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Abstract. We compare, through simulations, the performance of four linear algorithms for diffuse
optical tomographic reconstruction of the three-dimensional distribution of absorption coefficient
within a highly scattering medium using the diffuse photon density wave approximation. The
simulation geometry consisted of a coplanar array of sources and detectors at the boundary of a
half-space medium. The forward solution matrix is both underdetermined, because we estimate
many more absorption coefficient voxels than we have measurements, and ill-conditioned, due to
the ill-posedness of the inverse problem. We compare two algebraic techniques, ART and SIRT, and
two subspace techniques, the truncated SVD and CG algorithms. We compare three-dimensional
reconstructions with two-dimensional reconstructions which assume all inhomogeneities are
confined to a known horizontal slab, and we consider two ‘object-based’ error metrics in addition to
mean square reconstruction error. We include a comparison using simulated data generated using
a different FDFD method with the same inversion algorithms to indicate how our conclusions are
affected in a somewhat more realistic scenario. Our results show that the subspace techniques
are superior to the algebraic techniques in localization of inhomogeneities and estimation of their
amplitude, that two-dimensional reconstructions are sensitive to underestimation of the object
depth, and that an error measure based on a location parameter can be a useful complement to
mean squared error.

1. Introduction

Over the past 10 years there has been considerable research into the use of near-infrared light
to image inside the human body, a technique known variously as diffuse optical tomography
(DOT), photon migration imaging (PMI) and diffuse photon density wave (DPDW) imaging
(see Arridge (1999) for a recent review). One of the primary goals of this research is to
image the distribution of the optical absorption coefficient, which at near-infrared wavelengths
(700–900 nm) is primarily influenced by haemoglobin in its various forms. Thus a mapping
of the density of haemoglobin can be inferred from an image of the absorption coefficient.
Recently considerable work has been done developing both linear and nonlinear physical
models and back-propagation techniques for constructing these images. Nonlinear techniques
such as those developed by Arridgeet al (1992) and Jianget al (1996) are attractive because
they minimize the number of assumptions regarding both the medium and the physics, but
they are computationally very expensive. Back-propagation, which has been explored by
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groups such as Colaket al (1997) and Matsonet al (1997), is computationally economical but
sensitive to noise and does not deal well with multiple absorbing objects. Linear perturbation
techniques attempt to specify the imaging problem as a perturbation to a known or estimated
background medium and thus pose the relationship between the absorption coefficient and
the measured data as a linear system of equations. Linear methods include both the Born
and Rytov approximations, and have been explored by O’Learyet al (1995) and Changet al
(1995), among others.

The linear inverse problem is ill-posed due to absorption and scattering in the medium;
the mathematical consequence is that the matrix representing the forward problem will be ill-
conditioned. Thus some type of regularization or stabilization technique is required to obtain
physically realistic results. Once a linear forward model is assumed, the inverse problem can
be approached in a linear algebraic context. A number of linear algebraic techniques have been
applied to linear DOT imaging. However, there have been few, if any, systematic comparisons
of these methods as applied to DOT. In this paper we present such a comparison. Specifically,
we examined the performance of two representatives each of two classes of linear reconstruction
techniques, algebraic and subspace methods, in a simple, but clinically relevant reflective
imaging geometry. The algebraic techniques we examined were the algebraic reconstruction
technique (ART) and the simultaneous iterative reconstruction technique (SIRT) (Kak and
Slaney 1988), and the subspace techniques were the truncated singular value decomposition
(TSVD) and truncated conjugate gradient (TCG) algorithm (Hansen 1998). The algebraic
methods have been widely used for DOT as well as many other tomographic problems, are
simple to understand and program, and can be relatively computationally efficient for certain
classes of problems. The subspace techniques are often regarded as being more accurate in
many applications of linear algebra. The main purpose of this investigation was to quantify
the performance of these two classes of reconstruction methods in the DOT framework. In this
context we address some related issues such as the choice of, and sensitivity to, the required
regularization parameter which controls the amount of regularization applied in a given method.
We point out that although the discussion in this paper is framed entirely in terms of a linear
forward model, many nonlinear algorithms depend on a succession of linear problems which
may need to be regularized, so we believe that the results obtained here may well be more widely
applicable. To give an indication of how the methods perform when a different, nonlinear
approach is used to generate the data, we include a brief comparison of linear reconstructions
obtained from data simulated by a frequency domain finite difference (FDFD) forward model.

In many DOT imaging scenarios, three-dimensional volumetric reconstruction of a region
of tissue under study is computationally challenging. Additionally, such reconstructions often
require more parameters to be estimated than the number of measurements available, so that
the resulting problem is mathematically underdetermined. Many investigators have dealt with
this problem by assuming that all absorption inhomogeneities lay in a known planar slice in
the volume (Cheng and Boas 1998, Changet al 1995, Jianget al 1996). By assuming that the
background values are known or can be estimated, the number of unknowns is dramatically
reduced and, geometrically, the inverse problem is reduced to the estimation of absorption
coefficients in a two-dimensional slice. The effect of this assumption on the accuracy of the
inverse solution has frequently not been carefully tested, especially in the case where the
assumption is itself not accurate. A second purpose of the current work, then, is to quantify
the performance of full three-dimensional reconstructions in comparison with two-dimensional
planar reconstructions.

