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Abstract 
 

INVESTIGATING THE TEMPORAL EVOLUTION OF THE CEREBRAL HEMODYNAMIC 
RESPONSE USING DIFFUSE OPTICAL TOMOGRAPHY 

 
The primary goal of this dissertation is to provide evidence to support the hypothesis that near-

infrared optical measurement of brain function relies upon similar neurovascular coupling mechanisms 
and measures the same hemodynamic changes as does functional magnetic resonance imaging.  To test 
this assertion, instrumentation was constructed and methodologies were developed to replicate a 
sequence of rodent experiments in which an electrical stimulus to the forepaw elicited a spatially 
localized hemodynamic response within the somatosensory region of the cerebral cortex.  The 
temporal evolution of this response, previously measured with functional magnetic resonance imaging, 
was then measured using diffuse optical tomography, and the results of both measurements are 
compared and discussed. 
 In order to perform these experiments, a number of technical issues had to be addressed.  
Instrumentation capable of acquiring noninvasive real-time imagery of vascular events within the 
cerebral cortex with minimal temporal distortion had to be designed and tested.  This investigation led 
to the evolution of a series of optical tomographic instruments and the development of a new optical 
source encoding technique, Pulse TDM, which provides for advanced capabilities like individualized 
gain control, while significantly reducing the degree of temporal skew in the optical data. 
 Special surgical and anesthetic techniques which maintained normal cerebral hemodynamic 
activity while providing sufficient analgesia for stereotactic headgear had to be learned and mastered.  
To meet this need, custom surgical, biomonitoring, anesthesia, and stimulus equipment was developed. 
 Although the temporal hemodynamic measurements themselves comprise the core of this 
dissertation, they represent only a small fraction of the work involved in reaching that goal.  To 
emphasize this point, the dissertation includes chapters which discuss topics vital to biophysical 
experimentation, including vascular physiology, electro-optical instrument design, and anesthesia. 
 The ethical implications of experimentation with live subjects is a topic which is often eschewed 
by many researchers in the field of biophysics.  Because this is an important topic, the ethical and legal 
responsibilities involved in animal and human experimentation are discussed in the Appendix. 
 Since some electronic components are common to many DOT instruments, a number of datasheets 
are included in the Appendix as a convenience for the more technically-minded readers.  Likewise, 
complete schematics of the bioinstrumentation developed for these measurements is provided, in an 
effort to assist others in replicating this circuitry for their own research. 
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ua    The absorption coefficient, with units of 1/length 
um, µm   Micron, Micrometer (same) 
US   Ultrasound 
us’    The reduced scattering coefficient, with units of 1/length 
UV   Ultraviolet 
VAC  Volts of Alternating Current 
VDC  Volts of Direct Current 
VGA  Variable Gain Amplifier 
VHF  Very High Frequency (a band extending from 30MHz to 300MHz) 
VIC  (Anesthetic) Vaporizer-Inside-Circuit 
VOC  (Anesthetic) Vaporizer-Outside-Circuit 
V-Q  Ventilation-Perfusion (matching) 
W   Watts (for power measurement) 
∆X   The change in “X,” with respect to a previous value 
[x]   The molar concentration of “x,” in units of moles/liter 

 
 



