J Magn Reson. 2014 May;242:197-202 doi: 10.1016/j.jmr.2014.02.025. 2014 Mar 12.

Chirped CPMG for well-logging NMR applications

Casabianca LB, Mohr D, Mandal S, Song YQ, Frydman L.

Abstract

In NMR well-logging, the measurement apparatus typically consists of a permanent magnet which is inserted into a bore, and the sample is the rock surrounding the borehole. When compared to the conditions of standard NMR experiments, this application is thus challenged by relatively weak and invariably inhomogeneous B0 and B1 fields. Chemical shift information is not generally obtained in these measurements. Instead, diffusivity, porosity and permeability information is collected from multi-echo decay measurements - most often using a Carr-Purcell Meiboom-Gill (CPMG) pulse sequence to enhance the experiment's limited sensitivity. In this work, we explore the consequences of replacing the hard square pulses used in a typical CPMG sequence with chirped pulses sweeping a range of frequencies. The greater bandwidths that for a maximum B1 level can be excited by chirped pulses translates into marked expansion of the detection volume, and thus significant signal-to-noise improvements when compared to standard CPMG acquisitions using hard pulses. This improvement, usually amounting to signal enhancements ⩾3, can be used to reduce the experimental time of NMR well-logging measurements, for measuring T2 even when B0 and B1 inhomogenieties complicate the measurements, and opening new opportunities in the determination of diffusional properties.

PMID: 24674888