In a simulation scenario where the goal is to find and quantify a region of absorption inho-
mogeneity in an otherwise homogeneous three-dimensional volume, it is not clear that simple
error measures such as the mean squared error over the volume between a reconstruction and
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the true distribution is the best measure to use; in applications, for instance, one may be more
interested in estimating the location or peak amplitude of the inhomogeneity. As a secondary
objective of this work, then, we compare three different error measures on our reconstructions
to determine whether, or when, simple mean square error measures are adequate.

In summary, then, this work has three goals:

• to compare algebraic and subspace reconstructions in the same imaging scenario;
• to compare full three-dimensional volumetric reconstructions to reconstructions which

assume an inhomogeneity is confined to a known two-dimensional slice; and
• to compare mean squared error with more object-orientedad hocerror measures.

The paper is structured as follows. In section 2 we describe the simulations and propagation
model we used for the study. In section 3 we present the details of the four reconstruction
algorithms we compared. In section 4 we show both qualitative and quantitative comparisons
of the reconstruction techniques under the simulation scenario described, and in section 5 we
describe our observations and conclusions.

2. Methods

All of the results presented in this study were calculated from computer simulations of detector
measurements. Our study simulated a half-space region of diffuse media with a single spherical
inhomogeneity embedded in the region. Using computer simulations we were easily able to
exercise precise control over parameters of interest such as signal-to-noise ratio and object
position.

2.1. Discrete DPDW model

A model of light propagation in a highly scattering medium is necessary both to compute the
simulated fluence at the detectors and to map the fluence values back to the spatial absorption
function. The solution to either problem provides a forward model; however, in studying
inverse solutions the forward model used for the first computation (i.e. the forward computation
of simulated fluence) may not be the same as that used for the second computation (i.e. the
inverse solution). In this subsection we describe briefly the mathematical approach we used to
formulate our forward models (for more detail see Kak and Slaney (1988) and O’Leary (1996));
in subsequent subsections we describe the distinct forward models we computed based on this
general mathematical model.

One useful and commonly employed model for the photon fluence in a highly scattering
medium is the Helmholtz frequency domain diffusion equation (O’Learyet al 1995, Ishimaru
1997, Fishkin and Gratton 1993)(

∇2 +
jω − vµa(r)

D

)
φ(r) = −v

D
S(r) (1)

whereφ(r) is the photon fluence at positionr, µa(r) is the spatially varying absorption
coefficient,v is the electromagnetic propagation velocity in the medium,ω is the frequency in
rad s−1 andS(r) is the source function.D is the diffusion coefficient, given by

D = v

3µ′s
whereµ′s is the reduced scattering coefficient. Note that this equation only considers spatial
variations in the absorption coefficient and is functionally different ifD is spatially varying.
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Using a perturbation approach we first rewrite (1) as(
∇2 +

jω − vµ0
a

D
− v1µa(r)

D

)
(φi(r) + φs(r)) = −v

D
S(r) (2)

where we have written the absorption function as a sum of the background absorption,µ0
a,

and a spatially varying perturbation1µa(r), and the fluence as the sum of the incident field,
φi(r), due to the source acting on the background medium and a scattered fluence,φs(r), due
to the inhomogeneities.

Subtracting the homogeneous medium equation (described by (1) withµa(r) = µ0
a)

from (2) we are left with the equation for the scattered fluence

[∇2 + k2
0]φs(r) = −1k2(r)(φi(r) + φs(r)) (3)

wherek2
0 = (jω− vµ0

a)/D and1k2(r) = (v/D)1µa(r). Using a Green’s function approach
and the assumption thatφi(r)� φs(r), we can approximate the scattered field by the integral
equation

φs(r) ≈
∫
V

G(r, r ′)φi(r ′)1k2(r ′) dr ′ (4)

providing a linear relationship between the scattered fluence and the absorption perturbation.
The Green’s function for the half-space medium is

G(r, r ′) = −1

4π |r − r ′|e
jk0|r−r ′| +

1

4π |r − r ′i |
ejk0|r−r ′i | (5)

wherer ′i is the image point ofr ′. Reflection across the boundary is discussed below.
This linearization, which is based on ignoring the contribution of the scattered field on

the right side of (3), is known as the first Born approximation. Physically it amounts to
treating each point in an inhomogeneity as if it existed in isolation from the rest of the
inhomogeneity, ignoring the contributions of perturbations of the scattered field from one
part of an inhomogeneity on the field incident on another part.†

Thus, for each source we calculate the incident field everywhere in the domain using
the Green’s function and then calculate the scattered field present at each detector using (4).
Since (4) gives a linear expression relating1k2(r), the spatially varying perturbation of the
background medium, to the measured scattered field,φs(r), we can discretize the problem into
a system of linear equations of the form

Ax = b (6)

where each row ofA corresponds to a different source–detector pairing and the columns ofA
index small volumes (voxels) within the region of interestV . The elements ofA are integrals of
the Green’s function multiplied by the incident field for the specified source detector pair over
the corresponding voxel. The vectorx is a discretization of1k2(r) for each voxel andb is a
vector whose elements are the detector scattered field measurements for each source–detector
pair. To ensure that the reconstructed1k2(r) is real we can separate the real and imaginary parts
of A = Ar + jAi andb = br + jbi and stack them as separate rows in (6). This is expressed as

Ãx =
[

Ar

Ai

]
x =

[
br

bi

]
.

