency domain diffusion equation, we needed to characterize how well the approximation

agreed with the full solution. We validated the accuracy of the first Born propagation model by

comparing the scattered fluence rate solution from our first Born model and two other forward

solutions, the spherical harmonic solution presented in Boas et al. [19] and discussed in 1.3.3, and a

finite difference frequency domain (FDFD) solution. We examined the scattered fluence rate under

several different scenarios to understand when the first Born model was appropriate and how it

deviated from the true solution when it was not accurate.
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Simulation scenarios

All of the scenarios consisted of simulating a spherical absorption anomaly in a diffuse medium.

The diffuse medium was modeled with a reduced scattering coefficient of 10 cm��, an absorption

coefficient of 0.041 cm�� and a index of refraction of 1.37. The absorption anomaly had an ab-

sorption coefficient of 0.18 cm�� and was centered 2.5 cm into the medium with a radius of 1 cm.

Two medium geometries were examined, a free space geometry and a half space geometry. The half

space geometry was implemented with the extrapolated boundary condition, where the extrapolated

boundary was 0.1832 cm away from the air-tissue interface. A schematic diagram for this scenario

is shown in Figure 2.5. A single source was simulated in one of three positions; directly above the

anomaly, or -3 cm or 2 cm away from directly above the anomaly. The effective position of the

diffuse source was ����� = 0.1 cm into the medium as discussed in Section 1.3.4. In the half space

medium case the offset direction was normal to the air-tissue interface, simulating fibers that were

normal to the interface. In the free space medium simulation, since there was no air-tissue interface,

the direction was chosen so that it matched the geometry of the half space medium simulation. Both

CW and 200 MHz source modulation were simulated. The latter produced a diffuse photon density

wave with a wavelength of 9.441 cm. The scattered fluence rate field was sampled along a line at

the air-tissue interface, that coincided with the offset direction of the sources, in 0.5 cm increments.

First Born details

We implemented the first order Born approximation using a 0.1 cm grid just surrounding the 1 cm

diameter sphere. This resulted in a 21x21x21 computational grid. The half space boundary was



CHAPTER 2. SIMULATION MODELS 36

Figure 2.5: Diagram of the half space validation scenario. The air-tissue interface is represented by
the black line, the detector position are shown by the blue crosses, the effective source positions are
shown by the open green circles and the absorption anomaly position and size is represented by the
large red circle.

implemented by first computing the incident fluence rate at the inhomogeneity as the difference

of the effective source at 0.1 cm into the medium and the image source at 0.4664 cm outside the

medium using the free space Green’s function for the diffusion equation. We then calculated the

scattered fluence rate at the detectors as the difference of the effective scattering source and its

reflection across the boundary. The effective scattering source is due to the incident fluence rate at

the inhomogeneity voxel and the difference in absorption from the background.

Spherical harmonic details

The spherical harmonic solution is based on a spherical series expansion solution to the three-

dimensional Helmholtz equation in an infinite medium. For this approach we used the code embed-

ded in the PMI program developed by David Boas [56]. The number of terms in the series used by

this code is unknown to the user. For the infinite medium case the solution was calculated by using

a straight forward PMI script. The only parameter to mention is that the source was specified 0.1

cm into the medium because PMI does not change the position of the diffuse point source relative

to the specified source position for an infinite medium.
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For the half space medium we implemented a method of images by using PMI to calculate the

spherical harmonic solution in an infinite medium for all four combinations of the true source and its

image and the true object and its image. This resulted in sources at 0.1 cm and -0.4664 cm relative

to the detectors and the sphere center 2.5 cm and -2.8664 cm relative to the detectors.

FDFD details

The FDFD solution [55, 57] solved the scattered fluence rate equation Eq. (2.6). Since this technique

does not rely on the simplifying assumptions we have made to derive the first Born approximations

it provides a good test of the accuracy of the first Born approximation. We chose to apply the finite

difference method to Eq. (2.6), the partial differential equation describing the scattered fluence rate,

as opposed to Eq. (2.3), which describes the total fluence rate, in order to more accurately compute

the scattered fluence rate in a reasonable amount of time. Applying the FDFD approach to solve

the total diffusion equation requires a large amount of computation time to accurately characterize

the scattered fluence rate. This is because the scattered fluence rate can often be many orders of

magnitude less than the total fluence rate. By calculating the incident fluence rate through the

Green’s function solution Eq. (2.9) and then plugging the result into the FDFD solution of Eq. (2.3),

we were able to accurately calculate the scattered fluence rate in much less time.

The finite difference method was implemented using a large computational grid of 16 x 16 x

16 cm with a grid step size of 0.25 cm. This resulted in 65 x 65 x 65 computation grid. For the

free space simulation the grid was centered on the anomaly. For the half space case the grid was

placed such that edge of the computational grid coincided with the extrapolated boundary. This

implicitly implemented the zero boundary at the correct location. The large computational volume
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was used to approximate free space (an unbounded diffuse domain) for all of the other faces of

the computational volume. The specific technique used to solve the FDFD problem is known as

the Jacobi method [57]. Typically this technique is considered to converge too slowly for practical

purposes, but within MATLAB it lends itself to a much larger number of vector operations relative to

element operations, compared to the Gauss-Seidel or Successive Overrelaxation (SOR) techniques.

This resulted in a Jacobi implementation that, although requiring a larger number of iterations, was

faster than Gauss-Seidel or SOR.

Validation results

The results from simulations using the three forward solutions are show in Figures 2.6 through

2.9. These results were from the 200 MHz source modulation half space scenario for the source

directly above the absorption anomaly and for the source at the -3 cm position (left source in Figure

2.5). All of the other simulations showed similar results in comparing the three forward solutions.

Figure 2.6 shows the amplitude and phase (both relative to the source) of the scattered fluence rate

simulated at the detector positions for the source position directly above the absorption anomaly.

From the plots we can see that all three forward solution produce the same spatial structure in both

the amplitude and phase plots. The first Born approximation produces a slightly larger scattered

fluence rate. This is expected because the Born approximation does not account for any attenuation

in the fluence rate interacting with the lower part of the anomaly after it has traveled through the

upper part of the anomaly. Figure 2.6 shows the detected fluence rate for the case where the source

was offset -3 cm from absorption anomaly (the left most source position in Figure 2.5). Again we

see close agreement in the spatial structure of both the amplitude and phase responses between the



CHAPTER 2. SIMULATION MODELS 39

three simulation methods.
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Figure 2.6: The scattered fluence rate amplitude (top) and phase (bottom) relative to the source for
the center source position. The simulation scenario consisted of 200 MHz source modulation and a
half space medium. The three curves show the scattered fluence rate simulated from three forward
solutions, spherical harmonics, FDFD, and first Born.

To get a better understanding of the differences between the first Born simulation and the other

methods we have plotted the ratio of the amplitudes relative to the spherical harmonic solution in

Figures 2.8 and 2.9. These plots provide a more convenient view in which to examine the overesti-

mation of the first Born approximation. For all three source positions we observed that the first Born

approximation overestimates the scattered fluence rate by 50-70%, as is evident in Figures 2.8 and

2.9. Thus when using the first Born approximation as a linear model for reconstructing the optical

absorption coefficient we can expect an underestimation of the coefficient. But, from these figures it
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Figure 2.7: The scattered fluence rate amplitude (top) and phase (bottom) relative to the source for
the left source position. The simulation scenario consisted of 200 MHz source modulation and a
half space medium. The three curves show the scattered fluence rate simulated from three forward
solutions, spherical harmonics, FDFD, and first Born.
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appears that first Born approximation does capture the spatial variation of the scattered fluence rate

well, and provides a good system model for linear model reconstruction, at least in this scenario.
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Figure 2.8: Ratio of the amplitude scattered fluence rate relative to the spherical harmonic solution
for FDFD and first Born solutions. The simulation scenario is the same as described Figure 2.6.

2.3 Noise models

Measured optical DOT data will undoubtedly be corrupted by additive noise. At this point though, it

is not yet certain what the characteristics of the noise will be since noise in DOT measurements can

come from two general sources. The first is due to thermal noise in the detector electronics. This

type of noise is independent of the signal being measured and can be well modeled as a sequence
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Figure 2.9: Ratio of the amplitude scattered fluence rate relative to the spherical harmonic solution
for FDFD and first Born solutions. The simulation scenario is the same as described Figure 2.7.
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of independent identically distributed (IID) Gaussian random variables. The second, more complex

type of noise, known as shot noise, is due to the quantum fluctuations of the electromagnetic field.

Shot noise is typically modeled as Poisson distributed in the rate of photon arrival. We approximate

this random process with independent, but not identically distributed, Gaussian random variables

with an appropriate mean and standard deviation described below. We base this approximation on

the expectation that photon rate will need to be reasonably high to exceed the thermal noise floor of

the detectors. In measured DOT signals both of these types of noise are generally present. Whether

one or both are significant is dependent upon the detector, the electronics, and the source-detector

distance.

2.3.1 Detector noise model

To examine the effect of noise on the reconstruction algorithms we will present, we used two differ-

ent noise models. The simplest noise model we used followed the thermal noise assumption and thus

was uniform variance Gaussian noise added to the scattered fluence rate signal. This model allowed

us to examine the most basic case without having the noise variance be a function of the measured

fluence rate. The signal-to-noise-ratio (SNR) for this model was defined relative to the peak value

of the scattered fluence rate and simulated the same noise variance in each channel (source-detector

pair measurement). The SNR, in dB, was defined as

�#� � 
� �����

�
���������

$

�
(2.17)

where $ is the standard deviation of the noise in each channel and �� is the scattered fluence rate

vector from Eq. (2.14). This simulated a detector dominated noise where the dynamic range of all
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detectors was constant, set such that they could all measure the maximum signal without saturating.

2.3.2 Shot noise model

On the other hand, following the shot noise model, since the variance of the noise in each mea-

surement is a function of the measured fluence rate, we also examined a simple approximation to

that case. In this model the variance of the noise for each measurement is proportional to the total

fluence rate detected. Mathematically we specified the standard deviation of the noise in channel �,

specified by $� , as

$� � ���
� ���

����
����

�� (2.18)

where �� is the incident fluence rate vector.

2.3.3 Combined noise model

After many of the simulations in this thesis were completed we became aware of a more accurate

model derived from first principles, which we present below. This model takes into account both

thermal noise in detector electronics and quantum uncertainty associated with the optical systems.

This derivation is taken with permission from a memo written by Prof. Charles DiMarzio.

Consider the complex power of the light emitted by a sinusoidally modulated source represented

by the equation

%���� � %�� � &%�� ��������� (2.19)

where & is the modulation depth, & 	 [0,1], and the real part of the equation describes the source
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power as a function of time. The power present at a detector is described by

%���� � '��
(���
��

%�� � '��
(���
��

&%�� ��������� (2.20)

where the real number '�� accounts for the propagation through the diffuse medium at DC, the

complex number '�� accounts for the AC diffuse propagation, (� is the detector fiber area, and

�� is the detector acceptance angle.

The current produced in the detector is proportional to the sum of the light power falling on the

detector and two noise components, one due to thermal noise in the circuitry of the detector and the

other to quantum fluctuations in the expected light power. Thus the total current in the detector can

be written

)��� �
*�

�+,
%���� � )���� � )� ���� (2.21)

where * is the quantum efficiency of the detector, � is the charge of an electron, �+ is Planck’s

constant, , � ��- is the photon frequency, )���� is the random process representing the quantum

fluctuations, and )� ��� is the random process representing the thermal noise. )� and )� are assumed

to be mutually independent. The thermal noise can be modeled as a uniform Gaussian noise process

with a standard deviation given by

$� �


�./��� (2.22)

where � is Boltzman’s constant, . is the temperature, / is the bandwidth of the detector, and ��

is the noise figure for the detector. Another representation used in optics is the concept of noise-

equivalent power (NEP). Using this representation the standard deviation of the thermal noise is

given by

$� �
*�

+,
�#0% �



/� (2.23)
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The quantum fluctuations are due to the statistical nature of photon emission. It is assumed

that the arrival of the ��� photon is independent of the previous � � � photons. Thus the number

of photons arriving in a period ��/ is Poisson distributed. If � photons are expected to arrive in

a period ��/ the standard deviation of the Poisson distribution is


�. With the expected number

of photons varying sinusoidally the actual distribution of the quantum fluctuations will be non-

stationary. To simplify dealing with the quantum noise we consider only the DC portion of the

fluence rate, resulting in a stationary model for the quantum noise. This is a reasonable model when

the detected DC power is much greater than the detected AC power, that is when the modulation

depth & is small and/or the ratio of the DC propagation to the AC propagation '����'�� � is large.

The expected number of photons for the DC fluence rate is given by

�� �
*

+,/
'��

(���
��

%�� � (2.24)

Therefore the standard deviation of the quantum fluctuations is

$� �


�� �

�
*

+,/
'��

(���
��

%�� � (2.25)

As with the thermal noise, another common formulation in the optics field is in terms of an equiva-

lent optical power that would induce the observed quantum fluctuation. This quantity is called the

quantum-noise power %� and given by

$� �
*

+,
%�� (2.26)

Solving for %� in terms of the detected DC fluence rate gives

%� �

�
+,/

*
'��

(���
��

%�� � (2.27)
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Thus with both sources of noise considered, the electrical power of the noise is proportional to

the bandwidth. The electrical power of the quantum noise varies proportionally with square root

of the detected fluence rate detected while the thermal noise is independent of the detected fluence

rate. The other parameters specifying the noise power are fixed physical constants or parameters of

the detection equipment.



Chapter 3

Linear model reconstruction evaluation

In this chapter we describe a set of experiments to evaluate the performance of two groups of linear

model reconstruction techniques under two different reconstruction scenarios. The primary moti-

vations for our exploration of linear model based reconstruction was that they are computationally

relatively inexpensive compared to a full non-linear inversion and there is significant interest within

the community in this approach. Our goal was to characterize commonly used solutions to ill-posed

problems under the DOT imaging scenario and understand the applicability and limitations of the

linear model based reconstructions. Additionally, even when a non-linear model is used, a linear

model is often employed as part of an iterative inversion process. Therefore, an understanding of

the properties and performance of various linear model inversion techniques can also be useful in

developing non-linear schemes. The comparison we have performed included two classes of linear

model inversion schemes. The more commonly employed algorithms in DOT imaging are known

as algebraic techniques. From this class we have examined the Algebraic Reconstruction Tech-

nique (ART) and the Simultaneous Iterative Reconstruction Technique (SIRT). The other class of

48
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techniques examined are known as subspace techniques because they operate on subspaces of the

forward operator or linear model. From this family of algorithms we have examined the Truncated

Singular Value Decomposition (TSVD) and the Truncated Conjugate Gradient (TCG) algorithm.

These types of algorithms have been studied much more than the algebraic class with respect to

regularization of ill-posed inverse problems [46]. Along with the selection of algorithm type we

have also examined how applying regularization techniques affects the reconstruction quality and

how to select the regularization parameter.

The reconstruction scenario that is of primary interest to us is full three-dimensional reconstruc-

tion where the absorption coefficient is mapped for a large volume under the sources and detectors.

Another approach that is often employed is to reconstruct a two-dimensional slab under the source

detector region. In this approach the slab has a prespecified depth and thickness and all inhomo-

geneities are assumed to lie in the slab. We have explored the performance of the linear model

reconstruction algorithms under both of these scenarios. Throughout this chapter we label the for-

mer F3D (full 3D) and the latter 2DS (2D slice).

3.1 Simulation details

As we described in the previous chapter, we used computer simulations to exmine the performance

of all of the reconstruction algorithms in this thesis. In the subsections that follow we described the

specfic details and parameters used with the general models described in Chapter 3.1.



CHAPTER 3. LINEAR MODEL RECONSTRUCTION EVALUATION 50

3.1.1 Computational geometry

We modeled a semi-infinite slab of tissue with a single spherical absorption inhomogeneity and a

reflective imaging geometry. A number of different positions and sizes of the absorption anomaly

were examined with similar results. All the results presented here used a 1 cm radius anomaly

centered 2.5 cm deep in the tissue, as shown in Figure 2.1.

3.1.2 Source and detector parameters

The reflective source-detector geometry we examined simulated a single planar array placed on the

surface of the diffuse medium1. The detectors formed a four by four array with a 2 cm spacing

in both dimensions. The sources were positioned in the interstitial spaces between the detectors,

forming a three by three array also with 2 cm spacing. The sources were amplitude modulated at

a frequency of 200 MHz. A schematic of the geometric layout of the sources and detectors for the

simulations is shown in Figure 2.1. Shown in Figure 3.1 are two examples of a single slice through

the volume of the true absorption perturbation. Figure 3.1(a) shows a vertical slice through the

center of the anomaly in the X-Z plane. We use this representation for the full three-dimensional

reconstructions because it can capture the depth performance of the algorithm in a single image.

Figure 3.1(b) shows a horizontal slice though the center of the anomaly in the X-Y plane. We use

this representation for two-dimensional slice reconstructions.
1This geometry models a measurement system currently in use in the Masschusetts General Hospital laboratory.
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Figure 3.1: (a) A vertical plane of the true absorption perturbation function used in these simula-
tions. This plane is through the center of the absorption anomaly (Y=3 cm). (b) A horizontal plane
of the absorption function showing the true absorption perturbation function. This plane is through
the center of the absorption anomlay (Z=2.5 cm).

3.1.3 Volume discretization

When solving the forward problem we calculated the simulated scattered fluence by discretizing

a region just surrounding the absorption inhomogeneity with a fine cubic grid 1 mm on a side,

requiring a 21x21x21 grid to cover the 1.0 cm radius anomaly. We did not need to discretize outside

of this region because of the compact support of the absoprtion anomaly perturbation.

In contrast, when we solved the inverse problem we assumed that the location of the anomaly

within the medium is unknown. Thus the entire volume or slab under the source detector array was

discretized uniformly to reconstruct the optical parameter function over the whole region of interest.

