J Biomed Sci. 2016;23(1):21 doi: 10.1186/s12929-016-0239-2. 2016 Feb 03.

Amphetamine manipulates monoamine oxidase-A level and behavior using theranostic aptamers of transcription factors AP-1/NF-kB

Liu CH, Ren J, Liu PK.

Abstract

BACKGROUND: Monoamine oxidase (MAO) enzymes play a critical role in controlling the catabolism of monoamine neurotransmitters and biogenic trace amines and behavior in humans. However, the mechanisms that regulate MAO are unclear. Several transcription factor proteins are proposed to modulate the transcription of MAO gene, but evidence supporting these hypotheses is controversial. We aimed to investigate the mechanism of gene transcription regulator proteins on amphetamine-induced behavior. We applied aptamers containing a DNA binding sequence, as well as a random sequence (without target) to study the modulation of amphetamine-induced MAO levels and hyperactivity in living mice.
METHODS: We pretreated in adult male C57black6 mice (Taconic Farm, Germantown, NY) (n ≥ 3 litters at a time), 2 to 3 months of age (23 ± 2 gm body weight) with double-stranded (ds) DNA aptamers with sequence specific to activator protein-1 (5ECdsAP1), nuclear factor-kappa beta (5ECdsNF-kB), special protein-1 (5ECdsSP-1) or cyclicAMP responsive element binding (5ECdsCreB) protein binding regions, 5ECdsRan [a random sequence without target], single-stranded AP-1 (5ECssAP-1) (8 nmol DNA per kg) or saline (5 μl, intracerebroventricular [icv] injection) control before amphetamine administration (4 mg/kg, i.p.). We then measured and analyzed locomotor activities and the level of MAO-A and MAO-B activity.
RESULTS: In the pathological condition of amphetamine exposure, we showed here that pretreatment with 5ECdsAP1 and 5ECdsNF-kB reversed the decrease of MAO-A activity (p  CONCLUSION: Our data lead us to conclude that elevation of AP-1 or NF-kB indirectly decreases MAO-A protein levels which, in turn, diminishes MAO-A ability in the VTA of the mesolimbic dopaminergic pathway that has been implicated in cells under stress especially in the SN and VTA. This study has implications for design for the treatment of drug exposure and perhaps Parkinson's dementia.

PMID: 26841904