We evaluated the integrals in (4) by using a pulse basis for the functionsG(r, r ′) andφi(r).

† We also note that to use this approach for inverse calculations one needs to be able to measure the scattered field
alone. In simulations one simply computes only the scattered field; in practice, of course, this is usually impossible.
Hence, in practice some approximate homogeneous field is estimated and subtracted from measurements.
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We modelled our sources as point sources one mean free path length into the medium
(Haskellet al 1994). The air–tissue boundary for the incident field and in (4) is accounted for
using an extrapolated boundary condition (Haskellet al 1994). This extrapolated boundary
condition specifies a zero Dirichlet boundary at a distance out of the medium specified by

zbnd= 2

3µ′s

(
1 +Reff

1− Reff

)
whereReff is the effective reflection coefficient from inside the medium. For a value ofReff

we used 0.4664, which we computed by linearly interpolating for an index of refraction of
1.37 (commonly used to represent tissue) from table 2 in Haskellet al (1994). We accounted
for the boundary condition by reflecting both the modelled sources and the equivalent source
termφi(r)1k2(r) across the boundary. This resulted in a Green’s function for the half-space
given by (5).

In this study we used the approach just described both to generate simulated measured
data and to model the forward system upon which the inversion was based. However, as
described below, the specific forward model was different in the two cases because the spatial
discretization of the model was different.

2.2. Computational geometry

We modelled a semi-infinite slab of tissue with a single spherical absorption inhomogeneity
and a reflective imaging geometry. A number of different positions and sizes of the absorption
anomaly were examined with similar results. All the results presented here used a 1 cmradius
anomaly centred 2.5 cm deep in the tissue, as shown in figure 1.
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Figure 1. A schematic of the geometric layout of the simulations in this study. The sources and
detectors lie along the tissue–air boundary (z = 0 cm). The entire volume was 7 cm×7 cm×5.5 cm
deep. The absorption anomaly is 2.5 cm into the medium atx = 2 cm andy = 3 cm. The grid
size used to discretize the volume for some of the inverse computations is illustrated by the grid
shown in the figure.
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Figure 2. (a) A vertical plane of the absorption function showing the true object image. This plane
is through the centre of the object (Y = 3 cm). (b) A horizontal plane of the absorption function
showing the true object image. This plane is through the centre of the object (Z = 2.5 cm).

2.2.1. Source and detector parameters.The reflective source–detector geometry we
examined simulated a single planar array placed on the surface of the diffuse medium.†
The detectors formed a four by four array with a 2 cmspacing in both dimensions. The sources
were positioned in the interstitial spaces between the detectors, forming a three by three array
also with 2 cm spacing. The sources were amplitude modulated at a frequency of 200 MHz.
A schematic of the geometric layout of the sources and detectors for the simulations is shown
in figure 1. Shown in figure 2 are two examples of a single slice through the volume of the true
absorption perturbation. Figure 2(a) shows a vertical slice through the centre of the anomaly
in theX–Z plane. We use this representation for the full three-dimensional reconstructions
because it can capture the depth performance of the algorithm in a single image. Figure 2(b)
shows a horizontal slice though the centre of the anomaly in theX–Y plane. We use this
representation for two-dimensional slice reconstructions.

2.2.2. Volume discretization.When solving the forward problem we calculated the simulated
scattered fluence by discretizing a region just surrounding the absorption inhomogeneity with
a fine cubic grid 1 mm on a side, requiring a 21× 21× 21 grid to cover the 1.0 cm radius
anomaly. We did not need to discretize outside this region because of the compact support of
the object.

In contrast, when we solved the inverse problem we assumed that the location of the
anomaly within the medium is unknown. Thus the entire volume under the source detector
array was discretized uniformly for the forward model used in the inverse reconstructions.
Specifically, the volume modelled, as shown in figure 1, was a cube 7 cm× 7 cm by 5.5 cm
deep discretized into voxels. These voxels were 0.5 cm on a side in theX andY dimensions
and either 0.5 cm or 2.0 cm deep in the vertical (Z) direction. In addition to the full three-
dimensional discretization as described in section 1, we also examined reconstructions using
only a single horizontal plane of voxels centred on the anomaly. In this method the source
terms, the unknowns in the inverse solution, were assumed to be zero outside the chosen
horizontal slice during the inverse computation. Thus the size of the relevant linear system
and the required computations are greatly reduced.

† This geometry models a measurement system currently being constructed in one of our laboratories.
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In all our reconstructions a finer discretization was used in forward calculations and a
coarser one used for the inverse reconstruction. Additionally, in some of the single-slice
reconstructions the thickness of the slice is less than the thickness of the inhomogeneity and
thus there is further model mismatch in the inverse reconstructions. In the sequel, when we
compare reconstruction accuracy using the full three-dimensional forward model and the single
slice forward model for inverse solutions, we will refer to the former case as F3D (full 3D)
and the latter as 2DS (2D slice).