For the F3D reconstruction, the volume reconstructed, as shown in Figure 2.1, was a cube 7 cm x

7 cm by 5.5 cm deep discretized into voxels. These voxels were 0.5 cm on a side in the X and Y

dimensions and either 0.5 cm or 2.0 cm deep in the vertical (Z) direction. This resulted in 2156

voxels for the 0.5 cm deep voxels or 588 voxels for the 2.0 cm deep voxels.
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With the 2DS reconstruction our assumptions were somewhat different. In this reconstruction

scenario it is assumed that we have a priori knowledge of the width and depth of the absorption

anomaly to properly locate the reconstruction slab. The 2DS reconstructions were also implemented

using a 0.5 cm grid in the X and Y dimensions. The thickness of the slab was either 0.5 cm or 2.0

cm with the center of the slab aligned with the center of the absorption anomaly. Both of these

reconstruction geometries contain 196 voxels. Thus the size of the relevant linear system and the

required computations to reconstruct the absorption coefficient map are greatly reduced for the 2DS

reconstruction.

In all our reconstructions a finer discretization was used in forward calculations and a coarser

one used for the inverse reconstruction. This induces a certain amount of model mismatch between

the forward and inverse problems. Additionally, in some of the 2DS reconstructions the thickness

of the slice is less than the thickness of the inhomogeneity and thus there is further model mismatch

in the inverse reconstructions.

3.1.4 Medium optical parameters

The diffuse medium optical parameters for our experiments were selected to simulate human tissue.

Specifically, the background scattering coefficient, ��, was taken as 100 cm��, and the mean cosine

of the scattering angle as 0.9, resulting in a reduced scattering coefficient, ���, of 10 cm��. The

background absorption coefficient was derived from an assumed hemoglobin concentration of 54.9

�M and an oxygen saturation of 90%, resulting in an absorption coefficient of 0.041 cm�� at a

wavelength of 780 nm. The absorption anomaly simulated a hemoglobin concentration of 0.210

�M and an oxygen saturation of 60%, resulting in an absorption coefficient of 0.18 cm�� or 0.139
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cm�� above the background. These concentrations are based on the data in Prahl’s compilation

[24].

3.1.5 Noise model

We modeled the noise present at each detector as an independent multivariate Gaussian random

variable with separate independent real and imaginary components, zero mean, and a standard de-

viation specified relative to the total fluence at the detector. This is the simplified shot noise model

described in Section 2.3.2. It is clear from Eq. (2.18) that the noise does not have a constant vari-

ance across measurement pairs, and therefore the noise must be “whitened” to fit the assumptions

of the subspace techniques. Whitening was accomplished by weighting the system by the inverse

covariance matrix, expressed mathematically as

��� ��� � ��� ��� (3.1)

where ��� is the inverse of the covariance matrix for the measurements. Because the noise in each

channel is assumed to be independent this inverse is easily computed from the variance in each

channel

��� � ��1

	
$���



� (3.2)

where $� is the noise variance in the ��� channel.

3.1.6 Model mismatch analysis

Even with the different voxel sizes for the forward and inverse models described in Section 3.1.3

there is not a significant mismatch between the two models. From the comparison of forward
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models in Section 2.2.2 we know that the first Born forward model overestimates the amplitude

of the scattered field. To give an indication of how our results might change when the forward

data was generated by a completely different, and more physically accurate, numerical technique,

we substituted an FDFD forward model for the first Born forward model in an additional set of

experiments. We used a standard finite difference frequency domain (FDFD) forward solution [55]

for the same scenario described above to generate the scattered fluence data as described in Section

2.2.2. This data then simply replaced the Born-generated data as input to the noise model and

the inversion algorithms. The FDFD simulation used a 0.25 cm grid size with a computational

volume of 20 cm on a side for the X and Y domains and 12.5 cm for the Z domain. The X and Y

domains were centered on the inhomogeneity. The Z domain was aligned so that the computational

boundary was aligned with the extrapolated boundary position as previously described. All of the

computational boundaries implemented a zero Dirichlet boundary condition.

3.2 Reconstruction algorithms

There are two important characteristics of this inverse problem that reconstruction algorithms must

be taken into account. First, the F3D linear system model Eq. (2.16) is typically very underdeter-

mined. Examples we present in this study have 16 detectors and nine sources, for a total of 144

source-detectors pairs. Each source detector pair provides an in-phase and quadrature measurement

at 200 MHz, providing a total of 288 measurements. The number of unknowns (the number of vox-

els) is as large as 2156, and thus we have up to seven times as many unknowns as measurements.

Second, this inverse problem in its continuous form is ill-posed. The absorption coefficients do not



CHAPTER 3. LINEAR MODEL RECONSTRUCTION EVALUATION 55

vary smoothly with the data, resulting in an ill-conditioned forward operator ��. This is typical of

integral operators with smoothing kernels [46]. Therefore the solution must be regularized if it is

not to be dominated by reconstruction noise.

3.2.1 Algebraic techniques

As we mentioned previously, the types of algorithms we examined for solving the linear system

Eq. (2.16) fall into two classes, algebraic techniques and subspace techniques. Members of the first

class solve Eq. (2.16) by projecting an estimate of the solution onto the hyperplanes represented

by rows of the linear system. Included in this class are ART and SIRT [25]. ART sequentially

projects a solution estimate onto hyperplanes defined by the individual rows of the linear system.

This projection becomes the estimate of the solution for the next iteration. This can be expressed

mathematically as

����� � ��� � �
���
� � ������
��� ��

�
�

���
� �

� � �� �� ��� � � �� ��� 
"� � �

where ��� is the ��� estimate of the absorption anomaly perturbation, ��� is the ��� row of the 
"��

matrix ��, and ���
� is the ��� measurement. � is a relaxation parameter that adjusts the step size

of each iteration. SIRT is implemented in a similar manner except that instead of projecting the

estimate onto each row in sequence, the component vector that would be projected out is averaged

over all rows and then subtracted from the original estimate. Mathematically this is written as

����� � ��� � �
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SIRT has generally been observed to generate smoother reconstructions of the unknown function

due to the averaging over a number of projections, at a cost of slower convergence. For underdeter-

mined systems, such as the one we are considering, algebraic techniques will converge to a point on

the hyperplane satisfying the linear system that is nearest in 2-norm to the initial guess [25].

If run until convergence, the algebraic techniques produce unreliable oscillations due to the ill-

posedness of the problem. To avoid this, regularization is accomplished in both algebraic techniques

by limiting the number of iterations. The choice of how many iterations to perform is a difficult

topic for these methods; here we avoided the problem by choosing the best regularization (optimal

truncation) using prior knowledge of the true solution to compute a performance measure of interest

and thus select the optimal truncation parameter.

The problem of selecting an optimal relaxation parameter is still a topic of investigation [58] and

outside the scope of this thesis. In order to study this parameter choice in the context of our problem,

we examined numerical simulation results over a wide range of SNRs, relaxation parameters, and

error measures, as described below. For SIRT, we observed that relaxation parameters over the

entire available range did not appreciably alter the best performance metrics achieved. Rather, the

rate (number of iterations) at which the best performance measure is achieved varied, so that there

is an interaction between relaxation parameter and optimal number of iterations. For ART, at low

SNR we observed a small improvement in the best performance when we used a small relaxation

parameter (� � ��
�), as compared to the best performance achieved with � � �. At higher SNR a

relaxation parameter closer to one provided the best performance. Again we observed an interaction

between relaxation parameter and optimum number of iterations. In no case did we observe any

behavior of the algebraic algorithms over this range of relaxation parameters that would change the
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basic conclusions we draw below from our comparisons. Thus, since we were not able to find a

reliable automatic method to choose the optimal value, and since we are already manually choosing

the true optimal truncation parameter for these methods, we simply used a relaxation parameter of

one for all of the comparisons reported below.

3.2.2 Subspace techniques

The first subspace technique that we examined was the TSVD algorithm. This algorithm is derived

from the Singular Value Decomposition (SVD) of the 
"� � stacked system matrix ��. The SVD

of the system matrix is given by

�� � 	
��� 	 	 �
������ 
 	 �

����� � 	 �
���

where 	 and � are orthonormal matrices and 
 is a diagonal matrix with values 
��� � $� � �.

The $� are known as the singular values of �� and the decomposition is written such that

$� � $� � ��� � $� � � $���� $���� ���� $��	
���� � ��

where � is the rank of ��.

Poorly conditioned matrices such as the ones resulting from discretized ill-posed problems have

a very wide range of singular values. This ill-posedness is evident in the singular value spectrum of

a typical DOT forward matrix, shown in Figure 3.2, which displays a range of 7 orders of magnitude

in the singular values. The TSVD algorithm computes the reconstruction by using only the largest

� non-zero singular values and singular vectors to approximately solve ��� � ���. Mathematically

this can be written as

�� � ��

��
� 	�

�
��� (3.3)
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where �� and 	� are the first � columns of � and 	 respectively, and 
��� is the inverse of the

square diagonal sub-matrix of the largest � singular values. The value �, the truncation parameter,

controls the amount of regularization in the the inverse. More information on the SVD and TSVD

can be found in Golub and Van Loan [44] and Hansen [46]. In this context we note that in Figure 3.2

there is no useful gap in the spectrum (i.e. gap in the singular values) that might indicate an obvious

choice of a good low-rank model. Truncating at the small jump in the plot of singular values around

index 70 did not produce good reconstructions.
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Figure 3.2: Singular value spectrum of a typical forward DOT forward matrix.

The TCG algorithm is derived from the Conjugate Gradient algorithm in a similar manner to

the way TSVD follows from the SVD. The Conjugate Gradient algorithm is an iterative technique

to solve a symmetric positive definite linear system of equations. As with the previous algorithms,

for ill-conditioned systems we can regularize by stopping, or truncating, the iterations before we
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reach full convergence [46]. Thus for TCG the number of iterations computed controls the amount

of regularization. For most measurement geometries the system matrix �� is not symmetric positive

definite, a requirement for the Conjugate Gradient algorithm to be guaranteed to find a solution.

However we can apply the Conjugate Gradient algorithm to the normal equations given by

��� ��� � �������

For computational reasons we do this without explicitly computing the normal equations, as given

in Table 3.1 (derived from Shewchuk’s [45] implementation).

3.2.3 Regularization parameter selection

With any regularization technique, one of the primary issues is the selection of the parameter that

controls the trade–off between fidelity to the data and some constraint on the result. There are a

large variety of methods available, divided between a priori methods which use prior knowledge

about the solution, the noise, or both, and a posteriori methods which use only the measurements

and forward model. For the subspace techniques we use a well-known a posteriori method, the

L-curve technique [46], which for subspace methods graphs the log of the 2-norm of the residual

versus the log of the 2-norm of the estimate while varying the regularization parameter. Thus the

regularization parameter itself is represented only parametrically in this graph. An example of

an L-curve generated from a TCG reconstruction at a signal-to-noise ratio of 20 dB is shown in

Figure 3.3. We generated this graph by plotting the residual norm and reconstruction norm over

300 iterations of the algorithm. The “corner” of the resulting curve is taken as a good choice of

regularization parameter because it identifies a point at which there is a balance between increase
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Table 3.1: Conjugate Gradient algorithm for the normal equations. Note that the normal equations
are not computed explicitly. Rather the necessary matrix vector product is first computed and then
the transposed matrix is right multiplied by the resulting vector for each instance where the normal
equations are needed.

in the residual norm and increase in the solution norm. The diamond drawn on the graph shows the

point we manually selected as the L-curve corner, which corresponded to 12 iterations.

For the algebraic techniques a posteriori methods such as the L-curve do not work well because

standard measures of error such as the residual error or solution norm do not change monotonically

as we iterate, so we simply present the best possible result for these methods.

3.3 Results and observations

In this section we present results and observations of applying the four reconstruction techniques

described in Section 3.2 to the simulation scenario described in Section 3.1. Example reconstruc-

tions are shown first to present a qualitative idea of the reconstruction performance of each of the

methods. Following this, we report quantitative performance measures for a range of signal-to-noise

ratios. Finally, we illustrate the sensitivity of the reconstruction performance to the selection of the
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Figure 3.3: L-curve for a TCG reconstruction at a signal-to-noise ratio of 20dB. The diamond at the
corner of the graph identifies the point that was selected as the corner of the L-curve.

regularization parameter.

3.3.1 Example reconstructions

Figure 3.4 shows a set of images of the reconstructed absorption coefficient in a single vertical (X-Z)

plane through the center of the absorption anomaly (Y = 3 cm) at a signal-to-noise ratio of 20 dB.

The true absorption anomaly function is shown in Figure 3.1(a). The F3D model was used for the

inversion with a 0.5 cm grid in all dimensions. Comparing the true absorption perturbation image

with the reconstructions, it is evident that all of the reconstructions show a roughly correct image

of the absorption anomaly and that all of the reconstruction techniques underestimate the depth and

amplitude of the absorption perturbation function. Note that the scale for the reconstructed images

is less than that for the true absorption function. Figure 3.4(a) is the reconstruction using a single
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iteration of ART (i.e. one iteration cycle through all 288 rows of the system matrix). An absorption

anomaly centered approximately at X = 1.5 cm and Z = -1.75 cm with an amplitude of around

0.04 cm�� is visible. The reconstructed absorption function does not appear to have the same

area as the true absorption function nor does the reconstructed absorption anomaly extend as deep.

Figure 3.4(b) shows a reconstruction using the SIRT algorithm with 26 iterations. Qualitatively this

reconstruction appears very similar to the ART reconstruction.

Figure 3.4(c) shows a reconstruction using the TSVD algorithm employing 56 singular values.

This reconstruction clearly produces a larger amplitude absorption coefficient compared to the al-

gebraic techniques. Additionally, the absorption anomaly center appears at about 2 cm depth, about

a quarter centimeter deeper than the algebraic techniques. Thus in both aspects, amplitude and po-

sition, it is closer to the true absorption function. Figure 3.4(d) displays the reconstruction for the

TCG technique using twelve iterations, which is qualitatively very similar the TSVD reconstruction.

In comparing the algebraic and subspace methods we reiterate that for the subspace techniques the

number of iterations or singular values was chosen by manually identifying the corner of the L-

curve without using knowledge of the true solution while for the algebraic techniques we chose the

best solution after comparing to the true solution.

Figure 3.5 shows a pair of 2DS reconstructions using the TCG algorithm, again at a SNR of

20 dB. Figure 3.5(a) was generated using a 2.0 cm width reconstruction plane with the number

of iterations again chosen by the L-curve method. Figure 3.5(b) was generated using a 0.5 cm

width reconstruction plane which underestimates the true width of the absorption anomaly. For the

0.5 cm width reconstruction plane the L-curve did not provide useful information on selecting the

regularization parameter; this is an indication that the large amount of error in the model will make



CHAPTER 3. LINEAR MODEL RECONSTRUCTION EVALUATION 63

Y = 3

X (cm)

Z
(c

m
)

0 1 2 3 4 5 6

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(a)

Y = 3

X (cm)
Z

(c
m

)
0 1 2 3 4 5 6

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(b)

Y = 3

X (cm)

Z
(c

m
)

0 1 2 3 4 5 6

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(c)

Y = 3

X (cm)

Z
(c

m
)

0 1 2 3 4 5 6

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(d)

Figure 3.4: F3D reconstruction examples for all four reconstruction techniques at a 20 dB SNR.
Each image shows a vertical plane through the center of the absorption anomaly (Y = 3 cm). (a) is
the ART algorithm result using one iteration. (b) is the SIRT algorithm result using 26 iterations. (c)
is the TSVD algorithm result using 56 singular values. (d) is the TCG algorithm using 12 iterations.
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regularization difficult. Therefore for this case we selected the number of iterations that minimized

the actual mean square error. For both cases the center of the reconstruction was the true center of

the absorption anomaly. We note that the 2DS reconstruction shown is reasonably accurate in the

first case but significantly overestimates the absorption anomaly size in the second case.
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Figure 3.5: 2DS reconstruction with (a) 2.0 cm thick voxels and (b) 0.5 cm thick voxels at a SNR
of 20 dB. Both reconstruction were generated using the TCG algorithm. The 2.0 cm thick voxels
used 7 iterations. The 0.5 cm voxels used 2 iterations. Unlike the reconstruction shown in Figure
3.4 these reconstructions are shown in a X-Y plane.

3.3.2 Performance measures

As noted in the beginning of this chapter, a secondary objective of this work was to compare several

error measures. We considered the standard mean square reconstruction error over the entire vol-

ume, but also devised measures designed to quantify the position and amplitude of the reconstructed

absorption anomaly directly. More precisely, we used the following three error measures:

Mean squared error: (MSE): The first performance measure we evaluated was mean square
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error over the volume, given by the expression

3�0 � mean��� ���
���	
� ���� �	��� �������

Object centroid error: (OCE) We evaluated the error in the estimated position of the recon-

structed absorption anomaly relative to the true position of the absorption anomaly. Specifically, we

set an “object threshold” at 50% of the maximum amplitude in the reconstruction. We considered

the largest amplitude voxel as an initial “detected object”, and then iteratively built up a larger “de-

tected object” by including in the object any neighbor of a current “object voxel” whose amplitude

was above the threshold. The search finished when there were no more voxels which were neigh-

bors of voxels classified as object voxels whose amplitude was above the threshold. Once the object

was detected, we computed its centroid as the weighted average of the position of the object voxels,

with the amplitude of these voxels as the weights. The OCE was then calculated by subtracting the

object centroid of the true object from the object centroid of the reconstruction.

Amplitude error: (AE): The third performance measure we calculated measured the peak

amplitude error of the reconstructed absorption coefficient over the known position of the absorption

anomaly. We simply calculated the difference between the maximum value of the true absorption

anomaly and the maximum value of the reconstructed absorption anomaly over the support of the

true absorption anomaly. We note that in general for all the reconstruction methods we considered,

the amplitude of all voxels generally increases with decreasing regularization, so for AE errors we

always used the regularization parameter which minimized the MSE.

We used these three error measures, MSE, OCE, and AE, to quantitatively compare reconstruc-

tion techniques as a function of SNR. SNR was varied and at each SNR we computed reconstruction
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estimates and error measures for ten independent realizations of the additive noise. We then aver-

aged the value of each performance measure over the realizations for each reconstruction method.

