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In vivo MRI-derived measurements of human cerebral cortex thickness

are providing novel insights into normal and abnormal neuroanatomy,

but little is known about their reliability. We investigated how the

reliability of cortical thickness measurements is affected by MRI

instrument-related factors, including scanner field strength, manufac-

turer, upgrade and pulse sequence. Several data processing factors

were also studied. Two test–retest data sets were analyzed: 1) 15

healthy older subjects scanned four times at 2-week intervals on three

scanners; 2) 5 subjects scanned before and after a major scanner

upgrade. Within-scanner variability of global cortical thickness

measurements was <0.03 mm, and the point-wise standard deviation

of measurement error was approximately 0.12 mm. Variability was

0.15 mm and 0.17 mm in average, respectively, for cross-scanner

(Siemens/GE) and cross-field strength (1.5 T/3 T) comparisons.

Scanner upgrade did not increase variability nor introduce bias.

Measurements across field strength, however, were slightly biased

(thicker at 3 T). The number of (single vs. multiple averaged)

acquisitions had a negligible effect on reliability, but the use of a

different pulse sequence had a larger impact, as did different

parameters employed in data processing. Sample size estimates indicate

that regional cortical thickness difference of 0.2 mm between two

different groups could be identified with as few as 7 subjects per group,

and a difference of 0.1 mm could be detected with 26 subjects per

group. These results demonstrate that MRI-derived cortical thickness

measures are highly reliable when MRI instrument and data process-

ing factors are controlled but that it is important to consider these

factors in the design of multi-site or longitudinal studies, such as

clinical drug trials.

D 2006 Elsevier Inc. All rights reserved.
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Introduction

Techniques that enable the in vivo MRI-derived quantitative

measurement of properties of the human cerebral cortex, such as
thickness, are beginning to demonstrate important potential
applications in basic and clinical neuroscience. Changes in the

gray matter that makes up the cortical sheet are manifested in
normal aging (Jack et al., 1997; Salat et al., 1999, 2004; Sowell et
al., 2003, 2004), Alzheimer’s disease (Dickerson et al., 2001;
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Thompson et al., 2003; Lerch et al., 2005), Huntington’s disease
(Rosas et al., 2002), corticobasal degeneration (Boeve et al., 1999),
amyotrophic lateral sclerosis (Kiernan and Hudson, 1994), multiple

sclerosis (Sailer et al., in press) and schizophrenia (Thompson et
al., 2001; Kuperberg et al., 2003; Narr et al., 2005). Progressive
thinning of the cortex follows a disease-specific regional pattern in

certain diseases, such as Alzheimer’s disease (Thompson et al.,
2003); thus, in vivo cortical thickness measures could be useful as
a biomarker of the evolution of the disease. Longitudinal imaging-

based biomarkers of disease progression will likely be of great
utility in evaluating the efficacy of disease-modifying therapies
(Dickerson and Sperling, 2005).

Measurement of cortical thickness from MRI data is a non-
trivial task. Manual thickness measurements are difficult to obtain
due to the highly convoluted nature of the cortex. It can take a
trained anatomist several days to manually label a high-resolution

set of MR brain images, and even this labor-intensive procedure
allows only the measurement of cortical volume, not cortical
thickness, because the cortical thickness is a property that can only

be properly measured if the location and orientation of both the
gray/white and pial surfaces are known. To facilitate automatic
thickness measurement, many computerized methods have been

proposed in the literature for segmenting the cortex and finding the
cortical surfaces from MRI data (Dale et al., 1999; Joshi et al.,
1999; MacDonald et al., 1999; Xu et al., 1999; Zeng et al., 1999;
Van Essen et al., 2001; Shattuck and Leahy, 2002; Sowell et al.,

2003; Barta et al., 2005; Han et al., 2005a).
Although the validation of MRI-derived cortical thickness

measurements has been performed against regional manual

measurements derived from both in vivo and post-mortem brain
scans (Rosas et al., 2002; Kuperberg et al., 2003; Salat et al.,
2004), the reliability of measures of this fundamental morphomet-

ric property of the brain has received relatively little systematic
investigation (Fischl and Dale, 2000; Rosas et al., 2002; Kuperberg
et al., 2003; Sowell et al., 2004; Lerch and Evans, 2005). Most of

these studies approach reliability by comparing thickness measure-
ments across different subjects or by performing repeated scans on
a few subjects acquired within the same scan session or within very
short scan intervals (for example, the subjects were removed from

the scanner and then scanned again in 5 min (Sowell et al., 2004)).
This approach may greatly underestimate the sources of variability
within and between studies.