1: Introduction    
 

Diffuse Optical Tomography 
Diffuse optical tomography (DOT) is a noninvasive neuroimaging technique which exploits both the 
spectrally varying absorption and diffuse scattering nature of near-infrared light.  DOT can directly and 
simultaneously measure concentration changes in deoxy-hemoglobin ([Hb]), oxy-hemoglobin 
([HbO2]), and total hemoglobin ([HbT] = [Hb] + [HbO2]) in cortical tissue with excellent temporal 
resolution [1].   
 Other neuroimaging modalities, including functional Magnetic Resonance Imaging [2, 3], Positron 
Emission Tomography (PET) [4], magnetoencephalography (MEG) [5-7] and electroencephalography 
(EEG) [6] are also capable of monitoring neural and/or metabolic activity within the brain, however 
DOT offers a number of important advantages over many of these well-established techniques.  These 
advantages, along with some disadvantages, will be discussed in further detail below.   
 fMRI has led to significant advances in neuroimaging during the last decade.  It allows near real-
time observation of the hemodynamic response to neuronal activation.  The blood oxygen level 
dependent (BOLD) fMRI signal scales approximately with absolute changes in [Hb], however 
questions still remain about the exact relationship between the BOLD signal and the vascular response.  
Likewise the coupling between neural activity and the vascular response itself is poorly understood.  
Since MRI and DOT are based upon different fundamental principles, cross-validation can help us to 
better understand both the neurophysiology behind cortical activation and the biophysics behind the 
measurement techniques themselves.  
 Others have observed qualitative correspondence between the fMRI BOLD signal and diffuse 
optical measures of [Hb] and [HbO2] in humans, however to date there has been no quantitative 
examination of the temporal correlation between fMRI and DOT.  Prior measurements have revealed 
much about the time course and spatial extent of cerebral blood volume and BOLD signals following 
median nerve stimulation in a rodent model.  Since this preparation has been well characterized with 
fMRI, it was chosen as a convenient model to cross-validate fMRI and DOT.  Therefore the primary 
objective of the research presented in this dissertation will be to quantitatively examine the temporal 
correlation between fMRI and DOT measurements of the cerebral hemodynamic response.  To this 
end, measurements of the temporal evolution of the hemodynamic response to electrical forepaw 
stimulation in rat somatosensory cortex with fMRI and DOT will be compared and discussed.   

Spatial and temporal resolution of current neuroimaging techniques 
The temporal and spatial performance of four neuroimaging techniques is depicted in Figure 1.1 [8].   
MEG provides excellent temporal resolution but only modest spatial resolution [7].  fMRI offers better 
spatial resolution than DOT, however decreasing MRI voxel size significantly reduces the contrast-to-
noise ratio of the measurements.  This necessitates the averaging of multiple trials to provide useable 
images.  DOT can provide excellent temporal response, however its spatial resolution is limited by the 
diffuse nature of scattered light, which must travel through the scalp and skull twice before being 
detected.  Since PET measurements entail the injection of a short-lived radionuclide and the 
monitoring of its subsequent nuclear decay, its temporal response is on the order of many minutes, 
which is inadequate for capturing cerebral metabolic activity in real-time. 
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Figure 1.1.  A notional diagram comparing the spatial and temporal performance of four 
minimally invasive neuroimaging techniques.  The diagonal “chamfers” represent the 
improvement in spatial resolution with increased measurement time, a feature of all four 
modalities.  MEG can provide excellent temporal resolution, but only modest spatial resolution.  
fMRI offers better spatial resolution than DOT, but this comes with a cost of only modest 
temporal response.  DOT can provide excellent temporal response, perhaps rivaling MEG, 
however its spatial resolution is limited by the diffuse nature of scattered light in tissue [8].  PET 
can monitor cerebral metabolic activity with spatial resolution comparable to DOT, however 
each measurement requires about 10 minutes to complete, so real-time monitoring of metabolic 
activity is not possible [4].  

 

Potential disadvantages of MEG and fMRI as neuroimaging tools 
DOT offers a number of important advantages over both MEG and fMRI, both of which involve the 
use of large, heavy, and expensive equipment.  Often, an entire portion of a building must be dedicated 
to these measurements, since elaborate magnetically shielded enclosures must be constructed to both 
shield the equipment from ambient magnetic fluctuations and in certain cases (high-field MRI) to 
protect the outside environment from the emanation of stray magnetic fields.   
 Both require the use of cryogens or mechanical coolers to maintain temperatures low enough to 
sustain superconduction.  Modern fMRI systems employ superconducting magnets to provide the large 
(1.5 to 7 Tesla) static magnetic field to induce proton precession and MEG systems use 
superconducting Josephson junctions to detect very small changes in magnetic field caused by 
electronic and ionic currents within the brain [7]. 
 Both MEG and fMRI also require that the subject remain motionless to within the order of a voxel 
over the duration of the experiment, or else spatial resolution could be severely compromised.  This 
makes both MRI and MEG measurements of uncooperative subjects (animals and infants, for example) 
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nearly impossible without pharmacologic intervention.  Although anesthesia will render a subject 
motionless for many hours, it can also severely affect normal neural function, while making voluntary 
response measurements nearly impossible.  