2.3. Medium optical parameters

The diffuse medium optical parameters for our experiments were selected to simulate human
tissue. Specifically, the background scattering coefficient,µs , was taken as 100 cm−1 and the
mean cosine of the scattering angle as 0.9, resulting in a reduced scattering coefficient,µ′s , of
10 cm−1. The background absorption coefficient was derived from an assumed haemoglobin
concentration of 0.0920 mM and an oxygen saturation of 90%, resulting in an absorption
coefficient of 0.041 cm−1 at a wavelength of 780 nm. The absorption anomaly simulated a
haemoglobin concentration of 0.368 mM and an oxygen saturation of 60%, resulting in an
absorption coefficient of 0.18 cm−1 or 0.139 cm−1 above the background.

2.4. Noise model

We modelled the noise present at each detector as an independent multivariate Gaussian random
variable with separate independent real and imaginary components, zero mean and a standard
deviation relative to the total fluence at the detector. Specifically the noise standard deviation
used in these results was calculated using the formula

γ (i) = φ(i)10−SNR/20 (7)

whereγ (i) is the noise standard deviation for theith source–detector pairing,φ(i) is the
total fluence (incident + scattered) computed at the detector and SNR is the signal-to-noise
ratio in dB. This noise model is based on the assumption that shot noise from the sources is
the dominant source of measurement noise. It is clear from (7) that noise does not have a
constant variance across measurement pairs, and therefore the noise must be ‘whitened’ to fit
the assumptions of the subspace techniques. Whitening was accomplished by weighting the
system by the inverse covariance matrix, expressed mathematically as

DAx = Db, D = diag(γ (i)−1).

2.5. Finite difference frequency domain forward model

A full analysis of a more complete forward model is beyond the scope of this paper. However,
as mentioned earlier, we felt it was of some interest to give an indication of how our results
might change when the forward data were generated by a completely different, and more
physically accurate, numerical technique, but the inverse solutions still used the Born forward
model. To this end we used a standard finite difference frequency domain (FDFD) forward
solution (Saduiku 1992) for the same scenario described above to generate the simulated
measurement data. These data then simply replaced the Born-generated data as input to the
noise model and the inversion algorithms. The FDFD simulation used a 0.25 cm grid size
with a computational volume of 20 cm on a side for theX andY domains and 12.5 cm
for the Z domain. TheX and Y domains were centred on the inhomogeneity. TheZ

domain was aligned so that the computational boundary was aligned with the extrapolated
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boundary position previously described. All of the computational boundaries implemented a
zero Dirichlet boundary condition.

3. Reconstruction algorithms

There are two important characteristics of this inverse problem that reconstruction algorithms
must take into account. First, the 3D linear system model (6) is typically very underdetermined.
Examples we present in this study have 16 detectors and 9 sources, for a total of 144 source–
detectors pairs. Each source–detector pair provides an in-phase and quadrature measurement
at 200 MHz, providing a total of 288 measurements. The number of unknowns (the number
of voxels) is as large as 2156, and thus we have up to seven times as many unknowns as
measurements. Second, this inverse problem in its continuous form is ill-posed. The absorption
coefficients do not vary smoothly with the data, resulting in an ill-conditioned forward operator
A. This is typical of integral operators with smoothing kernels (Hansen 1998). Therefore the
solution must be regularized if it is not to be dominated by reconstruction noise.

3.1. Algebraic techniques

The types of algorithms we examined for solving the linear system (6) fall into two classes,
algebraic techniques and subspace techniques. Members of the first class solve (6) by projecting
an estimate of the solution onto the hyperplanes represented by rows of the linear system.
Included in this class are ART and SIRT (Kak and Slaney 1988). ART sequentially projects a
solution estimate onto hyperplanes defined by the individual rows of the linear system. This
projection becomes the estimate of the solution for the next iteration. This can be expressed
mathematically as

x̂j+1 = x̂j +w
bi − ai x̂j

aiaT
i

aT
i j = 0, 1, . . . i = (jmod2m) + 1

wherex̂j is thej th estimate of the object function,ai is the ith row of the 2m × n matrix
Ã, andbi is the ith measurement.w is a relaxation parameter that adjusts the step size of
each iteration. SIRT is implemented in a similar manner except that instead of projecting the
estimate onto each row in turn, the component vector that would be projected out is averaged
over all rows and then subtracted from the original estimate. Mathematically this is written as

x̂j+1 = x̂j +w
1

2m

2m∑
i=1

bi − ai x̂j
aiaT

i

aT
i .

SIRT has generally been observed to generate smoother reconstructions of the object function
due to the averaging over a number of projections, at a cost of slower convergence. For
underdetermined systems, such as the one we are considering, algebraic techniques will
converge to a point on the hyperplane satisfying the linear system that is nearest to the
initial guess (Kak and Slaney 1988). Regularization is accomplished by limiting the number
of iterations in both algebraic techniques. The choice of how many iterations to perform
is a difficult topic for these methods; here we avoided the problem by choosing the best
regularization (optimal truncation) using prior knowledge of the true solution to compute a
performance measure of interest and thus select the optimal truncation parameter.