As above, for the algebraic techniques the regularization parameters were selected by finding the

minimum MSE reconstruction for the given SNR. With the subspace techniques the regularization

parameter was selected using the L-curve whenever the L-curve method proved useful. There was

one case (the 0.5 cm width 2DS reconstructions) where the L-curve did not provide useful informa-

tion even for the subspace techniques, as described below.

Figure 3.6 shows the graphs of the MSE versus SNR for all four F3D reconstruction techniques

with (a) showing the 0.5 cm grid discretization and (b) showing the 2.0 cm discretization in the

vertical direction. Each line in the figure shows the mean value of the MSE over the ten realiza-

tions for a specific reconstruction algorithm. The error bars show the standard deviation over the

realizations. With a 0.5 cm grid reconstruction the two subspace techniques outperformed the two

algebraic techniques, with TCG slightly outperforming TSVD, over the whole range of signal-to-

noise ratios. ART shows a marked degradation in performance below 30 dB SNR. A MSE value

for ART at a 10 dB signal-to-noise ratio was computed but was significantly outside the range of

the graph. In the 2.0 cm case the subspace methods outperformed the algebraic methods except at

high SNR (4 30 dB) where ART provided the same performance as TCG. At lower signal to noise

ratios the disparity between the best algebraic method (SIRT) and the worst subspace method was

even greater than for the 0.5 cm vertical cell size case. It is also interesting to note that above 40dB

signal-to-noise ratio there is no improvement in the MSE with higher SNR for this case.

Figure 3.7 shows the MSE curves for the equivalent 2DS reconstructions. Note that the vertical

scale of these graphs is ten times larger than for the previous two graphs. Comparing 2DS and
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Figure 3.6: MSE for the F3D reconstructions. Panel (a) shows the 0.5 cm vertical cell size re-
construction, (b) shows the 2.0 cm vertical cell size reconstruction. Data points are means over ten
realizations and error bars show +/- one standard deviation over the realizations. See text for details.

F3D results, we see that the MSE of the 2DS reconstructions is much larger than that of the F3D

reconstructions. A curious result of the 2DS reconstructions is the lack of change in MSE of the

subspace techniques with change in SNR. At present we do not have a good understanding of this

phenomenon.

Figure 3.8(a) shows the OCE for the four reconstruction techniques for a F3D with a 0.5 cm

vertical step size and Figure 3.8(b) shows the equivalent result for the 2.0 cm 2DS reconstruction.

As with the MSE error measure the 0.5 cm vertical step size provided the best performance for F3D

reconstructions and a 2.0 cm vertical step size provided the best performance for 2DS reconstruc-

tions. For this reason, from here on we present only these two cases. The results are generally

similar to those of the MSE curves. Specifically, the two subspace techniques outperform the alge-

braic techniques over the whole range of SNRs and the OCE for the algebraic techniques degrades

significantly below 30 dB SNR. The mean of the planar reconstruction is lower than for the full
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Figure 3.7: MSE for the 2DS reconstructions. Panel (a) is shows the 0.5 cm vertical cell size
reconstruction, (b) shows the 2.0 cm vertical cell size reconstruction. Data points are means over
ten realizations and error bars show +/- one standard deviation over the realizations. See text for
details.

three-dimensional reconstruction. We note, however, that the planar reconstruction used a priori

information for the depth dimension, which is the largest component of positional error in the F3D

reconstruction. Also, the standard deviations of the algebraic 2DS reconstructions were very large.

Figure 3.9(a) shows the AE performance for the F3D 0.5 cm reconstruction while Figure 3.9(b)

shows the AE for the 2.0 cm 2DS reconstruction. As with the previous measures, the subspace

techniques outperform the algebraic techniques over the range of SNRs evaluated. ART at 10 dB

SNR for the F3D reconstruction appears to have a significant increase in performance, but upon

examination of the reconstructions we found that this was just due to spurious noise in the region of

the absorption absorption anomaly. In other words, despite the low value of the AE measure, there

was very little resemblance between the true absorption perturbation function and those generated

by ART at a 10 dB signal-to-noise ratio, as indicated by the MSE curves in Fig. 3.6(a).
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Figure 3.8: Panel (a) shows OCE for a F3D reconstruction with a 0.5 cm vertical step size. Panel
(b) shows OCE for 2.0 cm thick planar reconstruction.
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Figure 3.9: Panel (a) shows AE for the F3D 0.5 cm step size reconstruction. Panel (b) shows AE
for the 2.0 cm 2DS reconstruction. Note that for the 2DS case the curve for ART is off the scale of
the graph.
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3.3.3 Regularization parameter sensitivity

Although we computed an L-curve for all of the reconstruction algorithms and scenarios, we found

that the L-curve only identified a useful truncation parameter for the subspace techniques. Because

the algebraic techniques do not monotonically reduce the residual error as the iterations progress,

the L-curve graphs for ART and SIRT generally had multiple corners. We did, however, use the

L-curve for selecting the regularization parameter for the two subspace techniques for the F3D

reconstructions. For these techniques we can study how well the corner of the L-curve identified the

“best” regularization parameter. To illustrate this comparison, for the two subspace techniques we

graphed the MSE versus the regularization parameter over a range of SNRs for the F3D cases. The

results are shown in Figure 3.10. For all cases it can been seen that the L-curve performed well at

identifying a regularization parameter that was close to optimum in terms of minimizing the MSE.
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Figure 3.10: Regularization parameter sensitivity for the two subspace reconstruction techniques
over a range of SNRs. One MSE curve is shown for each SNR.The diamond on each curve displays
the regularization parameter we chose (without knowledge of the MSE curve) by simply manually
selecting the corner of the L-curve. Panel (a) gives the results from the TSVD algorithm whereas
panel (b) shows results from the TCG algorithm.
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As a comparison of the regularization sensitivity for the algebraic techniques we show a plot

of the MSE versus regularization parameter in Figure 3.11. From these plots we can see that at

low SNRs the algebraic techniques are very sensitive to the regularization parameter and show a

dramatic change in MSE with truncation parameter. At high SNRs the opposite behavior is evident.
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Figure 3.11: Regularization parameter sensitivity for the two algebraic reconstruction techniques
over a range of SNRs. One MSE curve is show for each SNR. Panel (a) is the results from the ART
algorithm, the 10 and 20 dB curves are out of the range of the plot. Panel (b) is from the SIRT
algorithm.

3.4 Linear model discussion

In this chapter we have presented a comparison of four of the most commonly used linear recon-

struction techniques for DOT imaging applied to a three-dimensional reflective geometry recon-

struction problem, reconstructing both the full three-dimensional volume and a single plane within
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the volume. Our results showed that the subspace techniques are superior to the algebraic recon-

struction techniques in estimating both the amplitude and the position of an inhomogeneity as well

as in the overall fidelity of the absorption function reconstruction. This was true even when we used

a priori knowledge of the true object function to select the optimal mean squared error regulariza-

tion parameter for the algebraic techniques while we used only the a posteriori L-curve to select the

regularization parameter for the subspace techniques.

We have also shown that for the highest level of quantitative accuracy a full three-dimensional

reconstruction is necessary. Additionally, mismatch in the width of a two-dimensional slab recon-

struction can have a significant adverse effect on the quality of the reconstruction, as is evident in

Figures 3.5 and 3.7.

By using the OCE error measure we identified further differences in performance between the

subspace and algebraic techniques that were not evident with only a MSE performance measure,

particularly at low SNR. This conclusion was supported by direct observation of the reconstructed

images at low SNR. We observed that even though the algebraic methods gave fairly good MSE

performance at low SNR, the images looked nothing like the true object. The OCE measure iden-

tified this for low SNR in the F3D cases. Additionally, the large standard deviation of the OCE

measure of the algebraic methods, particularly in the 2DS cases, indicated the poor performance of

these techniques. We found that the AE measure did not prove as useful because it was fooled by

spurious noise in the region of the object.

Through sensitivity studies we verified that the L-curve is a useful tool in selecting the regular-

ization parameter for the subspace techniques in the three-dimensional reflective geometry recon-

struction problem, at least when model mismatch is limited to moderate differences in discretization.
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Some preliminary explorations using a FDFD forward model to simulate the noise free mea-

sured data show that the basic conclusions presented here hold for a linear reconstruction from a

more accurate non-linear forward model. The primary difference we observed was reduction of the

performance advantage of the subspace techniques at high SNR. At low and medium SNR we still

see a significant performance advantage in the subspace techniques for the MSE and OCE measures.



Chapter 4

Two wavelength constrained

reconstruction

We saw in the last chapter that there are apparent limitations to the linear model reconstruction

approach. This is certainly to be expected given the ill-posed nature of both the two-dimensional

and three-dimensional reconstructions and the severity of the underdetermined nature of the three-

dimensional reconstruction problem. In this chapter we describe a technique to address this problem

through the application of a specific a priori constraint on the solution to the system. Solution

constraints can come in many forms; some examples include constraints on the size of the solution

through norms, and constraints on the smoothness of the solution such as through the norm of the

Laplacian. Our approach has been to develop a constraint on the relationship of the absorption

coefficient maps at two different optical wavelengths. We were motivated to adopt this approach by

the fact that in practice one needs to collect data at at least two wavelengths to compute the total

74
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hemoglobin concentration and oxygen saturation.

4.1 Constant absorption coefficient ratio (CACR) constraint

We started first with the assumption that the underlying tissue can be spatially categorized in one

of two states, either normal or cancerous. The latter we refer to as an anomalous region. Fur-

thermore, we also assumed that all tissue of each type, be it either normal or anomalous, has the

same absorption coefficient, and that its absorption coefficient differs from that of the other type.

The physiological rationale is that a cancerous region is expected to have a higher total hemoglobin

concentration due to angiogenesis and reduced oxygenation due to a higher metabolic rate of the

cancerous tissue [6, 7, 8].

The relationship between the absorption coefficient and the blood volume fraction and blood

oxygenation is described by the equation

����� � 5�
 ���
	
� �������

 ���
� �� �����

 �
�



� (4.1)

where ����� is the absorption coefficient as a function of space, 5�
 ��� is the spatial blood volume

function, � ���� and � �� are the molar absorption coefficients for oxygenated and deoxygenated

hemoglobin at a specific wavelength, and � ������ and � ���� are percentage of oxy- and deoxy-

hemoglobin. The functions � ������ and � ���� sum to one everywhere, as specified by

� ������ �� ���� � ��

The structure of Eq. (4.1) also provided us with an important property of the constraint. The

spatially varying terms, � ������ and � ����, are independent of optical wavelength, while the
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terms that vary with optical wavelength, � ���� and � �� , are independent of position. This results

in spatial absorption functions, �����, that have the same boundaries between regions regardless of

optical wavelength used to interrogate the medium.

Now consider an implementation of the first Born approximation described in Section 2.2 where

the background absorption coefficient is selected to be the same as the absorption coefficient of the

normal tissue described above. The equations for the perturbation relationship at the two optical

wavelengths, -� and -� are given by

��!��!� � ���
!� �!� 	 �

�� ���
!� 	 �

��

��!��!� � ���
!� �!� 	 �

�� ���
!� 	 �

�� (4.2)

where ���!� and ���!� are the scattered fluence rate estimates, ��!� and ��!� are the first Born coeffi-

cient matrices, and �!� and �!� are the absorption perturbation functions, and all of the quantities

are designated as corresponding to the first and second wavelengths respectively. For" sensors the

measurement vectors are 
"� � because we are assuming a sinusoidally modulated source result-

ing in the real and imaginary part being stacked in real vector as described in Eq. 2.16. Under this

implementation the normal tissue should be reconstructed as a zero perturbation and an anomalous

region should reconstruct to the difference between the anomalous absorption and the background

absorption. This situation holds for both wavelengths, and thus results in perturbation functions at

each wavelength that are related by a constant value

�!� � 2�!�� (4.3)

where 2 is the constant that equates the absorption coefficients of the anomalous regions at the two

wavelengths. We have called this relationship the Constant Absorption Coefficient Ratio (CACR)
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constraint. We also note that this relationship holds only when the background regions are zero in

the perturbation formulation such as the Born approximation we have employed.

4.2 Applying the CACR constraint

The idea here is to reconstruct absorption perturbation maps that both agree with the measured

(or simulated) fluence rate data as well meet the CACR constraint. There are number of methods

in which the CACR constraint can be applied to estimating the absorption perturbation functions

�!� and �!�. We examined several approaches to the reconstruction of two-wavelength data, all

of which are based on the truncated singular decomposition algorithm described in Section 3.2.2.

Two of the approaches we examined applied the CACR constraint to the estimate of the absorption

perturbation function. The first of the two constrained approaches we developed applied the CACR

constraint after estimating the absorption perturbation function independently at each wavelength.

This approach we have called the post-constrained TSVD (PC-TSVD) algorithm. The other con-

strained approach we developed enforced the constraint within the inversion process itself. This

algorithm was derived from the modified TSVD algorithm developed by Hansen [47] and we have

called it the joint modified TSVD (JM-TSVD) algorithm. The other two approaches we examined

did not apply the constraint. One, called the joint TSVD (J-TSVD), simply considered all of the data

from both wavelengths jointly to estimate two separate absorption perturbation functions. The final

algorithm used the TSVD independently on the data at each wavelength to estimate the absorption

perturbation functions separately. We present the algorithms below followed by a description of the

simulation scenario used to analyze their performance. In the last section of this chapter we present
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the performance results of each of the algorithms.

4.2.1 Independent TSVD reconstruction

All of the joint two-wavelength reconstruction algorithms are based on the TSVD algorithm. Thus

we first present a description of the TSVD algorithm and then develop that into the J-TSVD algo-

rithm, followed by the PC-TSVD algorithm, and finally the JM-TSVD algorithm. As a baseline

for evaluating the performance of the two-wavelength reconstruction algorithms we estimated the

absorption perturbation functions independently for each wavelength using the TSVD algorithm

presented in Section 3.2.2, specifically in Eq. (3.3). Thus the TSVD estimates are

��!� � �!���

��
!���	

�
!���

���
!�

��!� � �!���

��
!���	

�
!���

���
!�

where ��!� and ��!� are the estimates of the absorption perturbation function, and �!���

��
!���	

�
!���

and �!���

��
!���	

�
!��� are TSVD matrices for ��!� and ��!� respectively. As in Eq. (3.3), � specifies

the truncation parameter.

4.2.2 Joint truncated singular value decomposition (J-TSVD)

The independent TSVD algorithm above does not take advantage of any relationships between the

two wavelengths. Also, the truncation parameters for each system must be selected separately. A

straight forward approach to combining the information from each wavelength was to construct a

large diagonal system encompassing both of the systems in Eq. (4.2). This allowed us to simulta-

neously select the best joint subspace from both wavelengths to estimate �!� and �!�. The large
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diagonal system is given by
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We then applied the TSVD algorithm to the large system to get an estimate of ��. This is given by

��� � ����
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�
� (4.6)

where 	�
���
� is the SVD of the large system ��. Because the SVD algorithm is 
���� we

wished not to perform the straight forward computation of the SVD of ��. We avoided this by

observing that�



�
��!� �

� ��!�

�
���� �

�



�
	!� �

� 	!�

�
����
�



�

!� �

� 
!�

�
����
�



�
�!� �

� �!�

�
����
�

� (4.7)

Also, since the matrices 	!�, 	!�, �!�, and �!� are orthonormal, the large matrices containing

them are also orthonormal. Thus to calculate the SVD of the large system	� we computed the SVD

of the two smaller systems ��!� and ��!�, combined the results as in Eq. (4.7), and then permuted

the columns of left and right singular vectors so that the diagonal elements of matrix containing


!� and 
!� are decreasing in magnitude. Thus, computing the SVD of the large system had only

a slightly higher computational cost than computing both of the SVDs of the small system.

4.2.3 Post constrained truncated singular value decomposition (PC-TSVD)

The J-TSVD algorithm above computes a minimum norm reconstruction using the best available

information from the large linear system, but without using the CACR constraint. The next approach
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in our development of a two-wavelength constrained reconstruction algorithm was to apply the

CACR constraint as a post-processing step, which we call PC-TSVD. The PC-TSVD computes

intermediate estimates ��!� and ��!� using the J-TSVD algorithm. Using the intermediate estimates

the constraint was applied in the following manner. First we computed the average of the two

intermediate estimates given by

�� �
�




	
��!� � ��!�



� (4.8)

Then the CACR constraint relationship between the two absorption perturbation functions was im-

plemented by substituting the constraint equation Eq. (4.3) into Eq. (4.8) which gives

���!� �

2

� � 2
��

���!� �



� � 2
��� (4.9)

where ���!� and ���!� are the PC-TSVD estimates of the absorption perturbation functions for the first

and second wavelengths respectively.

4.2.4 Joint modified truncated singular value decomposition (JM-TSVD)

By applying the constraint to the intermediate solutions the in PC-TSVD algorithm we end up

with a result that meets the constraint, but to achieve this we have moved our estimates away from

matching the approximation of the data chosen by the TSVD algorithm. What we might prefer

would be to have the absorption perturbation function estimate agree with the regularized data that

has been measured (or simulated) and still attempt to achieve the constraint. One way to do this is to

use the range space component of the absorption perturbation function estimate to meet the data and

use the null space component to achieve the constraint condition. This makes sense at a heuristic
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level since the measurement data ��
� results only from range space of the operator ��. We derived

this approach from research by Hansen et al. [47].

To develop the JM-TSVD algorithm we first expressed the absorption perturbation function

estimate as the sum of two orthogonal components

��� � ��� � ��� ��� 	 � ���� ��� 	 � ���� (4.10)

where ��� is the range space component of the absorption perturbation function estimate and��� is

the null space component. Estimation of the range space component was accomplished using the

TSVD algorithm as in the previous techniques. Specifically, this is given by

��� � ����

��
���	

�
����

�
� � ��

��
�� �

�
� (4.11)

where, again, � specifies the truncation parameter and ���� is the reduced rank approximation of

��. Looking at this equation we note that a truncation parameter of � results in the first � columns

of �� spanning the effective range space of ��. This results in a partition of the right singular

vectors, which span the complete solution space, into two sets

�� � ����	 ���� � � (4.12)

where ���� is the remaining 
�� � columns of �� and is an orthogonal basis set for the effective

null space of ��. Using this orthogonal basis set we then found an appropriate component of the

null space that allows the range space portion of the estimate to meet the data and the total solution

to minimize the constraint function.