Potential advantages of DOT over MEG and fMRI for neuroimaging 
DOT systems can be constructed to be physically compact, lightweight, and energy-efficient [9, 10].  
Portable DOT systems can be constructed to conform to just about any environment which is 
compatible with human life.  Since DOT can employ flexible fiberoptic light guides, a modest amount 
of motion can be tolerated during DOT measurements [8, 10].  Monitoring the regional cerebral blood 
volume and oxygenation of infants in the NICU, astronauts in orbit, or technical divers undergoing 
decompression – feats clearly difficult or even impossible with fMRI or MEG – are possible with 
DOT.   
 An important feature of DOT not shared by fMRI or MEG is the capability to rapidly and 
simultaneously measure changes in both local cerebral blood volume (CBV), deoxyhemoglobin 
concentration ([Hb]), and oxyhemoglobin concentration ([HbO2]) within the brain [8, 11].  fMRI can 
measure changes in blood volume, but is only sensitive to absolute changes in deoxyhemoglobin, from 
which blood oxygenation changes must then be inferred [12].  PET can measure the cerebral metabolic 
rate of glucose consumption (CMRglu), the cerebral metabolic rate of oxygen consumption (CMRO2), 
and cerebral blood flow (CBF), however each measurement can take more than 10 minutes to complete 
[4, 13]. 
 Since DOT can provide capabilities unavailable with any other neuroimaging techniques, there is 
significant interest in better understanding the capabilities and limitations of DOT as a neuroimaging 
modality. 

Features of DOT 
DOT is painless, noninvasive, and simple to use.  It can be performed inexpensively and safely on 
nearly any patient at any time, in contrast to other imaging modalities like C-T and MRI.  If the optode 
assemblies are properly designed, patients are afforded more freedom of movement during DOT 
imaging than with either C-T or MRI.  Since DOT equipment can be portable, the DOT system can be 
wheeled to the patient, instead of vice-versa, thus reducing the added risk to the patient. 
 Spectroscopic information about the sample can be obtained in real-time.  This can then be 
processed to yield three-dimensional maps of both blood oxygenation and CBV vs. time.  With DOT, 
exogenous contrast agents are not required, and metabolic information can be monitored continuously, 
unlike with PET. 

Limitations of DOT 
DOT can provide only limited spatial resolution, which decreases with increasing penetration depth.  
This is an unavoidable consequence of the nature of diffusely scattered light:  there is an inexorable 
increase in entropy, and hence a loss in spatial information, as the result of every scattering event 
which occurs inside the tissue.  Although DOT cannot replace either MRI or C-T for obtaining deep 
tissue metabolic and structural information, it will likely serve as an adjunct to such modalities, 
providing details on metabolism and perfusion in human subjects not easily obtained otherwise.  
 Problems with performing accurate DOT include compensating for partial-volume effects and the 
loss in hemodynamic specificity at the sub-millimeter level, possibly due to significant contributions 
from surface vessels [14].   (fMRI has shown that CBF changes remain specific, even down to sub-mm 
functional domains [15]).  
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Uncertainties with fMRI and DOT as neuroimaging tools  
fMRI is currently one of the preferred modalities for neuroimaging because it can provide both 
structural and metabolic information.  Since fMRI and DOT are both believed to monitor brain 
function indirectly through measurements of blood flow and blood oxygenation changes within the 
brain, yet require vastly differing financial investments to construct and operate, it is important to 
explore the relative merits of DOT as a modality for neuroimaging applications.  If fMRI and DOT 
share similar spatial, temporal, chemical, and vascular sensitivities throughout the cerebral cortex, then 
DOT could serve as a simple, safe, and low-cost substitute for fMRI in many neuroimaging 
applications.   