The problem of selecting an optimal relaxation parameter is still a topic of investigation
and well beyond the scope of this paper (van der Sluis and van der Vorst 1990). In order to
study this parameter choice in the context of this paper, we examined numerical simulation
results over a wide range of SNRs, relaxation parameters and error measures, as described
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below. For SIRT, we observed that relaxation parameters over the entire available range do not
appreciably alter the best performance metrics achieved. Rather, the rate (number of iterations)
at which the best performance measure is achieved varies, so that there is an interaction between
relaxation parameter and optimal number of iterations. For ART, at low SNR we observed
a small improvement in the best performance when we used a small relaxation parameter
(w = 0.25, as compared with the best performance achieved withw = 1). At higher SNR
a relaxation parameter closer to 1 provided the best performance. Again we observed an
interaction between relaxation parameter and optimum number of iterations. In no case did we
observe any behaviour of the algebraic algorithms over this range of relaxation parameters that
would change the basic conclusions we draw from our comparisons. Thus, since we were not
able to find a reliable automatic method to choose the optimal value, and since we are already
manually choosing the true optimal truncation parameter for these methods, we simply used a
relaxation parameter of 1 for all of the comparisons reported below.

3.2. Subspace techniques

The first subspace technique that we examined was the TSVD algorithm. This algorithm is
derived from the singular value decomposition (SVD) of the 2m×n stacked system matrix̃A.
The SVD of the system matrix is given by

Ã = UΣVT, U ∈ R2m×2m, Σ ∈ R2m×n, V ∈ Rn×n
whereU andV are orthonormal matrices andΣ is a diagonal matrix with valuesΣi,i = σi > 0.
Theσi are known as the singular values ofÃ and the decomposition is written such that

σ1 > σ2 > · · · > σr σr+1, σr+2, . . . , σmin(m,n) = 0

wherer is the rank of̃A. Poorly conditioned matrices such as the ones resulting from discretized
ill-posed problems have a very wide range of singular values. This ill-posedness is evident in
the singular value spectrum of a typical DOT forward matrix, shown in figure 3, which displays
a range of seven orders of magnitude in the singular values. The TSVD algorithm computes
the reconstruction by using only the largestt non-zero singular values and singular vectors to
approximately solvẽAx = b. Mathematically this can be written as

x̂ = VtΣ−1
t UT

t b

whereVt andUt are the firstt columns ofV andU respectively, andΣ−1
t is the inverse of

the square diagonal submatrix of the largestt singular values. The valuet , the truncation
parameter, controls the amount of regularization in the inverse. More information on the SVD
and TSVD can be found in Golub and Van Loan (1989) and Hansen (1998). In this context
we note that in figure 3 there is no useful gap in the spectrum that might indicate an obvious
choice of a good low-rank model. Truncating at the small jump in the plot of singular values
around index 70 did not produce good reconstructions.

The TCG algorithm is derived from the conjugate gradient algorithm in a similar manner to
the way TSVD follows from the SVD. The conjugate gradient algorithm is an iterative technique
to solve a symmetric positive definite linear system of equations. For ill-conditioned systems
we can regularize by stopping, or truncating, the iterations before we reach full convergence
(Hansen 1998). Thus for TCG the number of iterations computed controls the amount of
regularization. For most measurement geometries the system matrixÃ is not symmetric
positive definite, a requirement for the conjugate gradient algorithm to be guaranteed to find
a solution. However, we can apply the conjugate gradient technique to the normal equations
given by

ÃTÃx = ÃTb.
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Figure 3. Singular value spectrum of a typical forward DOT forward matrix.

Table 1. Conjugate gradient algorithm for the normal equations. Note that the normal equations
are not computed explicitly. Rather the necessary matrix vector product is first computed and then
the transposed matrix is right multiplied by the resulting vector for each instance where the normal
equations are needed.

bp = ÃTb; d = r = bp; δ = r T · r ; δ0 = δ; x̂ = 0;
for j = 1:niter

q = ÃT(Ãd)
α = δ/(dT · q)
x̂ = x̂ + αd
r = r − αq
δ0 = δ
δ = r T · r
d = r + δ

δ0
d

end

For computational reasons we do this without explicitly computing the normal equations, as
given in table 1 (derived from Shewchuck’s (1994) implementation).

3.3. Regularization parameter selection

With any regularization technique, one of the primary issues is the selection of the parameter
that controls the trade-off between fidelity to the data and some constraint on the result. There
is a large variety of methods available, divided betweena priori methods which use prior
knowledge about the solution, the noise or both, anda posteriorimethods which use only
the measurements and forward model. For the subspace techniques we use a well-known
a posteriorimethod, the L-curve technique (Hansen 1998), which for subspace methods graphs
the log of the 2-norm of the residual versus the log of the 2-norm of the estimate while varying
the regularization parameter. Thus the regularization parameter itself is represented only
parametrically in this graph. An example of an L-curve generated from a TCG reconstruction
at a signal-to-noise ratio of 20 dB is shown in figure 4. We generated this graph by plotting the
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Figure 4. L-curve for a TCG reconstruction at a signal-to-noise ratio of 20 dB. The diamond at
the corner of the graph identifies the point that was selected as the corner of the L-curve.

residual norm and reconstruction norm over 300 iterations of the algorithm. The ‘corner’ of
the resulting curve is taken as a good choice of regularization parameter because it identifies
a point at which there is a balance between increase in the residual norm and increase in the
solution norm. The diamond drawn on the graph shows the point we manually selected as the
L-curve corner, which corresponded to 12 iterations.