The constraint can be expressed as the minimization

��� �� ��� � 2��� ������ subject to� ����
��� � ��

�� (4.13)
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Substituting Eq. (4.10) in for ��� and expressing the null space component in terms of the null space

spanning vectors gives

��� �� ��� � 2��� ��� � ��� � 2����������� subject to ����
��� � ��

� (4.14)

where we have substituted ��� � ���� � with � being the Fourier coefficients of the null space

component. The constraint ����
��� � ��

� is enforced implicitly because the range space portion

of the estimate is calculated using the TSVD and the minimization only operates on the null space

portion of the estimate. Looking at the above minimization we can see that the left hand term

in the norm needs to remain constant for the solution to agree with the data, and the right hand

term is a matrix vector product with 
� � � unknowns. This has the same form as the standard

two-norm minimization problem ��� �� � 
 � ����� where 
 � � ��� � 2��� ��� and � �

��� � 2������� . In our scenario with � unknowns at each wavelength and " measurements

resulting in ��� � 2������� 	 �
������, the estimations of both the range and the null space

components are underdetermined because " and � are less than �. To handle this we have selected

the minimum norm solution for both parts of the problem resulting in a minimum norm solution that

meets the data and the CACR constraint. The minimum norm solution for the range space portion

is given by the TSVD algorithm described above. We computed the minimum norm solution for

the null space component by first computing the QR decomposition of the transpose of the matrix

above,

�� � ���� � 2������� �� � (4.15)

Using the QR decomposition the minimum norm solution for � is given by [44]

��� � �
	
�� �

	
� ��� � 2��� ���




(4.16)
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where � represents solution by back substitution, since � is upper triangular.

Like the previously described reconstruction methods, we do not know a priori what is the best

regularization (truncation) parameter for performing the reconstruction. To select the best trunca-

tion parameter we computed the L-curve as we did in the linear model reconstruction technique

evaluation described in the previous chapter. This required that we compute both the range and null

space components of the solution for a large number of truncation parameters. For the range space

component this is efficiently done by computing in additional singular values and right singular vec-

tors. The null space component was more complicated since for each new range space component

both the right hand side and the matrix of the null space minimum norm problem changed. To solve

the problem efficiently we adopted a recursive update-type approach. We started by computing the

solution for the largest truncation parameter, �"16, we were interested in examining. To simplify

the notation we start by identifying the null space minimum norm problem matrix from Eq. (4.15)

as

����" � ���� � 2������� �� (4.17)

where ���� for this truncation parameter is the rightmost 
� � �"16 columns of ��. The QR

decomposition for the null space minimum norm problem is given by

����"����" � ����" (4.18)

Reducing the truncation parameter by one removes the right hand column from ���	 and places it

on the left hand side of ���� . This results in adding a row to the top of ����" and modifying the
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QR relationship by �



�

� �

� ����"

�
����
�



�
����"��

����"

�
���� �

�



�
����"��

����"

�
���� � (4.19)

where ����"�� is the new row that results from moving a column of���	 to���� . The relationship

shown in Eq. (4.19) is close to but not quite a QR decomposition of ����"��, since the first sub-

diagonal of the new � matrix is non-zero. This was remedied by Givens rotations applied to zero

out the first sub-diagonal. The orthogonal Givens rotation matrices were incorporated into � to

generate the new QR decomposition.

To reiterate, the complete two-wavelength reconstruction algorithm is:

� select a range of truncation parameters to examine ��"�� �"16�

� calculate the SVD of the large system by computing the SVD of the system matrix for each

wavelength

� calculate the range space component for the selected set of truncation parameters

� compute the QR decomposition of the null space minimum norm matrix associated with trun-

cation parameter �"16

� solve the null space minimum norm problem using the QR decomposition

� sum the range space and null space component to compute the solution at �"16

� iterate down from �"16 to �"��

– compute the new QR decomposition of the new null space minimum norm matrix using

the previous QR decomposition and Givens rotations
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– solve the null space minimum norm problem using the new QR decomposition

– sum the range space and null space component to compute the solution at the current

truncation parameter

4.3 Simulation scenario

To examine the performance of the two-wavelength reconstruction algorithms we implemented a

computer simulation similar to that described in the previous chapter for the linear model recon-

struction evaluation. The computational volume and absorption anomaly spatial parameters were

identical to the previous simulation. Differences in the scenario and additional parameters for this

two-wavelength simulation are described below.

The two optical wavelengths that we simulated for this investigation were 780 nm and 830

nm. 780 nm is the same wavelength we used in the linear model reconstruction evaluation, while

830 nm is on the other side of the absorption coefficient crossover point for oxy-hemoglobin and

deoxy-hemoglobin (see Figure 1.1). We kept the hemoglobin concentration and oxygen saturation

parameters the same, which resulted background absorption coefficients of 0.041 cm�� at 780 nm

and 0.054 cm�� at 830 nm. The absorption anomaly was simulated with absorption coefficients of

0.18 cm�� at 780 nm and 0.20 cm�� at 830 nm.

While the detector positions in these simulations remained the same as the linear model recon-

struction evaluation, two different source geometries were studied. One source geometry had the

nine 780 nm and the nine 830 nm sources all collocated in the same locations as the investigation

in the previous chapter. A graphical illustration of the source detector geometry for this scenario
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is shown in Figure 4.1. The other source geometry was motivated by a hardware implementation

being developed in David Boas’ laboratory at Massachusetts General Hospital. This source geom-

etry placed all nine 780 nm sources and all nine 830 sources in unique locations approximately

uniformly interspersed between the detectors. This source layout is illustrated in Figure 4.2.
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Figure 4.1: Source and detector positions for the
collocated source geometry. Red crosses indicate
the positions of the 780 nm sources, blue circles
indicate the positions of the 830 nm sources which
are collocated with the 780 nm sources. Black
diamonds illustrate positions of the detectors.
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Figure 4.2: Source and detector positions for the
separate source geometry. Red crosses indicate
the positions of the 780 nm sources, blue cir-
cles indicate the positions of the 830 nm sources.
Black diamonds illustrate positions of the detec-
tors.

The remaining difference compared to the linear model reconstruction evaluation was the use of

two noise models. Both the uniform variance noise model described in Section 2.3.1 and the simpli-

fied shot noise model described in Section 3.1.5 were used to study the effects on the reconstruction

algorithms.
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4.3.1 Two wavelength SV spectra

The addition of the sources from the second wavelength and variation in source geometry both lead

to modifications of the forward operator. To study the changes in the forward operator and the

associated changes in the linear inverse problem we have plotted the singular value spectra for the

forward models. Figure 4.3 shows the singular value spectra for the collocated source geometry.

Both the singular values from the 780 nm and 830 nm wavelength system matrices are shown.

These singular value spectra show very little difference in terms of structure as would be expected

because the change from 780 nm to 830 nm just slightly modifies the complex wavenumber for the

diffusion equation. By stacking the forward operators from each wavelength and computing the

singular value spectrum of this combined matrix, we were able to measure how independent the

rows of the forward operators are, and get an idea of how the “posedness” of the two-wavelength

problem has changed relative to the single wavelength problem. This singular value spectrum is

shown as the solid green line in Figure 4.3. For the large singular values we see that the combined

singular value spectrum closely follows that of the two single wavelength spectra. We expected this

result also, again because of the small modification to the diffusion equation wavenumber. Only

after the singular values of the combined system diminish by several orders of magnitude do we see

a significant change in the slope compared to the two single wavelength spectra.

The singular value spectra for the separate source geometry is shown in Figure 4.4. We observe

similar features in this set of spectra to those shown in the collocated source geometry singular value

spectra. The major difference is the higher value of singular values at which the combined singular

value spectrum changes slope compared to the two single wavelength spectra for this geometry.
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Figure 4.3: Singular value spectra for the collo-
cated source geometry. The blue dash-dotted line
shows the singular value spectrum for the 780 nm
Born forward operator. The red dashed line shows
the singular value spectrum for the 830 nm Born
forward operator. The solid green line shows the
singular value spectrum for both Born forward op-
erators stacked.
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Figure 4.4: Singular value spectra for the sepa-
rate source geometry. The blue dash-dotted line
shows the singular value spectrum for the 780 nm
Born forward operator. The red dashed line shows
the singular value spectrum for the 830 nm Born
forward operator. The solid green line shows the
singular value spectrum for both Born forward op-
erators stacked.



CHAPTER 4. TWO WAVELENGTH CONSTRAINED RECONSTRUCTION 89

4.4 Simulation results

We ran simulations of the four different scenarios (two source geometries and two noise models)

and then applied each of the four different reconstruction algorithms described in this chapter to

create estimates of the absorption perturbation function. We first present some of the qualitative

results from two of the simulation scenarios followed by a quantitative comparison using two of the

performance measures described in Chapter 3.

4.4.1 Qualitative results

To qualitatively compare the reconstruction performance of the four algorithms we have plotted a

vertical slice of the reconstructed three-dimensional absorption perturbation function in Figures 4.5

through 4.8 at 780 nm. The slice we show in these figures is at Y = 3 cm, which is through the

center of the absorption anomaly, and thus an accurate reconstruction would show a circular object

centered Z = -2.5 cm and X = 2 cm. The source geometry used for the simulation was the collocated

one. The SNR in all cases was 30 dB and the noise model was a uniform distribution. The truncation

parameter selected for each algorithm was the one that minimized the MSE measure.

We observe very similar reconstruction qualities for the single wavelength TSVD and the two

wavelength J-TSVD and PC-TSVD algorithms. The peak absorption coefficient perturbation value

was approximately 0.05 cm��, 1/3 of the true value. The center of reconstructed anomaly was

about 1.5 cm into the medium. The JM-TSVD algorithm gives a slightly higher peak absorption

coefficient perturbation and slightly deeper center for the absorption anomaly. In all cases there is

noise corruption near the surface of the reconstruction with a small negative region just above the
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object.
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Figure 4.5: Collocated source single wavelength
TSVD reconstruction at 30 dB SNR from a uni-
form noise model.
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Figure 4.6: Collocated source two-wavelength J-
TSVD reconstruction at 30 dB SNR from a uni-
form noise model.
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Figure 4.7: Collocated source two-wavelength
PC-TSVD reconstruction at 30 dB SNR from a
uniform noise model.
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Figure 4.8: Collocated source two-wavelength
JM-TSVD reconstruction at 30 dB SNR from a
uniform noise model.

Figures 4.9 through 4.12 show the same scenario as the previous set of figure except that now the

separate source geometry has been modeled. Clearly the reconstructed anomaly amplitude has been

reduced in all cases except for the PC-TSVD reconstruction. The range plotted in these figures is
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60% of the range for the collocated geometry scenario in the previous figures. With separate source

geometry these figures indicate that PC-TSVD algorithm provides a slightly better reconstruction

quality. The JM-TSVD algorithm appears to perform much worse than the previous three with an

amplitude response that is significantly reduced and spatial structure that is almost indistinguishable

from noise.
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Figure 4.9: Separate source single wavelength
TSVD reconstruction at 30 dB SNR from a uni-
form noise model.
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Figure 4.10: Separate source two-wavelength J-
TSVD reconstruction at 30 dB SNR from a uni-
form noise model.
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Figure 4.11: Separate source two-wavelength PC-
TSVD reconstruction at 30 dB SNR from a uni-
form noise model.
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Figure 4.12: Separate source two-wavelength JM-
TSVD reconstruction at 30 dB SNR from a uni-
form noise model.
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4.4.2 Quantitative results

To develop a more quantitative comparison of the two wavelength reconstruction algorithms we

have examined the MSE and OCE measures while varying the SNR over a 10 dB to 60 dB range as

we did in previous chapter. Our initial examination was of the collocated source geometry with the

uniform noise model. The MSE measure for this scenario is shown in Figure 4.13. The performance

of the JM-TSVD algorithm shows some improvement with respect to the other techniques, as we

observed in the qualitative examples. The PC-TSVD algorithm also provides some improvement

compared to the two algorithms that do not apply the CACR constraint.

We then changed the noise model to the simplified shot noise model. The MSE performance

of the four reconstruction algorithms for this case is shown in Figure 4.14. Under this scenario

the JM-TSVD algorithm did not perform as well as any of the other approaches but the PC-TSVD

did provide some improvement compared to the non CACR constrained algorithms. Note also

that under this noise model MSE at a given SNR is less than the uniform noise model. When we

calculated the MSE of the whitened (see Section 3.1.5) problem, the SNR increased by about 27

dB.

Figures 4.15 and 4.16 show the MSE performance for the separate source geometry with the

uniform and the simplified shot noise model respectively. The uniform noise model results agree

with the qualitative observations (from Figures 4.9 through 4.12) in that the PC-TSVD has a slight

advantage over the other algorithms. With the simplified shot noise model the PC-TSVD algorithm

also outperforms the other algorithms by a small amount when using the separate source geometry.

The OCE measure was also examined for the same scenarios described in previous section. The
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Figure 4.13: Mean square error vs. SNR for
the collocated source geometry using the uni-
form noise model. The curve for the single
wavelength TSVD reconstruction lies under the J-
TSVD curve for most of the graph. The horizon-
tal lines show the MSE measure when no noise
was added to the data, the top horizontal line is
same for the TSVD, J-TSVD, and PC-TSVD al-
gorithms.
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Figure 4.14: Mean square error vs. SNR for
the collocated source geometry using the simpli-
fied shot noise model. The curve for the single
wavelength TSVD reconstruction lies under the J-
TSVD curve for most of the graph. The horizontal
lines show the MSE measure when no noise was
added to the data.
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Figure 4.15: Mean square error vs. SNR for the
separate source geometry using the uniform noise
model. The horizontal lines show the MSE mea-
sure when no noise was added to the data.
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Figure 4.16: Mean square error vs. SNR for
the separate source geometry using the simplified
shot noise model. The horizontal lines show the
MSE measure when no noise was added to the
data.
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OCE measure results for the collocated source geometry with the uniform noise model are shown

in Figure 4.17, as with the MSE measure the JM-TSVD algorithm performs best for this scenario.

Observations of the reconstructions at 10 dB SNR showed that the other algorithms did not generate

a clearly identifiable anomaly and thus the OCE measure was detecting a noise response.

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

SNR (dB)

O
bj

ec
t C

en
tr

oi
d 

E
rr

or
 (

cm
)

Peak Object Centroid Error vs. SNR at 200 MHz  Thresh = 0.2

TSVD
J−TSVD
PC−TSVD
JM−TSVD

Figure 4.17: OCE vs. SNR for the collocated
source geometry using the uniform noise model.
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Figure 4.18: Peak object centroid error vs. SNR
for the collocated source geometry using the sim-
plified shot noise model.
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Figure 4.19: Peak object centroid error vs. SNR
for the separate source geometry using the uni-
form noise model.
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Figure 4.20: Peak object centroid error vs. SNR
for the separate source geometry using the simpli-
fied shot noise model.
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The OCE measure for the collocated source geometry with the simplified shot noise model is

shown in Figure 4.18. This measure shows similar behavior as the MSE measure, in that the PC-

TSVD algorithm performs the best over the range of SNRs and the JM-TSVD algorithm performs

the worst in this case.

The uniform noise model and simplified shot noise model OCE measures for the separate source

model are shown in Figures 4.19 and 4.20 respectively. These also show similar traits as the MSE

measure. With the uniform noise model there is very little difference in OCE performance between

the algorithms. Under the simplified shot noise model the PC-TSVD algorithm shows a slight

advantage over the other algorithms.

4.5 Two wavelength discussion

In our simulations we have observed that the CACR constraint can provide some improvement in

the reconstruction fidelity of the absorption coefficient perturbation function. But the amount of

improvement does seem to be highly dependent upon the actual measurement scenario and environ-

ment.

It is also a somewhat surprising result that the separate source geometry does not produce better

results. Given the improvement in the singular value spectrum compared to the collocated source

geometry we had expected to see reconstruction with better amplitude accuracy and better depth

visibility. This does indicate that there is a significant need to better study the relationship between

the source detector geometry and the limits of the reconstruction quality.
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limits of the reconstruction quality.



Chapter 5

Admissible solution DOT

In the previous chapter we demonstrated that the incorporation of a particular a priori constraint

on the reconstruction improves the fidelity of the reconstruction under certain circumstances. This

raises the question as to whether other constraints might improve the reconstruction fidelity under

other scenarios, or if other constraints can further improve the reconstruction fidelity compared to

the CACR constraint. By incorporating other constraints we might be able to narrow the large range

of possible solutions that results from the underdetermined nature of the problem, thus improving

the reconstruction fidelity. We might also be able to stabilize further the ill-posed nature of the

problem, thus improving the reconstruction reliabilitiy. Among the undesirable features of the re-

constructions presented in the previous two chapters are the large amount of reconstruction noise

near the surface and negative reconstructed values for the absorption coefficient, a physical impos-

sibility. In this chapter, by incorporating total variation and a min/max constraint on the solution we

try to suppress some of these undesirable features and improve the fidelity of the reconstructions.

97
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Other constraints examined were the 2-norm of the Laplacian of the reconstruction, which is com-

monly used in ill-posed reconstruction algorithms, and a normalized version of the total variation

constraint.

5.1 The admissible solution approach

In our work we apply what we call an admissible solution approach to incorporate additional con-

straints into the inversion process. With the admissible solution approach we start with any number

of a priori constraints on the solution. Each of these constraints defines a particular region in the so-

lution space; the intersection of all of these constraint regions defines our admissible solution region.

With these constraints in mind we search the solution space, using some appropriate algorithm, until

a point in the admissible solution region is found. This point is then considered the solution to the

problem. The admissible solution approach differs from a minimization approach in that it does not

try to minimize a particular constraint or combination of the constraints. To illustrate this idea of

an admissible region we show a Venn diagram in Figure 5.1 of three hypothetical constraints and

the resulting admissible region. The horizontally oriented ellipse illustrates the admissible region

that might be implied by a weighted 2-norm constraint, the square region illustrates a �-norm con-

straint, and the diagonally oriented ellipse illustrates a residual 2-norm constraint. The admissible

region in this example is the somewhat triangular region where all three constraints intersect.