If, on the other hand, fMRI and DOT differ in one or more of these sensitivities, then the 
possibility exists that, to the extent of their orthogonality, both techniques may complement each other, 
thus providing an augmented neuroimaging capability unavailable from each technique used 
independently.   

However, in order to exploit the benefits of either case, the exact nature of how and what each 
modality measures in-vivo must be determined.  Simply combining the data from a new, yet poorly 
understood, modality with that from another well-characterized modality would result in little, if any, 
additional knowledge.   

fMRI appears to be uniformly sensitive to blood flow and oxygenation changes within the volume 
of the brain, except in the regions surrounding large blood vessels [12].  Although the mechanisms 
underlying the use of superparamagnetic contrast agents to monitor changes in Cerebral Blood Volume 
(CBV), or more correctly, Cerebral Plasma Volume (CPV) are well understood [12, 16, 17], evidence 
for the origin of the Blood Oxygen Level Dependent (BOLD) signal is still not conclusive [12].  It is 
believed to result from the metabolic reduction of slightly diamagnetic oxyhemoglobin (HbO2) to form 
weakly paramagnetic deoxyhemoglobin (Hb).  The Hb then perturbs the local magnetic environment, 
thus generating the BOLD signal.  As a result, the carrier to noise ratio of the CBV measurement is 
proportional to the fractional change in CBV, while the carrier to noise ratio of the BOLD signal is 
proportional to the absolute change in [Hb] [12]. 

DOT, on the other hand, shows greater sensitivity to flow and oxygenation changes in vessels 
closer to the cortical surface [14, 18], although the sensitivity near large vessels may actually be 
reduced [18].  This follows from the volume weighting function for DOT, illustrated by Figures 1.1 
and 2.2, which show proportionally greater sensitivity to blood volume and oxygenation changes 
occurring nearer to the optodes and within the “banana.”  The light transiting larger vessels may be so 
strongly absorbed that, despite the large modulation depth imposed by the high blood volume fraction, 
the amount of light actually reaching the sensing optode may fall below the detector noise floor and 
thus be missed [18]. 

Research objectives and issues to be addressed within this dissertation 
This dissertation will attempt to answer some of these questions by comparing DOT and fMRI 
measurements of the temporal evolution of the cerebral hemodynamic response.   
 Many researchers have observed qualitative spatial [19-21] and temporal [22] correspondence 
between the fMRI BOLD signal and diffuse optical measures of deoxyhemoglobin concentration 
([Hb]) and oxyhemoglobin concentration ([HbO2]) in humans.  However to date there has been no 
quantitative examination of the temporal correlation between fMRI and DOT in similar preparations.  
The observation that the rise in Cerebral Blood Flow (CBF) in upper cortical layers preceded the rise 
in lower layers [23] suggests that differences in the volume weighting functions between fMRI and 
DOT may be revealed through comparison of temporal measurements of the cerebral hemodynamic 
response by both modalities.   
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 Previous measurements of rat somatosensory cortex have revealed much about the time course and 
spatial extent of CPV and BOLD signals following median nerve stimulation in a rodent model [12, 
16, 17, 24-27].    
 Since the rodent forepaw stimulation preparation has been well characterized with fMRI, and due 
to its geometry, would afford a similar spatial matching in voxel size between fMRI and DOT, it was 
chosen as a convenient model to cross-validate fMRI and DOT.  Thus the principal objective of this 
dissertation will be to quantitatively compare the temporal evolution of the cerebral hemodynamic 
response as measured with fMRI and DOT using the rodent preparation, and to use these 
measurements to better understand both the matching of sensitivities between fMRI and DOT and to 
learn more about the origin and nature of the cerebral hemodynamic response.   
 Researchers using other optical imaging modalities have observed an amplitude dependence of the 
vascular response on stimulation parameters such as the pulse frequency and stimulus duration [28].  
This is likely a fruitful topic that is relatively easy to explore with our preparation, so the effects of 
stimulus repetition rate, duration, and magnitude will also be investigated, both to determine the 
robustness of this preparation and to further explore the physiology underlying the neurovascular 
response.  
 Preparing for these rodent measurements required a significant hardware development effort.  
New, faster DOT systems capable of recording at frame rates sufficient to capture the temporal 
features of the hemodynamic response were required.  Anesthesia and biomonitoring instrumentation 
with performance superior to that available commercially was developed in order to maintain 
hemodynamic stability during these experiments.  Hence the secondary objective of this dissertation 
will be to discuss the development of the diffuse optical and biomedical instrumentation specifically 
designed for in-vivo DOT measurements.   