As mentioned earlier, for the algebraic techniquesa posteriorimethods such as the L-curve
do not work well because standard measures of error such as the residual error or solution norm
do not change monotonically as we iterate, so we simply present the best possible result for
these methods.

4. Results and observations

In this section we present results and observations of applying the four reconstruction
techniques described in section 3 to the simulation scenario described in section 2. Example
reconstructions are shown first to present a qualitative idea of the reconstruction performance
of each of the methods. Following this, we report quantitative performance measures for
a range of signal-to-noise ratios. Finally, we illustrate the sensitivity of the reconstruction
performance to the selection of regularization parameter.

4.1. Example reconstructions

Figure 5 shows a set of images of the reconstructed absorption coefficient in a single vertical
(X–Z) plane through the centre of the object (Y = 3 cm) at a signal-to-noise ratio of 20 dB. The
true object is shown in figure 2(a). The F3D model was used for the inversion with a 0.5 cm grid
in all dimensions. Comparing the true absorption image with the reconstructions, it is evident
that all of the reconstructions show a roughly correct image of the object and that all of the
reconstruction techniques underestimate the depth and amplitude of the object. Note that the
scale for the reconstructed images is less than that for the true absorption function. Figure 5(a)
is the reconstruction using a single iteration of ART (i.e. one iteration cycle through all 288 rows
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Figure 5. Reconstruction examples for all four reconstruction techniques at a 20 dB SNR. Each
image shows a vertical plane through the centre of the absorption anomaly (Y = 3 cm): (a) is
the ART algorithm result using one iteration, (b) is the SIRT algorithm result using 26 iterations,
(c) is the TSVD algorithm result using 56 singular values and (d) is the TCG algorithm using
12 iterations.

of the system matrix). An object centred approximately atX = 1.5 cm andZ = −1.75 cm with
an amplitude of around 0.04 cm−1 is visible. The object does not appear to have the same area
as the true absorption function nor does the reconstruction extend as deep. Figure 5(b) shows
a reconstruction using the SIRT algorithm with 26 iterations. Qualitatively this reconstruction
appears very similar to the ART reconstruction.

Figure 5(c) shows a reconstruction using the TSVD algorithm employing 56 singular
values. This reconstruction clearly produces a larger-amplitude absorption coefficient than
the algebraic techniques. Additionally, the object centre appears at about 2 cm depth, about
0.25 cm deeper than the algebraic techniques. Thus in both aspects, amplitude and position, it
is closer to the true absorption function. Figure 5(d) displays the reconstruction for the TCG
technique using 12 iterations, which is qualitatively very similar to the TSVD reconstruction.
In comparing the algebraic and subspace methods we reiterate that for the subspace techniques
the number of iterations or singular values was chosen by manually identifying the corner of
the L-curve without using knowledge of the true solution, while for the algebraic techniques
we chose the best solutionafter comparing to the true solution.
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Figure 6. 2DS reconstruction with (a) 2.0 cm thick voxels and (b) 0.5 cm thick voxels at a SNR
of 20 dB. Both reconstruction were generated using the TCG algorithm. The 2.0 cm thick voxels
used 7 iterations. The 0.5 cm voxels used 2 iterations. Unlike the reconstruction shown in figure 5
these reconstructions are shown in a X-Y plane.

Figure 6 shows a pair of 2DS reconstructions using the TCG algorithm, again at an SNR of
20 dB. Figure 6(a) was generated using a 2.0 cm width reconstruction plane with the number
of iterations again chosen by the L-curve method. Figure 6(b) was generated using a 0.5 cm
width reconstruction plane whichunderestimatesthe true width of the object. For the 0.5 cm
width reconstruction plane the L-curve did not provide useful information on selecting the
regularization parameter; this is an indication that the large amount of error in the model will
make regularization difficult. Therefore for this case we selected the number of iterations
that minimized the actual mean square error. For both cases the centre of the reconstruction
was the true centre of the absorption anomaly. We note that the 2DS reconstruction shown
is reasonably accurate in the first case but significantly overestimates the object size in the
second case.

4.2. Performance measures

As noted in section 1, a secondary objective of this work was to compare several error measures.
We considered the standard mean square reconstruction error over the entire volume, but also
devised measures designed to quantify the position and amplitude of the reconstructed object
directly. More precisely, we used the following three error measures:

(a) Mean squared error (MSE). The first performance measure we evaluated was mean square
error, given by the expression

MSE= meani∈V ((µtrue
a (i)− µest

a (i))
2).

(b) Object centroid error (OCE). We evaluated the error in the estimated position of the
reconstructed object relative to the true position of the absorption anomaly. Specifically,
we set an ‘object threshold’ at 50% of the maximum amplitude in the reconstruction. We
considered the largest amplitude voxel as an initial ‘detected object’, and then iteratively
built up a larger ‘detected object’ by including in the object any neighbour of a current
‘object voxel’ whose amplitude was above the threshold. The search finished when there
were no more voxels which were neighbours of voxels classified as object voxels whose
amplitude was above the threshold. Once the object was detected, we computed its centroid
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Figure 7. MSE for the F3D reconstructions. (a) The 0.5 cm vertical cell size reconstruction.
(b) The 2.0 cm vertical cell size reconstruction. Data points are means over 10 realizations and
error bars show±1 SD over the realizations. See text for details.

as the weighted average of the position of the object voxels, with the amplitude of these
voxels as the weights.