The acceptable range for each constraint is typically decided upon a priori from some knowl-

edge of the problem or observation of the data. For example, we used an estimate of the variance
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Figure 5.1: Admissible solution approach illustration. Three constraint regions are shown, the
square region represents a �-norm constraint, the horizontal ellipse represents a weighted 2-norm
constraint, and the rotated ellipse represents and residual 2-norm constraint. The admissible solution
region is the intersection of all three constraints.

of the data to set the constraint values for the 2-norm of the residual. This differs from the meth-

ods presented in previous chapters where the parameters controlling the reconstruction method are

typically chosen through an a posteriori method, such as the L-curve.

The admisible solution approach itself does not specify a specific algorithm to find the admis-

sible region. In fact, several different algorithms have applied to solve the admissible solution

approach. Projections Onto Convex Sets (POCS) has been applied in the image deblurring contex

[59, 60]. Other researchers in our laboratory have used the Ellipsoid Algorithm to find an admissi-

ble solution to the inverse electrocardiography problem [51]. We have chosen to apply the Ellipsoid

Algorithm to the DOT imaging problem because it can be implemented without knowledge of the

exact projectors for the constraints.
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5.2 The Ellipsoid Algorithm

The Ellipsoid Algorithm is a geometrically based optimization algorithm that is applicable when

the constraints are convex functions [49, 50]. This is a more relaxed requirement than gradient

descent type algorithms where the gradient of the constraint function must exist or complicated

modifications need to be employed. The Ellipsoid Algorithm is particularly applicable to our prob-

lem since all of the constraint functions we were interested in examining were convex, but not all

differentiable (e.g. a total variation constraint). The underlying idea behind the Ellipsoid Algorithm

is a generalization of the gradient known as the subgradient. Below we describe the concept of a

subgradient and then how it used to developed the Ellipsoid Algorithm.

5.2.1 Subgradients

The concept of a subgradient is very similar to that of a gradient. In fact, where a function is

differentiable the subgradient is exactly the gradient. The subgradient of a convex function ��� at �

is defined as any vector � such that

���� � ���� � ���� � ��� (5.1)

To demonstrate this concept a simple one-dimensional non-differentiable convex function is shown

in Figure 5.2. At �� the subgradient, represented by the thin tangent line 
�6�� is exactly the

gradient. At �� the gradient does not exist but the whole family of tangent lines from the gradient

of ������ to the gradient of ������ satisfy Eq. (5.1) and are thus elements of the subgradient of

�����. Two elements of the subgradient ����� are shown as the tangent lines 
��6
� and 
��6
�.

We can use the properties of the subgradient, specifically that we are working with a convex
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f(x)

g(x1)
g(x2)

g(x2)

1

2

x1 x2

Figure 5.2: One-dimensional subgradient illustration. The thick line ��6� shows a convex function.
The thin lines show the value (or some values) of the subgradient at those specific points by their
slopes. At 6� there exists only one value for the subgradient signified by the tangent line 
�6��. At
6
 the subgradient is a continuous range of values from the slope of ������ to the slope of������.
Two values of this range are illustrated by the slopes of the lines 
��6
� and 
��6
�.

function and the relationship described in the definition Eq. (5.1), to create a search algorithm

for the minimum of the convex function. To see this consider the function shown in Figure 5.2.

Examining the subgradient at �� tells us that ��� 7 ��� is greater than ����� and examining the

subgradient at �� tells us that ��� 4 ��� is greater than �����. Knowing that the minimizer lies

somewhere between �� and �� we can then test the subgradient at some point in this region, say

half way between �� and ��. This will tell us in which half of ��� ��� the minimizer lies. This

process can be iterated until we are sufficiently close to the minimum point of ���� (or in our case

where we are looking for an admissible solution we stop iterating once ���� is admissible).
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5.2.2 Extending the search algorithm to multiple dimensions

Consider the problem where we have an arbitrary number of � convex constraints on � 	 �� that

must be met, written as

find � such that: ����� 7 ��

����� 7 ��

...

����� 7 ��� (5.2)

where ����� is a convex function on��. The algorithm is initialized with an ellipsoid in which some

or all of the admissible set is known to exist. An ellipsoid in an �-dimensional space is defined by

the equation

��������� �
�
�� ��� �������� ��� ��� � �

�
(5.3)

where �� is the centroid of the ellipsoid and �� is a real, symmetric positive definite matrix. The

square roots of the eigenvalues of �� are the axis radii and the eigenvectors describe the axis di-

rections. Each of the constraint functions is evaluated at the centroid of the ellipsoid to see if the

respective constraints are met. If any of the constraints is not met, one of the unmet constraints is

selected and the subgradient of that constraint function is evaluated at the center of the ellipsoid.

Eq. (5.1) tells us that a half of the current ellipsoid can be ruled out because the constraint function

is greater or equal to the value at the center which does not meet the constraint. Specifically, if we

draw a hyperplane through the centroid that is normal to the subgradient, elements of the ellipsoid

on the side of the hyperplane to which the subgradient vector points are not admissible. Using this
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information we define a new smaller volume ellipsoid that contains the half of the current ellipsoid

in which the admissible region must exist. The center of the new ellipsoid is given by [49, 50]

��� �
��

�������
��

���� � �� ������� (5.4)

where �� is the subgradient of constraint at the center of the ��� ellipsoid. The new ellipsoid matrix

is given by [49, 50]

���� �
��

�� � �

�
�� � 


�� �
�������

�
� �

�
�

�
� (5.5)

All of the constraint functions are re-evaluated at the center of the new ellipsoid. If any constraints

are not met, the process of selecting an unmet constraint, calculating the subgradient, and generating

a new ellipse is re-iterated. Otherwise the center of final ellipsoid meets all constraints and we have

a solution to the problem in Eq. (5.2).

The sequence of ellipsoids is decreasing in volume at each step thus we are guaranteed to con-

verge to a solution if an admissible set exists within the initial ellipsoid. At each step the volume of

the new ellipsoid is related to the previous ellipsoid by the relationship [49, 50]

����0���� �

�
�

�� �

�	��

�
�

�

�� �

�	��

�

����0��� (5.6)

where ����� represents the volume of the ellipsoid defined by �.

Also, at each iteration we can test to see if a particular constraint is no longer feasible given the

current ellipsoid. If the solution becomes infeasible this implies that there was no intersection of the

admissible regions. Specifically if the constraint is in the form of one of Eq. 5.2 then if

�������
�
������� 4 �� (5.7)
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the constraint is infeasible.
�
������� bounds the maximum change in value for the constraint

����� at the furthest point in the current ellipsoid [50]. If this quantity is not large enough to reduce

the current value of the constraint to less than that of the constraint bound the current ellipsoid does

not intersect with the admissible region defined by ����� 7 ��.

Since the Ellipsoid Algorithm is geometrically based, an instructive way to obtain an idea of

how the algorithm performs is through a simple two-dimensional example. We consider two con-

straints on the results, a residual 2-norm constraint on a linear system relationship and an infinity

norm constraint that bounds both elements of the solution to the interval [-1 1]. The linear system

relationship is given by

�� � 
 � �

�



�

� ���

� ���

�
���� � 
 �

�



�


�
�

��
�

�
���� � (5.8)

The true solution for this equation is � � ��� �� ��. Now if we know the measured data 
 is

perturbed by a vector with a 2-norm less than one we can use these constraints to find an admissible

solution. The constraints are expressed mathematically as

���� � 
�� 7 � and ���� 7 � (5.9)

These constraints are illustrated in Figure 5.3. The thick lined green square shows the infinity norm

constraint and the magenta ellipse with the dash-dot pattern shows the residual constraint mapped

to the solution space.

An initial ellipse with axis radii of 5 for both dimensions (a circle) was centered at (0,0). This

is illustrated by the dashed red circle in the first iteration plot in Figure 5.3. We start by examining

which constraints are not met by the center of the initial ellipsoid. In our graphical example we can
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see that the center of the initial ellipsoid meets the infinity norm constraint but does not meet the

residual constraint. The subgradient of the residual constraint is illustrated by the thick red dashed

line coming from the center of the initial ellipse in the first iteration plot.
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Figure 5.3: Two-dimensional example of the Ellipsoid Algorithm used to solve an admissible so-
lution problem. One constraint is a maximum and minimum constraint of 1 and -1, represented
by the green square. The other constraint is a 2-norm constraint on the residual with a value of
1, represented by the thick magenta ellipse with a dash-dot line pattern. The admissible region is
the intersection of these two. The first (1), second (2), second to last (8), and last (9) iterations are
shown. The dashed red ellipse shows the current ellipsoid region and dashed red line shows sub-
gradient of the selected constraint function at the center of this ellipse. The thin lined blue ellipse
shows the next ellipsoid resulting from evaluating the subgradient at the center of dashed red ellipse.
The true value of the vector is shown by the small black x, the first admissible solution is shown by
the small black circle in the lower right figure.

The new ellipse and centroid are then calculated using Eq. (5.4) and Eq. (5.5). This new ellipse
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is shown with the thin solid blue line in first iteration. For the second iteration this now becomes

the old ellipse, identified by the dashed red ellipse in the plot labeled Iteration #2. The center of

this ellipse, identified by the small red diamond lies within the residual constraint but outside of the

infinity-norm constraint. Thus in this iteration the subgradient for the infinity-norm is calculated at

the new centroid (shown again as a thick dashed red line) and a new ellipse calculated (thin lined

blue ellipse). Skipping ahead to the ninth (and last) iteration illustrated in the bottom right of Figure

5.3 we see that the center of the final ellipse lies in the intersection of both of the constraints and

thus we have found a solution.

5.2.3 Derivation of subgradients

One topic that we have avoided until this point is the calculation of the subgradients of the constraint

functions we were interested in evaluating. In this section we derive the subgradient functions for

all of the constraints we have explored. We note that we use the standard notation for the partial

derivative 	�	� to represent the subgradient, following the notation of Boyd and Barratt [50].

Residual 2-norm subgradient

The subgradient 2-norm of the residual is exactly the gradient of the 2-norm of the residual function

since the 2-norm of the residual is differentiable. To simplify the numerical calculation of the

subgradient for the 2-norm of the residual we actually calculate the subgradient of the square of the

2-norm of the residual. We start first by writing the partial derivative of the squared 2-norm of the

residual with respect to the vector �

	

	�
���� 
��� �

	

	�
���6� ���6� � � � � ���6� ��
��� (5.10)
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where �� is the ��� column of the system matrix � and 6� is the ��� element of �. Looking at the

derivative with respect to 6� and rewriting the squared 2-norm gives

	

	6�
���� 
��� �

	

	6�
���6� ���6� � � � � � 
�� ���6� ���6� � � � �� 
� � (5.11)

For the ��� element only terms containing 6� are non-zero giving

	

	6�
���� 
��� �

	

	6�

�

��

���6�6� � � � ����
���6

�
� � � � �� 
��

���6�6� � 
��
�
6�

�
�

(5.12)

Evaluating the derivative gives

	

	6�
���� 
��� � 
��

���6� � � � �� 
��
���6� � � � �� 
��

���6� � 
��
�
� (5.13)

Thus the ��� element of Eq. (5.10) is

	

	6�
���� 
��� � 
��

� ���� 
� � (5.14)

The complete (sub)gradient vector is then given by

	

	�
���� 
��� � 
�� ���� 
� � (5.15)

Laplacian 2-norm subgradient

The 2-norm of the Laplacian is a commonly employed measure in ill-posed problems. The Lapla-

cian for a discrete function represented as a vector is implemented as a linear operator on �

��� �  �� (5.16)

where  implements the finite difference operator to the requested order, summing all dimensions

for each element. Thus, in general, we want to calculate the subgradient of an arbitrary linear
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operator on �

	

	�
� ����� (5.17)

This is just a special case of the residual subgradient describe above and is given by

	

	�
� ���� � 
 � �� (5.18)

Total variation subgradient

The total variation for a continuous function 6��� is commonly defined as [61]

���6���� �

�
��6���� ��� (5.19)

where we have used � as the independent variable so as to not confuse it with the spatial variable

with function we are trying to reconstruct 6���. Since we are dealing with a discrete function of

6��� one approximation of the total variation measure is given by

����� �
��
���

� ��� (5.20)

where  � is the gradient approximation around the ��� element of �. Combining this into a matrix

vector product yields

����� � � ���� (5.21)

In deriving the subgradient of the total variation measure we are actually computing the subgradient

of an arbitrarily weighted 1-norm

	

	�
����� �

	

	�
� ���� (5.22)
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Looking at the ��� differential element of Eq. (5.22) we have

	

	6�

��
�
��
���

� ���
��
� �

	

	6�
�� ���� � � �� � ���� (5.23)

where  � is the ��� row. Now consider the ��� term of the sum

	

	6�
� ��� �

�����
����

 ���  �� 4 �

� ���  �� 7 ��

(5.24)

where  ��� is the element at the ��� row and ��� column of  . This can also be expressed as

	

	6�
� ��� �  �����
�� ���� (5.25)

For the complete ��� differential element we now have

	

	6�
� �� �  �����
�� ��� �  �����
�� ��� � � � ��  �����
�� ���� (5.26)

Thus, the subgradient for the total variation measure is given by

	

	�
����� �

	

	�
� ��� �  ���
�� ��� (5.27)

Normalized total variation subgradient

In examining the performance of the total variation constraint function we have observed, as will

be described later, that because some of the reconstructions have a very small amplitude the total

variation constraint does not affect the results. Yet in these reconstructions there is still a significant

amount of variation relative to the amplitude of the image. To account for this we have developed

a normalized total variation measure and derived its associated subgradient. The expression for the

normalized total variation is

������ �

���� �

�����

����
�

� (5.28)
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Taking the partial with respect to � gives

	

	�
������ �

	

	�

��
���

���� � �

�����

���� (5.29)

where  � is the ��� row of the difference operator describe in the previous section. Considering just

the ��� differential element results in

	

	6�

��
���

���� � �

�����

���� � 	

	6�

 ���� � �

�����

�����
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!

(5.30)

From the ��� differential element we examine just the ��� term given by

	

	6�

���� � �

�����
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	6�
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Applying the partial derivative to this expression gives

	

	6�

 
 �

�

�����
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�
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 ���
�

�����
 ���� (5.32)

Thus the differential for the ��� term is

	

	6�

���� � �

�����

���� � ��
�� ���
��
6�
�����

 ���
�

�����
 ���

�
� (5.33)

Combining all of the terms over the ��� index gives the complete ��� differential

	

	6�

��
���

���� � �

�����

���� � �
6�
�����

��
���

 ����
�� ��� �
�

�����
��
���

 �����
�� ���� (5.34)

Finally, the complete normalized total variation subgradient vector can be expressed as

	

	�
������ � �
� ��������

��
�

�����
 ���
�� ��� (5.35)
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Min/max subgradient

The last constraint that we examined was a min/max constraint. The subgradient is found by taking

the partial with respect to � of the max function

	

	�
��� ��� (5.36)

If 6� is not the maximum element of the vector 6� there is no change with respect to 6�. If 6� is the

largest element of the vector 6� then the derivative with respect to that element is one. This results

in a binary vector identifying which element is the maximum. We express this mathematically as

	

	6�
��� ��� �

�����
����

� ��� ��� �� 6�

� ��� ��� � 6� �

(5.37)

The same applies for the minimum function.

5.3 Admissible solution simulation scenario

To analyze the performance of the admissible solution approach we have implemented a computer

simulation similar to those described in Chapters 3 and 4. The primary difference in these simula-

tions is that only a single vertical 2-D slab was examined and the anomaly only existed within this

slab. Also, unlike the slab experiments in Chapter 3, this slab was positioned vertically so that it

extended into the medium. We oriented the slab in this manner to examine the reconstruction fi-

delity with respect to depth, which the previous simulations have shown to be the most problematic

dimension. We chose to examine the vertical 2-1/2 dimensional simulation because of the expected

decreased computational complexity of the Ellipsoid Algorithm compared to the linear algebraic

approaches of the previous chapters.
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A rectangular absorption anomaly was simulated centered at 2.25 cm deep and 0.75 cm to the

right of the source-detector array center line. The width of the anomaly was the same as the width

of the reconstruction slab, 0.25 cm. An image of the anomaly is shown in Figure 5.4.
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Figure 5.4: True absorption perturbation image. The absorption coefficient of the anomaly is 0.139
above the background

We simulated four sources and four detectors, all collinear along the air-tissue edge of the slab.

The forward and inverse models were identical (Born-1) including the discretization of the slab. The

discretization was on a 0.25 cm grid with 16 x 16 (256) voxels. The simulated modulation frequency

was 200 MHz, resulting in 32 measurements and 256 unknowns. This is a similar measurements-

to-unknowns-ratio to that used in our previous 3D experiments. The complete set of simulation

parameters are presented in Table 5.1.

To get an idea of how much information is lost to the null space of the forward operator we

calculated both the SVD of the forward operator, shown in Figure 5.5, and the minimum norm
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Forward Model Information
Index of refraction: 1.370
Propagation velocity (cm/s): 2.189781e+10
Mean cosine: 0.9
Scattering coef. (cm��): 100
Reduced scat. coef. (cm��): 10
Absorption coef. (cm��): 0.041
Wavelength (nm): 780
Modulation frequency (MHz): 200
Number of measurements: 16

Source optodes
Type: uniform
X positions (cm): -1.75 -0.75 0.25 1.25
Y positions (cm): 0.00
Z positions (cm): 0.00
Normal vector: 0.00 0.00 -1.00
Amplitude: 1.00
Numerical aperture: 1.00

Detector optodes
Type: uniform
X positions (cm): -1.25 -0.25 0.75 1.75
Y positions (cm): 0.00
Z positions (cm): 0.00
Normal vector: 0.00 0.00 -1.00
Efficiency: 1.00
Numerical aperture: 1.00

Medium boundary geometry: Semi-infinite
Computational method: Born order: 1

Computational volume
Type : uniform
Min X: -1.88 Max X: +1.88 Step: +0.25 Count 16
Min Y: +0.00 Max Y: +0.00 Step: +0.25 Count 1
Min Z: -3.88 Max Z: -0.12 Step: +0.25 Count 16
Total Voxels: 256

Inverse Model Information : identical to forward model

Object Information
Type: block
Position: 0.750 0.000 -2.250
Dims: X=1.000 Y=0.500 Z=1.000
��: 0.180
��: bkgnd

Table 5.1: Admissible solution analysis simulation parameters.
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reconstruction with no added noise, shown in Figure 5.6. The SVD shows a range of about 6 orders

of magnitude, a little less than our three-dimensional simulation. The SVD of this forward operator

also shows similar characteristics to the forward operator of the full three-dimensional simulation

shown in Figure 3.2. Small breaks in the singular value spectrum and a gradual decay of the singular

values were present in both forward models.
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Figure 5.5: Singular value spectrum of the for-
ward operator.
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Figure 5.6: Minimum norm solution with no
added noise to the measurements.