Chapter summary 
 The first five chapters of this dissertation were written to both educate the reader in preparation for 
the discussion of the experimental results presented in Chapter 6, and to explore the evolution of DOT 
instrumentation which ultimately enabled spatially resolved measurements at frame rates fast enough 
to examine the temporal features of the hemodynamic response.  Chapter 7 summarizes the many 
conclusions drawn and lessons learned throughout this dissertation, and the Appendix contains 
supplementary information relevant to a number of topics which may also interest the reader. 
Introduction 
 Diffuse optical tomography is based upon the diffusive transport of light in tissue, so the 
principles behind DOT, and the unique nature of diffuse imaging, are briefly covered in the 
Introduction.  In order to compare DOT with other neuroimaging techniques, the principles behind 
other metabolic and neuroimaging modalities, including functional magnetic resonance imaging 
(fMRI) in particular, are also presented.  The relative merits of fMRI and DOT are mentioned, with 
emphasis on their similarities as neuroimaging tools.  Prior research citations are then used to reveal 
the current level of uncertainty concerning the temporal, vascular, and spatial sensitivities of both 
modalities, which leads to the specific questions which motivated the pursuit of this dissertation.   

Chapter 2 
 The concept of diffuse imaging is introduced in Chapter 2 , and the basic principles of CW, RF, 
and time-domain instrumentation are all discussed.  Chapter 2 begins by introducing the reader to the 
basic optical principles behind optical imaging, and then discusses light propagation and scattering in 
turbid media.  Issues such as the pathlength correction factor and scattering anisotropy are also 
covered.  Distinctions are made between how ballistic, “snake,” and diffusely scattered light are best 
modeled.  The relative merits and disadvantages of both ballistic and diffuse imaging are also 
explored.   

5 

 



Since the quality of DOT image reconstruction is a direct function of the accuracy with which 
diffusive light transport through the medium is modeled, Chapter 2 presents a number of optical 
transport and scattering models for light propagation through scattering media.  Multiple scattering 
models are then discussed, and the concepts behind the basic diffusion theory are introduced.   Since 
the DOT measurements discussed in this dissertation were all performed in living tissue, the many 
sources of optical absorption and scattering in biological tissues are then presented, and the important 
distinction between static and dynamic absorbers and scatterers is made. 

DOT image reconstruction is then discussed at an overview level.  The theoretical and numerical 
techniques involved in reconstructing images from raw optical measurements are reviewed.  Both the 
forward and inverse problems are explained, and a number of common algorithms are discussed.  The 
complexities introduced by the Ill-posed and underdetermined nature of the matrices involved in DOT 
image reconstruction are explained, and the concept of regularization is then discussed. 

Chapter 3 
  In order to draw meaningful conclusions from diffuse optical measurements of brain function, the 
physiology behind neurovascular coupling and the cerebral hemodynamic response must be 
understood, so Chapter 3 provides a comprehensive introduction to vascular and metabolic physiology, 
with specific emphasis on circulation and the mechanisms underlying the hemodynamic response.  
Since metabolic activity generates both desirable and undesirable hemodynamic changes, Chapter 3 
also addresses the issue of biogenic interference and presents some of the ways in which its effects can 
be mitigated. 