(c) Amplitude error (AE). The third performance measure we calculated measured the peak
amplitude error of the reconstructed absorption coefficient over the known position of the
object. We simply calculated the difference between the maximum value of the true object
and the maximum value of the reconstructed object over the support of the true object.
We note that in general for all the reconstruction methods we considered, the amplitude of
all voxels generally increases with decreasing regularization, so for AE we always used
the regularization parameter which minimized the MSE.

We used these three error measures, MSE, OCE and AE, to quantitatively compare
reconstruction techniques as a function of SNR. SNR was varied, and at each SNR we computed
reconstruction estimates for 10 independent realizations of the additive noise. We then
averaged the value of each performance measure over the realizations for each reconstruction
method. As above, for the algebraic techniques the regularization parameters were selected
by finding the minimum MSE reconstruction for the given SNR. With the subspace techniques
the regularization parameter was selected using the L-curve whenever the L-curve method
proved useful. There was one case (the 0.5 cm width 2DS reconstructions) where the
L-curve did not provide useful information even for the subspace techniques, as described
below.

Figure 7 shows the graphs of the MSE versus SNR for all four F3D reconstruction
techniques with 7(a) showing the 0.5 cm grid discretization and 7(b) showing the 2.0 cm
discretization in the vertical direction. Each curve in the figure shows the mean value of the
MSE over the 10 realizations for a specific reconstruction algorithm. The error bars show the
standard deviation over the realizations. With a 0.5 cm grid reconstruction the two subspace
techniques outperformed the two algebraic techniques, with TCG slightly outperforming
TSVD, over the whole range of signal-to-noise ratios. ART shows a marked degradation
in performance below 30 dB SNR. A MSE value for ART at a 10 dB signal-to-noise ratio
was computed but was significantly outside the range of the graph. In the 2.0 cm case the
subspace methods outperformed the algebraic methods except at high SNR (>30 dB) where
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Figure 8. MSE for the 2DS reconstructions. (a) The 0.5 cm vertical cell size reconstruction.
(b) The 2.0 cm vertical cell size reconstruction. Data points are means over 10 realizations and
error bars show±1 SD over the realizations. See text for details.

(a) (b)

Figure 9. (a) OCE for a F3D reconstruction with a 0.5 cm vertical step size. (b) OCE for 2.0 cm
thick planar reconstruction.

ART provided the same performance as TCG. At lower signal-to-noise ratios the disparity
between the best algebraic method (SIRT) and the worst subspace method was even greater
than for the 0.5 cm vertical cell size case. It is also interesting to note that above 40 dB
signal-to-noise ratio there is no improvement in the MSE with higher SNR for this case.

Figure 8 shows the MSE curves for the equivalent 2DS reconstructions. Note that the
vertical scale of these graphs is 10 times larger than for the previous two graphs. Comparing
2DS and F3D results, we see that the MSE of the 2DS reconstructions is much larger than that
of the F3D reconstructions. A curious result of the 2DS reconstructions is the lack of change
in MSE of the subspace techniques with change in SNR. At present we do not have a good
understanding of this phenomenon.

Figure 9(a) shows the OCE for the four reconstruction techniques for an F3D with a
0.5 cm vertical step size and figure 9(b) shows the equivalent result for the 2.0 cm 2DS
reconstruction. As with the MSE error measure, the 0.5 cm vertical step size provided the
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Figure 10. (a) AE for the F3D 0.5 cm step size reconstruction. (b) AE for the 2.0 cm 2DS
reconstruction. Note that for the 2DS case the curve for ART is off the scale of the graph.

best performance for F3D reconstructions and a 2.0 cm vertical step size provided the best
performance for 2DS reconstructions. For this reason, from here on we present only these
two cases. The results are generally similar to those of the MSE curves. Specifically, the
two subspace techniques outperform the algebraic techniques over the whole range of SNRs
and the OCE for the algebraic techniques degrades significantly below 30 dB SNR. The mean
of the planar reconstruction is lower than for the full three-dimensional reconstruction. We
note, however, that the planar reconstruction useda priori information for the depth dimension,
which is the largest component of positional error in the F3D reconstruction. Also, the standard
deviations of the algebraic 2DS reconstructions were very large.

Figure 10(a) shows the AE performance for the F3D 0.5 cm reconstruction while
figure 10(b) shows the AE for the 2.0 cm 2DS reconstruction. As with the previous measures,
the subspace techniques outperform the algebraic techniques over the range of SNRs evaluated.
ART at 10 dB SNR for the F3D reconstruction appears to have a significant increase in
performance, but upon examination of the reconstructions we found that this was just due
to spurious noise in the region of the absorption object. In other words, despite the low
value of the AE measure, there was very little resemblance between the true object absorption
function and those generated by ART at a 10 dB signal-to-noise ratio, as indicated by the MSE
curves in figure 7(a).