The minimum norm reconstruction shows the best possible (in the MSE sense) reconstruction

using a linear model approach without constraints. With these simulations we are again underes-

timating the depth and absorption coefficient magnitude and also somewhat incorrectly estimating

the X position of the anomaly using an unconstrained linear model reconstruction.

5.4 Admissible solution performance

We examined several aspects of the performance of the admissible solution approach applied to

DOT. These included an investigation of which of the constraints produced the best reconstruction
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fidelity, an examination of reconstruction sensitivity to specific noise vector instances, the effects of

variation in absorption anomaly parameters, reconstruction of multiple absorption anomalies, and

the effect of background variation on the reconstructions. All of these results are presented in the

next several sections.

5.4.1 Constraint comparisons

We have described a number of possible constraints on the absorption coefficient reconstruction.

In this section we wish to understand which of the constraints actually improves the reconstruction

fidelity relative to the linear algebraic approaches, and how these constraints behave. We imple-

mented admissible solution algorithms for all of the constraints described along with combinations

of several of the more promising constraints. We applied these algorithms to simulated data that

was modified with uniform variance additive Gaussian noise. The standard deviation of this noise

was scaled to produce signal-to-noise ratios from 60 dB to 10 dB in 10 dB steps, relative to the

peak scattered fluence rate. For each SNR we examined the mean square error of the absorption

coefficient reconstruction to analyze the performance of the given constraint(s).

Residual 2-norm constraint

To examine the basic behavior of the admissible solution approach to the DOT problem we have

performed reconstructions with just a residual 2-norm constraint. Using the residual 2-norm con-

strained admissible solution approach we expected similar results to the TSVD algorithm given that

both algorithms are minimizing the 2-norm of the residual, the difference being that TSVD reduces

the residual by incorporating smaller and smaller singular values and the ellipsoid follows a complex
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path until an admissible solution is found.

We examined a number of values for the stopping criteria on the residual 2-norm constraint. For

each SNR we estimated the absorption coefficient using the largest value of the residual constraint.

We then used this solution along with the associated ellipsoid to initialize the Ellipsoid Algorithm

for the next smaller value of the constraint. This process was iterated until we calculated an admis-

sible solution for each residual constraint value or found that as some point the problem became

infeasible as the constraint was reduced. The value of the residual constraint was calculated relative

to the expected 2-norm of the noise vector and is expressed by

��������� 7 �
 � ���� � ����$


"� �� (5.38)

where $ is the standard deviation of the noise and " is the number of measurements. The term

$


"� � is the expected 2-norm of the noise vector.

Figures 5.7 and 5.8 present a qualitative comparison of the TSVD and residual constraint ad-

missible solution reconstruction. From these figures it is evident that qualitative performance of

the residual 2-norm constrained admissible solution approach is very similar to that of the TSVD

algorithm.

The mean square error performance versus SNR is shown in Figure 5.9. As would be expected

the performance of these two algorithms is similar since they are both trying to minimize the same

quantity.
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Figure 5.7: TSVD reconstruction for 30 dB SNR
with r = 27. The position of the sources and de-
tectors are shown as circles and crosses at the top
of the plot.
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Figure 5.8: Admissible solution reconstruction
with the residual constraint ��� 7 ������ at a
SNR of 30 dB.
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Figure 5.9: Mean Square Error performance for the TSVD and residual constraint admissible solu-
tion algorithms.
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Residual and total variation constraints

The first additional constraint on the solution we explored was a total variation constraint. This

was implemented as the sum of the absolute value of the X and Y derivatives. The value of the

total variation for the true absorption anomaly perturbation was 2.240. In addition to the range of

residual constraints described above, we examined a number of TV constraints. These included TV

values of 2.75, 2.5, 2.25, 2.0, and 1.75. An example reconstruction at 30 dB SNR using the residual

and total variation admissible solution approach is shown in Figure 5.10. This reconstruction had

the lowest MSE of constraint pairs examined. The residual constraint was ��� 7 ��
��� and the

total variation constraint was .! �6� 7 ��!�. The MSE for this reconstruction was 1.0336e-3 while

the residual constraint alone and TSVD reconstructions were 41.1e-3, as is evident from the MSE

curve in the previous section.
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Figure 5.10: Admissible solution reconstruc-
tion with the residual and constraint ��� 7
��
���� ���6� 7 ��!�. The MSE for this recon-
struction was 1.0336e-3.
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Figure 5.11: MSE versus SNR for the residual-
TV constrained admissible solution approach.
Also shown is the residual constrained admissible
solution results described in the previous section
and TSVD for comparison.

The MSE performance of the residual and TV constrained admissible solution algorithm is
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shown in Figure 5.11. The MSE values at each SNR are the best MSE performance over the whole

range of residual and TV constraint values described above. Although the residual and TV con-

strained admissible solution algorithm shows significant improvement over most of the SNR range,

the lower SNRs (10 and 20 dB) do not qualitatively show a significant improvement over TSVD

when examined manually. For SNRs of 30 dB and above the reconstruction improvement is evident

both in SNR and the qualitative look of the images.

To explore how the TV constraint comes into play in these reconstructions we have plotted the

best MSE for each TV constraint value in Figure 5.12 along with the TSVD performance. Again at

30 dB and above the residual-TV constrained algorithm beats the TSVD approach over most of the

values for the TV constraint.
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Figure 5.12: MSE versus SNR for the residual-TV constrained admissible solution approach. This
graph shows the performance of each value of the TV constraint separately. Also shown is the
TSVD MSE for comparison.
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Residual and normalized total variation

The reconstructions generated from the residual and TV constrained admissible solution approach

still have a large amount of “variation” even when the TV constraint is less than the TV measure

of the true absorption anomaly function. This can occur because the amplitude of the reconstructed

anomaly perturbation function is typically less than the true absorption anomaly function, thus re-

ducing the value of the TV measure. To address this we developed a normalized total variation con-

straint and employed this in a admissible solution approach. However, simulations with no added

noise showed no improvement over the residual and TV constrained admissible solution approach,

so we did not pursue this line of work any further.

Residual and Laplacian constraints

We also explored the use of a Laplacian constraint on the solution in addition to the residual ap-

proach and the residual and TV constraint approach. In all of these cases the 2-norm of the Lapla-

cian of the intermediate and final estimates remained well below the 2-norm of the Laplacian of

the true absorption anomaly perturbation function. Therefore we did not pursue this constraint any

further.

Residual, total variation and min/max constraints

One phenomenon that is evident in all of the previous reconstructions is a large amount “speckle”

noise near the boundary. One possibility is that noise near the boundary is accounting for a signif-

icant portion of the energy in the measured data and is one of the causes for the low reconstructed

absorption coefficient magnitude we see. By applying a min/max constraint, specifically limiting
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the lower bound on the solution, we hope to force the solution toward better results. By removing

the freedom of the solution to have large negative values near the surface we are also limiting the

positive “speckle” noise. This results from the interaction of the minimum constraint and the resid-

ual 2-norm constraint. With the minimum constraint limiting the negative values near the surface,

the positive reconstruction noise is limited in order for the reconstruction to agree with the data

through the residual constraint.

We examined lower bounds on the absorption coefficient perturbation of -.03, -.025, -.02, -.015,

-.010, -.005, and 0.0. The upper bound was set at 0.15 although we had not observed any absorption

coefficient estimates that high. An example reconstruction at 30 dB SNR with the lower bound

constraint set at 0.0, the TV constraint set at 2.5, and the residual constraint set at ��"��� is shown

below in Figure 5.13. These specific values of the constraints produced the best MSE performance

for this set of constraints at 30 dB SNR. Shown next to this reconstruction is the true absorption

anomaly perturbation function for reference.

Clearly we get a markedly improved reconstruction with the application of the range constraints

for this scenario. The reconstructed anomaly value is very near the true value of the absorption

anomaly. The location of the anomaly is accurate. The only significant distortion is the “shadow”

effect below the anomaly.

The MSE performance of this algorithm with a minimum value constraint of zero is shown

in Figure 5.15. This graph shows the best MSE performance at each SNR over all the residual

and TV constraint values examined. Consistent with the qualitative example above we see a huge

improvement in MSE over most of the range in SNR. Additionally, even at the lower SNRs, our

observations were that the qualitative reconstruction of the images were greatly improved.
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Figure 5.13: Admissible solution reconstruction
with the residual and constraint ��� 7 ��"���,
���6� 7 
�� and a min/max range constraint of
� 7 6 7 ����. The SNR was 30 dB as in the pre-
vious example images. This resulted in a MSE of
1.978e-04 which is less than 25% of the MSE of
the minimum norm solution with no added noise.
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Figure 5.14: True absorption anomaly perturba-
tion. The absorption coefficient of the anomaly is
0.139 above the background
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Figure 5.15: MSE versus SNR for the residual-
TV-min/max constrained admissible solution ap-
proach. Also shown is the residual-TV con-
strained admissible solution results described in
the previous section and TSVD for comparison.
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Figure 5.16: MSE versus SNR for the residual-
TV-min/max constrained admissible solution ap-
proach. This graph shows the MSE performance
of each value of the TV constraint separately.
Also shown is the TSVD MSE for comparison.



CHAPTER 5. ADMISSIBLE SOLUTION DOT 123

To see how sensitive the MSE performance was to the value of TV constraint we examined each

TV constraint value separately. The best MSE performance from each value of the TV constraint

versus SNR is shown in Figure 5.16. From these results it is evident that we do not want to over-

constrain the TV, for the TV 7 2.0 or less performance is much degraded. For constraints of TV 7

2.25 or greater (recall that the true TV = 2.25) the MSE performance is good over the whole range

of SNRs. This is in contrast to the residual-TV reconstructions in which the best MSE performance

was produced by a low TV constraint value of 1.75.

Finally, we plotted the minimum MSE at 30dB SNR for versus the value of the minimum con-

straint. This is shown below in Figure 5.17. This plot appears to indicate that a fairly tight bound on

the lower value is needed to gain all of the improvement offered by the minimum value constraint.
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Figure 5.17: Best MSE versus the minimum value constraint for the residual-TV-min/max constraint
admissible solution algorithm.
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5.4.2 Monte Carlo noise test

All the reconstructions presented in the previous section were performed using data with the same

added noise realization scaled to the desired SNR. This was done so that we could compare the var-

ious constraint sets without concern that a particular noise instance was causing ambiguous results.

Computing a number of noise instances for each constraint set examined was avoided due to the

large amount of computation necessary. From the previous section it is evident that the admissible

solution approach with a residual 2-norm, total variation, and min/max constraint set is the most

promising approach of those tested. To be sure that this marked improvement in reconstruction

fidelity is not related to a particular noise instance we repeated the analysis of this approach using

number of noise instances and averaged the performance results.

The constraint values examined were:

� The total variation constraint was set at 2.5

� The min/max constraint was [0 0.15]

� The residual constraint was varied over �
 � ���� � ����0������

As in the previous analyses, an estimate for a particular residual constraint value is computed by

initializing the Ellipsoid Algorithm with the estimate and final ellipse from the next greater residual.

The largest residual constraint value is initialized with a zero vector and unit spheroid.

For each set of constraint values 10 noise realizations were examined. These were the same

10 for all values of SNR since MATLAB was restarted for each value of SNR. The SNR (uniform

Gaussian random noise relative to the peak fluence response) was stepped from 10 to 60 dB in 10
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dB increments as in the previous experiments. At a given SNR the best MSE performance over all

constraint values was found for each noise instance. The average MSE over the noise instances was

computed for each SNR, the results are shown Figure 5.18. Also shown by the error bars in Figure

5.18 is the standard deviation of the best MSE over the noise instance at each SNR value.
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Figure 5.18: Mean square error of the estimate vs. SNR. For each noise instance the best MSE over
the set of constraint values was found. The curve displays average of these best values over the ten
noise instances at each SNR. The error bars show the standard deviation of the best MSE measure
at each SNR.

5.4.3 Object parameter tests

To understand how the admissible solution approach handled variations in anomaly parameters we

ran a large number of simulations varying the absorption anomaly size, position, and contrast with

the background. Additionally we examined the algorithm response to multiple anomalies by placing

two anomalies at varying depths.
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Object position simulations

In this experiment the location of a 1 cm (X) by 1 cm (Z) by 0.25 cm (Y) absorption anomaly

was moved to nine different positions throughout the reconstruction volume. The anomaly was

centered at three different depths of -3, -2, and -1 cm. For each depth, the center of the anomaly

was examined at three different horizontal locations: -1, 0, and 1 cm displacements from the center

of the source-detector array. At each position uniform noise was added at the typical SNRs of 10

through 60 dB in 10 dB increments. For each SNR and anomaly position a group of reconstructions

was computed by successively reducing the the residual constraint. The initial starting point and

ellipse was the solution from the next higher residual constraint. The constraint parameters used for

these reconstructions were:

� The total variation constraint was set at 2.25

� The min/max range constraint was [0 0.15]

� The residual constraint was varied over �
 � ���� � ����0������

Examples of three of the nine anomaly positions are shown in Figures 5.19 through 5.21. Figure

5.19 shows the deepest and left- most position, Figure 5.20 shows the center position in both the

horizontal and depth dimensions, and Figure 5.21 shows the shallowest and right most positions.

Again, in each of these figures the positions of the sources is indicated by the black circles at the

top of the image and the position of the detectors is indicated by the black crosses.

For each of the object simulation scenarios described previously we calculated the MSE for each

reconstruction. From this data we computed the minimum MSE over the varying residual constraint
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Figure 5.19: The true absorption anomaly at the
deepest and left most position. The center of the
anomaly in this case was at X = -1 cm and Z = -3
cm.
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Figure 5.20: The true absorption anomaly at the
center position in both the X and Z dimensions.
The center of the anomaly in this case was at X =
0 cm and Z = -2 cm.
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Figure 5.21: The true absorption anomaly at the
shallowest and right most position. The center of
the anomaly in this case was at X = 1 cm and Z =
-1 cm.

parameter for each anomaly position and SNR. The average value of the minimum MSE vs. SNR

is shown in Figure 5.22.

To see how the MSE vs. SNR curve varied with depth we averaged over each of the three

horizontal anomaly positions separately at each depth. This result is shown in Figure 5.23. The two

shallower anomaly depths result in much better performance than the deepest anomaly.
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Figure 5.22: The minimum MSE averaged over
all nine anomaly positions as a function of SNR.
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Figure 5.23: The minimum MSE averaged over
each of the three anomaly positions separately for
each of the object depths examined.

Anomaly size simulations

In this set of experiments the X and Z dimensions of the anomaly were varied concurrently from

0.25 cm to 1.75 cm in 0.25 cm steps. The Y dimension was held constant at 0.25 cm, which like all

of the previous experiments in this chapter was the width of the reconstruction volume. The center

of the anomaly was moved slightly relative to previous tests to X = 0.6875 cm and Z = -2.0625 cm

to facilitate enlarging the anomaly by one computational volume cell at a time (0.25 cm).

Since the size of the anomaly was being varied in this test the total variation of the true image

also varied from 0.5560 for a 0.25 by 0.25 cm anomaly to 3.892 for the 1.75 by 1.75 cm anomaly.

Thus a total variation constraint of 4 was used for all of the reconstructions

Examples of the true absorption perturbation function are shown in Figures 5.24 and 5.25 for

the smallest and largest anomalies respectively.

As in the anomaly position experiment the minimum MSE for each anomaly size and SNR was

computed. An average minimum MSE over all anomaly sizes at each SNR was then computed. The
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Figure 5.24: The true absorption anomaly image
for the smallest size examined, the dimensions are
0.25 cm in X and Z.
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Figure 5.25: The true absorption anomaly image
for the largest size examined, the dimensions are
1.75 cm in X and Z.

result is shown in Figure 5.26.

The minimum MSE for each anomaly size individually is shown in Figure 5.27. The behavior of

some of the curves in this graph is somewhat surprising. For instance, for the 1.0 cm anomaly size

curve, the scenario is very similar to the multiple noise realization study above. But the behavior

of the minimum MSE vs. SNR curve is very different. Looking at the raw results it is evident

that total variation of the reconstructions is high, typically in the high threes, compared to a TV

measure of 2.25 for the true absorption perturbation function. Thus not having a tight constraint

on the total variation seems to result in a degradation in MSE performance. Qualitatively though,

the reconstructions still look promising. Typically, very deep high valued artifacts appear to be the

result of the relaxed total variation constraint. Two example reconstructions of a 1 cm anomaly are

shown in Figures 5.28 and 5.29. Figure 5.28 shows the minimum MSE 60 dB SNR reconstruction

and Figure 5.29 shows the minimum MSE 20 dB SNR reconstruction.
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Figure 5.26: The minimum MSE averaged over
all seven anomaly size as a function of SNR.
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Figure 5.27: The minimum MSE plot as a func-
tion of SNR for each anomaly size separately.

Anomaly contrast simulations

For this set of experiments the absorption coefficient of the anomaly was varied from 2 to 5 times

the background absorption coefficient. The geometric parameters of the absorption anomaly were

the standard 1 cm (X) x 1 cm (Z) centered 2.25 cm into the medium and 0.75 cm to the right of the

center of the source-detector array.

