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ABSTRACT
IMAGING WITH DIFFUSE PHOTON DENSITY WAVES
Maureen A. O’Leary
Arjun G. Yodh

Diffusing photons can be used to probe and characterize optically thick turbid sam-
ples such as paints, foams and human tissue. In this work, we present experiments
which illustrate the properties of diffuse photon density waves. Our observations
demonstrate the manipulation of these waves by adjustment of the photon diffusion
coefficients of adjacent media. The waves are imaged, and are shown to obey simple
relations such as Snell’s Law.

Next we present images of heterogeneous turbid media derived from measurements
of diffuse photon density waves. These images are the first experimental reconstruc-
tions based on frequency-domain optical tomography. We demonstrate images of both
absorbing and scattering homogeneities, and show that this method is sensitive to the
optical properties of a heterogeneity. The algorithm employs a differential measure-
ment scheme which reduces the effect of errors resulting from incorrect estimations
of the background optical properties.

In addition to imaging absorption and scattering changes, we are also able to

image the lifetime and concentration profile of heterogeneous fluorescent media.
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