Chapter 4 
 Before useful DOT measurements can be made, instrumentation capable of acquiring noninvasive 
real-time imagery of vascular events within the cerebral cortex with minimal temporal distortion had to 
be designed and tested.  Many of the issues involved in the design and development of DOT 
instrumentation are covered in Chapter 4.  An investigation into better methods of source encoding led 
to the development of a new optical encoding technique, Pulse-TDM, which allows for advanced 
capabilities like individualized gain control while providing very high dynamic range and minimal 
temporal skew in the optical imagery.   
 Chapter 4 also covers the design and construction of a variety of DOT instruments, ranging in 
evolution from the first tomographic system we constructed to the flexible high-speed DOT system 
used to perform the temporal hemodynamic response measurements discussed in Chapter 6 and still in 
use today.  The history behind their development, plus the results of in-vivo performance evaluations 
and laboratory measurements used to characterize some of these instruments are also included in 
Chapter 6. 

Chapter 5 
 Since custom surgical, biomonitoring, anesthesia, and stimulus equipment was required in order to 
perform the rodent DOT measurements, the design and development of the equipment necessary for 
performing in-vivo measurements of brain function in rodents are all discussed in detail in Chapter 5.  
Although the DOT measurements themselves are noninvasive, the need for tight metabolic monitoring 
and control over an uncooperative subject (a rat) necessitated the use of both stereotactic restraint and 
invasive procedures to obtain vascular access, so both sedation and analgesia were required.  Surgical 
and anesthetic techniques that preserved normal cerebral hemodynamic function while providing 
analgesia sufficient for the use of stereotactic headgear are described.   

Chapter 5 begins by discussing the pharmacology, physics and physiology behind anesthesia, 
followed by the design, assembly and testing of a custom anesthesia/ventilator system suitable for 
rodents and other small animals.  Since monitoring the physiologic status of the subjects is critical to 
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both managing anesthesia and maintaining hemodynamic stability, the topic of biomonitoring is 
discussed, followed by the design and development of a rodent biomonitoring system.   

This rodent preparation employed forepaw stimulation to generate a reproducible cerebral 
hemodynamic response in a localized region of the somatosensory cortex, so the issues involved in 
delivering stable and repeatable electrical stimuli over long periods of time are addressed, followed by 
the design and construction of a galvanically isolated forepaw stimulator.  Complete schematics of the 
bioinstrumentation are provided to encourage future investigators to replicate this circuitry for their 
own research. 

Chapter 6 
 Once all of the DOT, anesthesia, biomonitoring, and stimulus equipment has been constructed and 
tested, quantitative DOT measurements could then be performed and analyzed.  Since much 
experience was gained from forepaw stimulation measurements performed on earlier DOT systems, 
Chapter 6 begins by presenting forepaw stimulation data collected using our original DOT instrument: 
CW1.  This work is then followed by a detailed description of the temporal hemodynamic response 
measurements performed with CW4, a faster and more flexible frequency-encoded DOT system.  The 
imagery and temporal data are presented and the mechanisms believed to be responsible for the 
temporal features visible in the data are discussed and compared to similar forepaw measurements 
collected with functional MRI.  The effects of stimulus repetition rate, duration, and magnitude were 
examined in an effort to determine the robustness of the rodent forepaw stimulus preparation and to 
further understand the physiology underlying the neurovascular response. 

Chapter 7 
 Chapter 7 summarizes the many conclusions drawn and lessons learned throughout the body of 
this dissertation.  The hardware section covers topics related to optical source and detector selection, 
source encoding, anesthesia, biomonitoring, and stimulation.  The experimental section then presents 
conclusions drawn from the rodent somatosensory cortical measurements, including observations 
concerning the effects of variations in forepaw stimulus current and stimulation frequency.  

Appendix 
 The Appendix includes information that is important, yet not sufficiently salient to the main 
topics, to be included in the body of the dissertation.  The ethical implications of experimentation with 
live subjects are a topic that is often eschewed by many researchers in the field of biophysics.  Because 
this is an important topic, the ethical and legal responsibilities involved in animal and human 
experimentation are discussed here.  Datasheets for many of the optical sources, detectors, and sensors 
used to construct the DOT instrumentation discussed above are also included for convenience, should 
the reader wish to refer to these for more information. 
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