In this experiment we used a FDFD forward model as described in Section 2.2.2 to generate

the scattered fluence data. If we had used the first Born forward model as in the previous studies,

changing the anomaly contrast would have no effect on the outcome of the study because of the

linear nature of the model. The computational volume for the FDFD forward model was 16 cm �

16 cm in the X and Y dimensions and extended from the extrapolated boundary position to 10 cm

deep into the medium. The grid size was 0.25 cm for all dimensions.

As in the anomaly size experiment described in the previous section, the total variation of the

true anomaly varies as the contrast ratio changes. Since the “tightness” of the TV constraint ap-

peared to have a significant effect on the MSE performance in the anomaly size experiment we
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Figure 5.28: Reconstruction of a 1cm (X) by 1cm
(Z) absorption anomaly at 60 dB SNR. The con-
straints used for the reconstruction were a residual
constraint of ��������, a total variation constraint
of 4, and a min/max constraint of [0 .15]. This
residual constraint gave the minimum MSE for
this size anomaly.
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Figure 5.29: Reconstruction of a 1cm (X) by 1cm
(Z) absorption anomaly at 20 dB SNR. The con-
straints used for the reconstruction were a residual
constraint of ��������, a total variation constraint
of 4, and a min/max constraint of [0 .15]. This
residual constraint gave the minimum MSE for
this size anomaly.

explored four different constraint scenarios in this experiment. The constraint scenarios consisted

of all four possible combinations of tight and loose constraints for both the total variation and the

min/max constraints. The loose total variation constraint was set at 2.75 which was greater than the

largest true image total variation of 2.6240. The loose min/max constraint was set at [0 0.18], since

the largest �� perturbation was 0.1640 at a contrast ratio of 5. For the tight constraint scenarios, the

true total variation and min/max for each anomaly instance was used.

As in the previous test the minimum MSE for each case was computed. The minimum MSE

averaged over all anomaly contrasts is shown below in Figure 5.30. The minimum MSE for each

anomaly contrast is shown in Figures 5.31 through 5.34

From these graphs we can observe that the tight TV and tight min/max constraint set along with

the tight TV and loose min/max constraint set generally perform well. On the opposite end of the

spectrum the loose TV and loose min/max constraint set generally did not perform as well until
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Figure 5.30: The minimum MSE averaged over
all four anomaly contrasts as a function of SNR.
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Figure 5.31: The minimum MSE for an anomaly
with a contrast ratio of 2:1 in absorption coeffi-
cient as a function of SNR.

higher contrast ratios were achieved, at which point the constraints were pretty tight.

Multiple anomaly simulation

In order to understand how the admissible solution approach with the residual-TV-min/max con-

straint set performed with multiple absorption anomalies we ran 3 sets of simulations. The right

hand side of the reconstruction volume contained the absorption anomaly used in the previous stud-

ies at a depth of 2 cm.. On the left hand side we placed an absorption anomaly of the same size

(1 cm x 1 cm x 0.25 cm) in one of three positions. The left hand anomaly center depths were 1

cm, 2 cm and 3 cm. The X position of the left hand anomaly was -1 cm for all three instances.

The absorption coefficient of both anomalies was 0.18 �"�� or 0.139 �"�� above the background.

Images of all three scenarios are shown in Figures 5.35 through 5.37.

The constraints employed for this experiment were a min/max constraint 0f [0 0.15] and TV

constraint of 4.5. The total variation of the true image was 4.48. The residual constraint, as in the

previous experiments, was reduced from 
����� to �������� in steps of ��������.
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Figure 5.32: The minimum MSE for an anomaly
with a contrast ratio of 3:1 in absorption coeffi-
cient as a function of SNR.
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Figure 5.33: The minimum MSE for an anomaly
with a contrast ratio of 4:1 in absorption coeffi-
cient as a function of SNR.
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Figure 5.34: The minimum MSE for an anomaly
with a contrast ratio of 5:1 in absorption coeffi-
cient as a function of SNR.

From this image we can clearly resolve both anomalies, their positions are correct, and their

amplitudes are very close to the true amplitude. It appears that more of the scattered field energy is

assigned to the shallower anomaly since its amplitude is a little overestimated whereas the amplitude

of the deeper anomaly is slightly underestimated.

At 30 dB SNR two anomalies are still more-or-less visible but at a clearly reduced fidelity

compared to the 60 dB SNR case. The energy redistribution to the shallower anomaly appears to be
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Figure 5.35: The true absorption anomalies with
the left hand anomaly at the shallow position of 1
cm.
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Figure 5.36: The true absorption anomalies with
both at the same depth of 2 cm.
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Figure 5.37: The true absorption anomalies with
the left hand anomaly at the deep position of 2 cm.

even more evident in this case. The shallow anomaly is significantly overestimated.

When the anomalies are at the same depth the reconstruction fidelity is the best. In the 60 dB

SNR case above both anomalies are accurately reconstructed. The anomaly amplitudes are a little

high and the bottom set of voxels is a little underestimated.

At 30 dB SNR the 2 anomalies are still clearly evident but a distorted region between the anoma-

lies is present. Also it appears that having the left hand anomaly centered 1 cm from centerline and

the right hand anomaly centered at 0.75 cm from centerline attributes more energy to the right hand
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Figure 5.38: The minimum MSE reconstruction
for the shallow left hand anomaly scenario at a
SNR of 60 dB.
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Figure 5.39: The minimum MSE reconstruction
for the shallow left hand anomaly scenario at a
SNR of 30 dB.
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Figure 5.40: The minimum MSE reconstruction
for the same depth anomalies at a SNR of 60 dB.
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Figure 5.41: The minimum MSE reconstruction
for the same depth anomalies at a SNR of 30 dB.

With the deep left hand anomaly there is some evidence of the deep anomaly at 60 dB SNR but

the actual physical dimensions and amplitude are difficult to identify.

In the 30 dB SNR deep left anomaly case above the deep anomaly is not detectable. It does

appear that the additional scattered field from the second anomaly causes some distortion in the

reconstruction of the shallower right hand anomaly.



CHAPTER 5. ADMISSIBLE SOLUTION DOT 136

X (cm)

Z
 (

cm
)

60 dB SNR  MSE: 0.0014232  cResid: 0.5||n||

−1.875      −1.375      −0.875      −0.375      0.125       0.625       1.125       1.625       

−3.875

      

−3.375

      

−2.875

      

−2.375

      

−1.875

      

−1.375

      

−0.875

      

−0.375

      

−0.05

0

0.05

0.1

0.15

Figure 5.42: The minimum MSE reconstruction
for the deep left hand anomaly scenario at a SNR
of 60 dB.
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Figure 5.43: The minimum MSE reconstruction
for the deep left hand anomaly scenario at a SNR
of 30 dB.

The minimum MSE for each of the scenarios as function of SNR is show in Figure 5.44. The

performance across SNR is as expected from the raw results on the previous page. The best MSE

performance is given by the scenario where the anomalies are the same depth followed by the

shallow left hand anomaly scenario.

5.4.4 Variable background test

Since the lower min/max constraint of zero made such a significant difference in the reconstruction

performance we wanted to explore what effect a true variation in the background would have on

the reconstructions under such a tight min/max constraint. The background variation was simulated

by adding a IID Gaussian random vector to the perturbation vector used in the Born-1 forward

model. The magnitude of the background variation was varied so that the standard deviation of the

Gaussian random vector was either 0.1%, 0.2%, 0.5%, 1.0%, 2.0%, 5.0% or 10% of the background

absorption coefficient. The voxel size used in the forward simulation was 0.125 cm in the X and

Z dimensions. The parameters chosen to model the background variation were somewhat arbitrary
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Figure 5.44: The minimum MSE versus SNR for all three multiple anomaly scenarios.

because we were unable to find any information on the expected range and structure of background

variations in tissue. We hope that we have covered enough of a range to provide some meaningful

results when applied to true tissue measurements.

We considered three ways to handle the expected absorption values below the background ab-

sorption coefficient. The first was to basically ignore it. In this case both the forward and inverse

models use the same background optical parameters. The minimum value constraint was still left

at 0 forcing an incorrect result where the background variation induced a absorption parameter less

than the background. This approach we called “unmodified”. The second approach was to set the

minimum value constraint to the minimum value of the true absorption perturbation. This approach

we called “modified range”. The final approach was to change the background absorption coeffi-

cient used in the inverse model to the minimum absorption coefficient in the reconstruction volume.
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This ensured that the reconstructed image could be bounded below by zero. This approach we called

“modified model”.

The minimum MSE performance for each of the variable background tests are shown in Figures

5.45 through 5.51. Clearly leaving the admissible solution approach unmodified does not work very

well. Reducing the lower-bound on the min/max constraint, however, does work well.
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Figure 5.45: Minimum MSE for the three differ-
ent approaches with 0.1% background variation.
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Figure 5.46: Minimum MSE for the three differ-
ent approaches with 0.2% background variation.
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Figure 5.47: Minimum MSE for the three differ-
ent approaches with 0.5% background variation.
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Figure 5.48: Minimum MSE for the three differ-
ent approaches with 1.0% background variation.

To get an idea of how the background variation and noise interact we plotted minimum MSE

contours versus both SNR and background variation for the modified range and modified model
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Figure 5.49: Minimum MSE for the three differ-
ent approaches with 2.0% background variation.
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Figure 5.50: Minimum MSE for the three differ-
ent approaches with 5.0% background variation.
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Figure 5.51: Minimum MSE for the three differ-
ent approaches with 10.0% background variation.

approaches. These are shown in Figures 5.52 and 5.53

Finally, example reconstructions using the three approaches at 30 dB SNR and 1% background

variation are shown in Figures 5.54 through 5.56.

5.5 Computational considerations

The computational work required to implement the admissible solution approach is significantly

higher than the linear algebraic reconstruction technique presented in Chapter 3. Using the FLOPS
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Figure 5.52: Minimum MSE contour for the mod-
ified range approach as function of SNR and back-
ground variation.
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Figure 5.53: Minimum MSE contour for the mod-
ified model approach as function of SNR and
background variation.

counter within MATLAB we counted between 15E9 FLOPS for the residual constraint alone to

550E9 FLOPS for the residual,total variation, and min/max constrained solution for a single con-

straint set. In comparison, to compute the “economy” SVD for the forward operator requires 2.5E6

FLOPS.

5.6 Admissible solution discussion

It is evident from the results in these simulations that the incorporation of additional constraints did

improve the reconstruction fidelity of the absorption coefficient perturbation.

Incorporating the initial additional constraint, the total variation constraint, brought a modest

improvement to the reconstructed absorption coefficient perturbation. Qualitatively we observed,

a deeper and larger response, associated with the anomaly. Quantitatively we observed a small

improvement in the MSE measure over the whole range of SNR. The sensitivity to the value of

this constraint was not too great, and as expected if the constraint was too loose the algorithm



CHAPTER 5. ADMISSIBLE SOLUTION DOT 141

X (cm)

Z
 (

cm
)

Unmodified 1% Bkgnd Var  30 dB SNR  MSE: 0.0079901  cResid: 2||n||

−1.875      −1.375      −0.875      −0.375      0.125       0.625       1.125       1.625       

−3.875

      

−3.375

      

−2.875

      

−2.375

      

−1.875

      

−1.375

      

−0.875

      

−0.375

      

−0.05

0

0.05

0.1

0.15

Figure 5.54: Unmodified minimum MSE recon-
struction at 30 dB SNR and 1% background vari-
ation.
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Figure 5.55: Modified range minimum MSE re-
construction at 30 dB SNR and 1% background
variation.
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Figure 5.56: Modified model minimum MSE re-
construction at 30 dB SNR and 1% background
variation.

performance reverted back to that of the constrained residual approach. The reduction in expected

improvement from the addition of the total variation constraint appears to be a result of the small

amplitude of the reconstruction. Because of the large effective null space, having the solution meet

the data does not require a reconstruction with a similar magnitude as the true absorption anomaly

perturbation function. This small amplitude reduces the total variation measure and thus limits the

effects of the constraint on the reconstruction. This was the motivation for development of the
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normalized total variation.

Unfortunately the observed effect of the normalized total variation measure in the noiseless

case was to induce a large constant negative value region deep into the medium. Therefore further

investigation of this constraint was not warranted at this time. Future investigation should attempt

to understand why this response was induced and whether there is a more appropriate manner in

which to normalize the total variation constraint.

Incorporating the min/max constraint is where we really saw a large improvement in the re-

construction fidelity. We hypothesize that this improvement due to the addition of the min/max

constraint is caused by the following relationship. First, looking at the residual alone and residual

2-norm and total variation constrained reconstructions in Figures 5.8 and 5.10 we observe a noisy

region near the surface that has both negative and positive variations. The minimum value con-

straint we have applied restricts these negative absorption coefficients near the surface, but for the

residual constraint to be met, the positive regions of noise must also disappear. This leaves more

measured signal energy that must be accounted for by the absorption anomaly, resulting in an in-

crease in the amplitude of the reconstructed absorption anomaly. A further illustration of the effect

of the minimum constraint is the MSE measure’s sensitivity to this constraint as shown in Figure

5.17. This graph clearly identifies the minimum value constraint as a primary factor in improving

the reconstruction fidelity.

Our multiple noise realization tests, object parameter test, and background variation test all

showed that this approach is fairly robust to changes in the reconstruction scenario and environment.

As expected, deep absorption anomalies, either alone or with another absorption anomaly present,

are more difficult to reconstruct. Also in our investigation of the contrast ratio, our use of the FDFD
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forward solution and the good quality reconstructions produced provides further evidence that a

linear model approach is feasible.

Finally, the background variation examination provided some interesting results. Before running

these experiments we expected that the modified model approach would work the best, since it was

still allowed to use a minimum constraint of zero and suppress any negative responses as described

above. The results were somewhat surprising in that the modified range approach performed better

than the other two approaches even though it did allow some negative responses. It appears that

somehow allowing for negative responses when they do actually exist (i.e. true variations in the

background less than the background) is not as detrimental as when they are not actually there. This

is a positive result in the sense that a more relaxed set of constraints may be appropriate instead of

using a more perturbed model when dealing with expected background variation.



Chapter 6

Conclusions and future work

As we have seen throughout this thesis, accurate reconstruction of the optical absorption coeffi-

cient from fluence rate measurements at the body surface is a difficult problem. For the full three

dimensional reconstruction the problem is both ill-posed and severely underdetermined. We have

demonstrated that when a linear model based reconstruction is employed, the use of subspace based

techniques resulted in higher fidelity reconstruction of the absorption coefficient. These techniques

also have an added advantage in that an a posteriori technique, the L-curve, is available for the

selection of the regularization parameter.

By the incorporation of additional a priori constraints we have been able to significantly improve

the fidelity of the absorption coefficient reconstructions. We have explored two general approaches

to incorporating additional a priori constraints into the reconstruction process. The two-wavelength

approach did not result in as much improvement as we had hoped but did show that additional

constraints can improve the reconstruction fidelity. Further investigation into this technique might

144
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indicate how or where it can be best applied. The most useful technique we have found to in-

corporate additional constraints is through an admissible solution approach implemented with the

ellipsoid algorithm. Specifically, through the use of a combined residual 2-norm, total variation,

and min/max constraint set, we were able to achieve near perfect reconstruction of the absorption

parameter with an approximation to the full three dimensional problem. Additionally, this approach

has shown to be fairly robust to changes in the reconstruction scenario such as absorption anomaly

parameter variations and variations in the background characteristics.

6.1 Future work

There are a number of aspects of this problem that still need to be explored. We have presented a

more accurate noise model that was developed after the simulations we have presented were run.

Incorporation of this more accurate noise model and the examination of its effects on the recon-

struction still needs to be studied. The use of more accurate forward models to simulate data is also

planned. Although basic analysis of the forward problem has shown that the first Born approxima-

tion provides reasonable results, we have observed in several instances that scenario changes have

produced unexpected results. Now that we have a basic foundation for the understanding of linear

model reconstruction approaches to DOT we can advance our simulations to employ more accurate

forward models.

We also plan on implementing the full three dimensional admissible solution approach. We feel

that the full three dimensional admissible solution approach may produce better results than the

vertical two dimensional slice approximation we have used in our initial study. With a 3D array
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the performance at greater depth will hopefully be improved due to the available larger source-

detector distances and the greater number of sampling “banana patterns”. Even though we matched

the singular value spectra and underdeterminedness ratio between the three dimensional and two

dimensional problems, we cannot be sure that the problems are similar in difficulty until we have

performed more studies. This also identifies another area of investigation described in more detail

below, namely the effect of the source detector geometry.

Due to the computational requirements of this algorithm, the full three dimensional approach

will likely have to be implemented on a parallel architecture. Additionally, we plan on investigating

the use of the Deep Cut Ellipsoid Algorithm [50] which can significantly reduce the number of

iterations required to find an admissible solution.

Since the admissible solution approach requires the use of a priori constraints on the solution,

we plan on investigating further the appropriate values of those constraints, and their sensitivity un-

der different measurement scenarios. To expand upon the requirement of having a priori constraints

we would also like to investigate the possibility of the constraint being modified on the fly and es-

timated from the data as we iterate, thus developing an adaptive constraint approach. We also plan

on investigating the sensitivity of the min/max constraint to background variation when the extent

of that variation is unknown.

In regard to the two-wavelength approach, more work needs to be done to understand the ef-

fects of the constraint and how to best implement the constraint. We plan on examining a smaller

two dimensional problem that will allow us to efficiently examine more scenarios for the CACR

constraint.

Finally, our observations in this thesis have been that the reconstruction fidelity is very sensitive
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to the geometry of the sources and detectors. We propose to investigate improved source/detector

geometries with the application restrictions in mind and to investigate if there is a way to specify an

optimal, in some sense, source/detector distribution for a given problem.



Appendix A

Table of Parameters

Since the topics discussed in this thesis cover several different areas of study, we provide a table

of parameters and variable symbols we have used. We have attempted to be consistent with this

notation throughout the thesis.