4.3. Regularization parameter sensitivity

Although we computed an L-curve for all of the reconstruction algorithms and scenarios,
we found that the L-curve only identified a useful truncation parameter for the subspace
techniques. Because the algebraic techniques do not monotonically reduce the residual error as
the iterations progress, the L-curve graphs for ART and SIRT generally had multiple corners.
We did, however, use the L-curve for selecting the regularization parameter for the two subspace
techniques for the F3D reconstructions. For these techniques we can study how well the corner
of the L-curve identified the ‘best’ regularization parameter. To illustrate this comparison, for
the two subspace techniques we graphed the MSE versus the regularization parameter over a
range of SNRs for the F3D cases. The results are shown in figure 11. For all cases it can be
seen that the L-curve performed well at identifying a regularization parameter that was close
to optimum in terms of minimizing the MSE.
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Figure 11. Regularization parameter sensitivity for the two subspace reconstruction techniques
over a range of SNRs. One MSE curve is shown for each SNR. The diamond on each curve displays
the regularization parameter we chose (without knowledge of the MSE curve) by simply manually
selecting the corner of the L-curve. (a) The results from the TSVD algorithm. (b) The results from
the TCG algorithm.
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Figure 12. Regularization parameter sensitivity for the two algebraic reconstruction techniques
over a range of SNRs. One MSE curve is shown for each SNR. (a) The results from the ART
algorithm, the 10 and 20 dB curves are out of the range of the plot. (b) Results from the SIRT
algorithm.

As a comparison of the regularization sensitivity for the algebraic techniques we show a
plot of the MSE versus regularization parameter in figure 12. From these plots we can see
that at low SNRs the algebraic techniques are very sensitive to the regularization parameter
and show a dramatic change in MSE with truncation parameter. At high SNRs the opposite
behaviour is evident.

4.4. FDFD forward model results

As described above, we also generated data with a FDFD forward model to feed into our
comparison of inversion algorithms. We performed an F3D 0.5 cm reconstruction using all
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Figure 13. F3D, 0.5 cm vertical cell size performance with simulated data generated using a FDFD
forward model. (a) The MSE for the four reconstruction algorithms versus SNR. (b) OCE error
for these cases. The standard deviation bars for ART in the OCE plot are removed because they
were large enough to obscure the other algorithms.

four algorithms over the range of SNRs previously described. Results are shown for MSE and
OCE error in figure 13. At low SNRs (below 40 dB) we observe performance similar to that
displayed when a first Born forward model was used to generate the simulated forward data.
At higher SNRs the performance of all of the algorithms levels off at a higher error than with
the Born generated data, with the subspace algorithms slightly outperforming the algebraic
algorithms.

5. Conclusions and future work

In this paper we have presented a comparison of four of the most commonly used linear
reconstruction techniques for diffuse photon density wave imaging applied to a three-
dimensional reflective geometry reconstruction problem, reconstructing both the full three-
dimensional volume and a single plane within the volume. Our results showed that the
subspace techniques are superior to the algebraic reconstruction techniques in estimating both
the amplitude and the position of an inhomogeneity as well as in the overall fidelity of the
absorption function reconstruction. This was true even when we useda priori knowledge of
the true object function to select the optimal mean squared error regularization parameter for
the algebraic techniques while we used only thea posterioriL-curve to select the regularization
parameter for the subspace techniques.

We have also shown that for the highest level of quantitative accuracy a full three-
dimensional reconstruction is necessary. Additionally, mismatch in the width of a two-
dimensional slab reconstruction can have a significant adverse effect on the quality of the
reconstruction, as is evident in figures 6 and 8.

By using the OCE error measure we identified further differences in performance between
the subspace and algebraic techniques that were not evident with only an MSE performance
measure, particularly at low SNR. This conclusion was supported by direct observation of
the reconstructed images at low SNR. We observed that even though the algebraic methods
gave fairly good MSE performance at low SNR, the images looked nothing like the true
object. The OCE measure identified this for low SNR in the F3D cases. Additionally,
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the large standard deviation of the OCE measure of the algebraic methods, particularly in
the 2DS cases, indicated the poor performance of these techniques. We found that the AE
measure did not prove as useful because it was fooled by spurious noise in the region of the
object.

Through sensitivity studies, we verified that the L-curve is a useful tool in selecting
the regularization parameter for the subspace techniques in the three-dimensional reflective
geometry reconstruction problem, at least when model mismatch is limited to moderate
differences in discretization.

Some preliminary explorations using an FDFD forward model to simulate the noise-free
measured data show that the basic conclusions presented here hold for a linear reconstruction
from a more accurate nonlinear forward model. The primary difference we observed was
reduction of the performance advantage of the subspace techniques at high SNR. At low and
medium SNR we still see a significant performance advantage in the subspace techniques for
the MSE and OCE measures.

In future work we plan to repeat this comparison, still using a Born forward model for the
inverse, with measured experimental data, so that we can explore the effects of increased model
mismatch on the ability of each method to produce quality reconstructions. Another area of
work we will investigate is the development of a scheme with a spatially varying regularization
parameter. Observations of our results indicate that there is a significant decrease in the level
of reconstruction noise with depth. In particular there tends to be significant reconstruction
noise near the surface. Thus a spatially varying regularization parameter might be a way to
take this observation into account to improve the accuracy and reliability of the reconstruction.
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