148
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Parameter Description Page reference

2 Absorption coefficient ratio for the CACR constraint 76
& Modulation depth 44
�� Optical absorption coefficient 8
��� Background optical absorption coefficient 27

������ Optical absorption coefficient perturbation function 27
* Detector quantum efficiency 45
- Photon wavelength 76
�� Optical scattering coefficient 8
��� Reduced optical scattering coefficient 8
�� Optical transport coefficient 8
, Photon frequency 45
�� Detector fiber acceptance angle 45
'�� AC propagation constant 45
'�� DC propagation constant 45

	��� ���	��� �� Photon fluence rate 9
	���� Incident photon fluence rate 29
�� Discrete incident photon fluence rate 44

	���� Scattered photon fluence rate 29
�� Discrete scattered photon fluence rate 33
��� Stacked real discrete scattered photon fluence rate 34
(� Detector fiber area 45
/ Detector bandwidth 45

 Diffusion coefficient 10
� Electron charge 45

����� ���� Scattering phase function 8
�� Noise figure 45

 ��� ��� Green’s function 44
� Forward operator matrix 44
�� Stacked real forward operator matrix 34

 Mean cosine of the phase function 8

���� �� Photon flux 9
� Diffuse photon density wavenumber 11
�� Background diffuse photon density wavenumber 29

����� Diffuse photon density wavenumber perturbation function 29
�+ Planck’s constant 45
� Discrete Diffuse photon density wavenumber perturbation function 33

���� ��� �� Radiance 8
#0% Noise equivalent power 45
� Covariance matrix 53
� Electromagnetic propagation velocity 8

Table A.1: Table of Parameters



Appendix B

Photon Migration Imaging Toolbox

B.1 PMI Toolbox Introduction

This document describes the architecture of the Photon Migration Imaging (PMI) toolbox. Specif-

ically the Photon Migration Imaging structure and some of the high level MATLAB functions that

operate on this structure. The PMI structure is implemented as a tree of MATLAB structures con-

taining all of the information about an experiment. For most operations, such as simulating mea-

sured data, or reconstructing absorption maps, this top level data structure is passed as the argument

to a function and received as the result. Additionally, the PMI data structure can be supplied as the

argument to the GUI function iPMI and all operations can be run from within this user interface.

The PMI data structure is primarily a container for other structures that describe the parameters

of the experiment and hold the results. The PMI data structure and its child structures are described

in Table 1 through Table 11. The layout of these structures is valid for version 3.11 of the PMI

toolbox.

150



APPENDIX B. PHOTON MIGRATION IMAGING TOOLBOX 151

B.2 High Level Algorithms

A number of high level functions are available that perform common diffuse optical tomography
operations. These functions are useful both for implementing automated computer experiments
through the use of command sequences or scripts and for conducting interactive simulations. Each
of these algorithms takes a data structure containing the parameters needed by the algorithm and
supply results in the appropriate fields within a returned data structure. A simple example of cre-
ating a Truncated Conjugate Gradient (TCG) image of a 1st order born simulated measurement at
780 nm is shown below.

%
% Load in the standard 780 nm simulation parameters from the
% template file.
%
load pmi780v3

%
% Modify some of the parameters as necessary.
%
pmi780.Fwd.ModFreq = 200;
pmi780.Inv.ModFreq = 200;

pmi780.Recon.ReconAlg = ’TCG’;
pmi780.Recon.TCGnIter = 10;

%
% Generate the first order Born approximation forward matrix for
% both the forward and inverse problem as well as the measured data.
%
pmi780.Fwd = genFwdMat(pmi780.Fwd);
pmi780.Inv = genFwdMat(pmi780.Inv);
pmi780 = genMeasData(pmi780);
pmi780 = genNoise(pmi780);

%
% Compute the requested reconstruction
%
pmi780 = genRecon(pmi780);

%
% Display the reconstructed absorption function over the
% computational volume
%
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showImage(pmi780)

The high level algorithms available include the following categories:

Forward Problem Algorithms

genFwdMat Generate a forward matrix and incident field.
genMeasData Generate simulated measured data
genNoise Add the requested noise model to the measured data.

Reconstruction Algorithms

genRecon Generate the absorption image using the specified reconstruction algorithm.

Visualization Algorithms

showImage Display the resulting reconstruction.
multImage Display a number of reconstructions with the ability to scan by a scroll bar.

B.2.1 The Photon Migration Imaging data structure

The following tables describe the fields present in the Photon Migration Imaging data structure and

it’s children structures. The hierarchical relationship between these structures is shown graphically

in Figure 1.

Items shown in italics are only included when the Debug field is greater than zero (true). Most

are included when Debug is one or greater, some less important information is included only when

Debug is greater than one. See the algorithm that generates the specific field to identify exactly

when a debug dependent field is generated.
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Table B.1: The Photon Migration Imaging data structure. This is the top-level data structure
that most of the high-level operations take as an argument and return. It contains all of the
information and results from a particular experiment.

Field Type Description
Version scalar The version number for this data structure.
Debug scalar A flag specifying the level of debug messages

to display and the amount of debug info to carry
along in the data structure.

Fwd structure A Model structure. This contains containing all of
the information to calculate the forward problem.

Object cell array A cell array of Object structures. This contains
all of the information on This contains all of the
information regarding absorption objects and the
resulting perturbation inhomogeneities present in
the computational volume. Each element in the
cell array contains an Object data structure and
specifies an individual object in the medium.

Noise structure A Noise structure. This specifies the noise mod-
els to apply and contains the weighting vector for
”whitening” the system. Also available if debug
is enabled are the noise vectors and individual
standard deviations.

PhiTotal matrix The total measured fluence rate without noise.
Each column represents the fluence rate mea-
sured at a particular wavelength. Each column is
stacked running through all of the detector for the
first source and then incrementing the source

PhiTotalN matrix The total measured fluence perturbed by the
noise specified in the Noise structure.

PhiTotalNw matrix The total measured fluence perturbed by the
noise specified in the Noise structure and
weighted such that the variance of each mea-
surement is one.

Recon structure A Reconstruction structure. This specifies the re-
construction algorithm and it’s parameters along
with holding the estimate(s) of the absorption
perturbation function(s).

Visualize structure A Visualization structure. This specifies the pa-
rameters for the selected visualization technique.



APPENDIX B. PHOTON MIGRATION IMAGING TOOLBOX 154

Table B.2: The Model data structure, this is used for both the forward and inverse problems.

Field Type Description
idxRefr vector The index of refraction in the medium. For multi-

ple wavelengths this should be a vector specify-
ing the index at each wavelength.

v vector The velocity of electromagnetic propagation in
the medium. For multiple wavelengths this
should be a vector specifying the propagation ve-
locity at each wavelength.

g vector The mean cosine of the scattering angle. For
multiple wavelengths this should be a vector
specifying the mean cosine of the scattering an-
gle at each wavelength.

Cphore vector The vector of chromophore structures, each ele-
ment specifies a different chromophore identified
in the structure.

Mu s vector The scattering coefficient for the medium. For
multiple wavelengths this should be a vec-
tor specifying the scattering coefficient at each
wavelength.

Mu sp vector The reduced scattering coefficient for the
medium. For multiple wavelengths this should be
a vector specifying the reduced scattering coeffi-
cient at each wavelength.

Mu a vector The absorption coefficient for the medium. For
multiple wavelengths this should be a vector
specifying the absorption coefficient at each
wavelength.

Src structure An Optode structure specifying the position(s)
and parameters such as numerical aperture and
amplitude of the source(s).

Det structure An Optode structure specifying the position(s)
and parameters such as numerical aperture and
amplitude of the detector(s).

Lambda vector The wavelengths of the sources used.
ModFreq vector The modulation frequency(s) (in MHz) of the

sources. Multiple modulation frequencies gen-
erate multiple sets of measurements that are
stacked in the order of frequency specified in this
vector.
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Table B.2 the Model data structure continued.

Field Type Description
MeasList matrix This matrix defines the order in which measure-

ments are present in the measurement data vec-
tor. It is and n x 4 matrix where each row identi-
fies a specific measurement and each column in-
dexes the source, detector, frequency and wave-
length respectively.

Boundary structure A Boundary structure defining the boundary con-
ditions and locations to use.

Method structure This is a Method structure. It defines the method
used to calculate forward solution or create a for-
ward operator for the inverse solution as well as
any parameters that are required by the method
specified.

CompVol structure This is a Computational Volume structure. It
specifies the values in three dimensions on which
the forward problem or inverse problem will be
evaluated (if appropriate).

A array The forward operator (if appropriate).
Aw array The weighted forward operator (if appropriate).

Column weighting is used to ”whiten” noise
present in the measurement.

delMu a matrix The absorption function perturbation. This is the
value of the absorption function minus the back-
ground absorption for each voxel. The 3 dimen-
sional array is converted into a vector by stack-
ing, the stacking order is y x z. Each column
contains the absorption function perturbation for
a different wavelength.

delMu sp matrix The scattering function perturbation. This is the
value of the scattering function minus the back-
ground absorption for each voxel. This field has
the same structure as delMu a.

PhiInc matrix The computed incident field(s).
PhiScat matrix The computed scattered field(s)
PhiScatw matrix The weighted computed scattered field(s), the

weighting is performed to whiten the noise
present in the measure data. This field will most
likely only be present in the inverse model (Inv)
data structure.

IPR matrix The incident-to-perturbation ratio for each
source-detector pair at each frequency and
wavelength.
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Table B.3: The Chromophore data structure. This structure describes the concentration
and resultant absorption coefficient of the specified chromophore.

Field Type Description
Name string The name of the chromophore.
Conc scalar The concentration of the chromophore in the

specified region.
Mu a vector The absorption coefficient of the chromophore at

each wavelength.

Table B.4: The Optode data structure. This is used to specify the positions, orientation,
and optical parameters of the sources and detectors.

Field Type Description
Type string This specifies the type of position data. This can

either be ’uniform’ where X, Y, and Z, specify a
uniform array of positions or ’list’ where Pos is a
n x 3 matrix specify a list of positions

X vector The X positions of the optode array.
Y vector The Y positions of the optode array.
Z vector The Z positions of the optode array.
Pos matrix A n x 3 matrix that specifies a list of arbitrary

points in 3-space.
Normal matrix A n x 3 matrix that specifies the outward normal

for each source or detector.
Amplitude vector The amplitude of each source or relative effi-

ciency of each detector. Efficiency should be
specified between 0 and 1.

NA vector The numerical aperture of each source or detec-
tor.



APPENDIX B. PHOTON MIGRATION IMAGING TOOLBOX 157

Table B.5: The Boundary data structure. This describes the type of boundary model to use
and any parameters that are needed with the type specified.

Field Type Description
Geometry string A description of the boundary geometry. Valid

string descriptors are: ’Infinite’ - An infinite
medium. ’Semi-infinite’ - A semi-infinite medium,
the air-tissue interface is assumed to be at z =
0. ’Slab’ - A slab medium. One boundary is as-
sumed to be at z = 0, the other is at Z = Thick-
ness.

Thickness scalar The thickness of a slab medium.

Table B.6: The Method data structure. This describes the method used to compute either
the forward problem or forward operator for the inverse problem.

Field Type Description
Type string The forward model method used to either gener-

ate the data or create a forward matrix. The cur-
rently known values are: ’Born’, ’Rytov’, ’Spheri-
cal’, ’MatlabVariable’, ’FDFD’, ’FEM’.

Order scalar A value dependent field. If Type is ’Born’, or
’Spherical’ then this field specifies the order of
the approximation.

MatlabVarName string A value dependent field. If Type is ’Matlab Var’
then this field specifies the name of the Mat-
lab variable to read in the measured data from.
The MATLAB variable should be an n x 2 matrix
where the columns contain the total fluence and
measurement variance respectively.
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Table B.7: The Computational Volume data structure. This is used to specify the points at
which the reconstruction will be performed and if appropriate where the forward solution
will be calculated.

Field Type Description
Type string This specifies the type of voxelation data. This

can either be ’uniform’ where X, Y, and Z, specify
a uniform array of voxels or ’list’ where Pos is a n
x 3 matrix specify a list of positions

X vector The centers of the voxels in the X direction.
XStep vector The step size in the X direction for a ’uniform’

voxelation
Y vector The centers of the voxels in the Y direction.
YStep vector The step size in the Y direction for a ’uniform’

voxelation
Z vector The centers of the voxels in the Z direction.
ZStep vector The step size in the Z direction for a ’uniform’ vox-

elation
Pos matrix A n x 3 matrix that specifies the arbitrary points

in the volume used for voxelation.
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Table B.8: Object data structure. This data structure specifies the optical heterogeneities
present in the medium.

Field Type Description
Type string The type of heterogeneity described in this struc-

ture. This can be either a geometric object such
as ’sphere’ or ’block’, or a description based on
MRI data or some other source. The latter has
yet to be clearly defined.

Pos vector The position of the center of the object.
Radius scalar If Type specifies a sphere then this field provides

the radius.
Dims vector If Type specifies a block then this field provides

the dimensions of the block. The format of the
row vector is [lx ly lz] where lx, ly and lz are the
x, y and z dimensions of the block, respectively.

Conc vector A vector of concentration data structures. This
data along with spectra functions can be used to
automatically fill in the Mu a and Mu s fields.

Mu a vector The absorption coefficient(s) of the region speci-
fied. A value should be specified for each wave-
length in forward model data structure.

Mu s scalar The scattering coefficient of the region specified.
If this field is not present the scattering coefficient
is assumed to match the background.
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Table B.9: The Noise data structure. This specifies the noise models to be used along with
the weighting coefficients for whitening the system.

Field Type Description
SrcSNRflag scalar This flag specifies source relative noise. The

noise standard deviation is relative to the total
fluence measured at the detector for each source
detector pair.

SrcSNR scalar The signal-to-noise-ratio in dB for the source rel-
ative noise. This is only employed if SrcSNRflag
is true.

SrcNoiseSTD matrix The standard deviation of the noise for each
source detector pair. This has the same struc-
ture as the total fluence matrix.

SrcNoise matrix The noise vectors that were added to the total
fluence. This has the same structure as the total
fluence matrix.

DetSNRflag scalar This flag specifies detector noise. The noise
standard deviation is uniform across source-
detector pairs and is relative to the maximum flu-
ence detected for all source-detector pairs.

DetSNR scalar The signal-to-noise-ratio in dB for the detector
noise. This is only employed if DetSNRflag is
true.

DetNoiseSTD vector The standard deviation of the detector noise for
each wavelength.

DetNoise matrix The noise vectors that were added to the total
fluence. This has the same structure as the total
fluence matrix.

ScatSNRflag scalar This flag specifies a noise model with a uniform
variance across source-detector pairs relative to
the peak scattered fluence. This is a useful
model for exploring basic reconstruction perfor-
mance under AWGN.

ScatSNR scalar The signal-to-noise-ratio in dB for the scattered
field noise. This is only employed if ScatSNRflag
is true.

ScatNoiseSTD vector The standard deviation of the scattered field
noise for each wavelength.

ScatNoise matrix The scattered field relative noise vectors that
were added to the total field. This has the same
structure as the total fluence matrix.
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Table B.9 The Noise data structure continued.

Field Type Description
ShotSNRflag scalar This flag specifies a shot noise model is to be

used.
ShotSNR vector The signal-to-noise-ratio in dB for the shot noise.
ShotNoiseSTD matrix The standard deviation of the shot noise for each

source detector pair. This has the same structure
as the total fluence matrix.

ShotNoise matrix The shot noise vectors that were added to the
total fluence. This has the same structure as the
total fluence matrix.

ElectronicSNRflag scalar This flag specifies electronics noise. This still
need work.

ElectronicSNR scalar
ElectronicNoiseSTD vector
ElectronicNoise matrix
TotalVar matrix The total variance of the noise added to the each

measurement (source-detector pairing). This
has the same structure as the total fluence ma-
trix.

w matrix The weight vector for each wavelength. This has
the same structure as the total fluence matrix.
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Table B.10: The Reconstruction data structure. This specifies the reconstruction technique
and any parameters required.

Field Type Description
ReconAlg string The reconstruction algorithm to use. Algorithms

currently identified by genRecon are: ’Back Pro-
jection’, ’ART’, ’SIRT’, ’Min. Norm’, ’TSVD’,
’MTSVD’, ’TCG’.

xEst matrix The estimate(s) of the absorption function. Each
column contains the reconstruction at a different
wavelength.

xError matrix The absolute error function(s): xEst - delMu a
xResid matrix The residual function(s).
ARTnIter scalar The number of iterations to compute for ART.
SIRTnIter scalar The number of iterations to compute for SIRT.
TSVDnSV scalar The number of singular values to use for TSVD.
flgNeedEconSVD scalar A flag specifying that the weighted forward sys-

tem has changed since the last calculation of the
economy SVD.

Uecon, Secon, Vecon arrays The economy singular value decomposition.
MTSVDnSV scalar The number of singular values to use for MTSVD.
MTSVDlambda scalar The weighting parameter for the null space in the

MTSVD algorithm.
flgNeedFullSVD scalar A flag specifying that the weighted forward sys-

tem has changed since the last calculation of the
full SVD.

U, S, V arrays The full singular value decomposition.
xTSVD matrix The truncated SVD intermediate solution for use

in the MTSVD algorithm.
xNS matrix The null space component of the reconstruction

for use in the the MTSVD algorithm.
TCGnIter scalar The number of iterations to compute for TCG.
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Table B.11: The Visualization data structure. This specifies how to visualize the results

Field Type Description
VisPlane string The plane in which to perform the visualization:

’X’, ’Y’, or ’Z’.
Type string The type of visualization: ’image’ or ’contour’.
PlaneIndices vector The indices of the plane(s) to visualize. This also

specifies the order in which the planes are laid
out in the figure.

LayoutVector vector A two element vector specifying the number of
axes [rows columns] to display.

Cmap string The colormap to use in rendering. ’bgyor’ for
a blue-green-yellow-orange-red colormap. ’grey’
for white to black colormap.

Crange string The color ranging method to use. ’fixed’ displays
all axes over the same color range. ’auto’ adjusts
the range for each axes to the range of the data
present in that plane.

CrangeVal vector Specifies the range for the color map. If this
is zero and Crange is ’fixed’ then the rendering
function automatically sets the color range to the
min and max of the whole volume. If Crange is
’auto’ this is ignored.

nCLines scalar The number of lines to render if the ’contour’ type
is selected.
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