Variability in MRI-derived morphometric measures may result
from subject-related factors, such as hydration status (Walters et
al., 2001), instrument-related factors, such as field strength,

scanner manufacturer or pulse sequence, or data-processing-related
factors, including not only software package but also the
parameters chosen for analysis. All of these factors may contribute

to differences between typical cross-sectional studies (e.g., when
interpreting differences between two studies of patients with
Alzheimer’s disease vs. controls scanned at a single time point
on one scanner). Longitudinal studies of normal development,

aging or disease progression face additional challenges associated
with both subject-related factors as well as instrument-related
factors (e.g., major scanner upgrades). For multi-site studies, it is

critical to understand and adjust for instrument-related differences
between sites, such as scanner manufacturer, field strength and
other hardware components. Finally, longitudinal multi-center

studies, such as the Alzheimer’s Disease Neuroimaging Initiative,
must contend with all of these factors while attempting to detect
subtle effects. Thus, detailed quantitative data regarding the degree

to which each of the factors outlined above contribute to variability
in cortical thickness (and other measures) could be very helpful for
both study design and interpretation. Unfortunately, little work in

this area has been performed.
Specifically, it is not yet clear how cortical thickness measures

vary as a function of MRI instrument-related factors, such as

field strength, scanner manufacturer and scanner software and
hardware upgrades. Knowledge of the degree to which different
MRI instrument-related factors affect the reliability of cortical

thickness measures is essential for the interpretation of these
measures in basic and clinical neuroscientific studies. Further-
more, this knowledge is critical if cortical thickness measures are

to find applications as biomarkers in clinical trials of putative
treatments for neurodegenerative or other neuropsychiatric
diseases.

We undertook this study to evaluate the reliability of a cortical

thickness measurement method both within and across different
scanner platforms and field strengths, with the goal of quantita-
tively identifying the factors that are the greatest contributors to

cortical thickness variability. Two groups of test– retest data sets
were acquired and analyzed. In the first data set, 15 healthy older
subjects were scanned four times at 2-week intervals on three

different scanner platforms (test scan on Siemens Sonata 1.5 T, re-
test scan on Siemens Sonata 1.5 T, cross-site scan on GE Signa 1.5
T, cross-field-strength scan on Siemens Trio 3 T). Older
participants were studied so that anatomical variability related to

atrophy and age-related signal changes was represented. The 2-
week interval was chosen so that elements of variability related to
subject hydration status and minor instrument drift would be

included, which may be artificially minimized when the test– retest
interval is several min to ¨1 day. First, the test– retest reliability of
cortical thickness measurements was investigated from the two

Siemens Sonata sessions. Next, analyses were performed on the
effects of various instrument-related factors, including: a) different
MR manufacturer (Siemens vs. GE); b) different field strength (1.5

T vs. 3 T); c) different pulse sequences (MPRAGE versus multiple
flip angle, multi-echo FLASH); d) different number of data
acquisitions (one MPRAGE vs. two averaged MPRAGE acquis-
itions). Finally, effects of several data processing-related factors

were analyzed, including: a) different levels of spatial smoothing of
the raw thickness maps; and b) different processing schemes
(cross-sectional versus longitudinal).

The second data set consisted of 5 healthy younger subjects
scanned repeatedly before and after a major scanner upgrade, with
the goal of evaluating the reliability of thickness measurements in

longitudinal studies that contend with scanner upgrades.
In this study, thickness measurements were performed using

the FreeSurfer software package, which is an automated method

for cortical surface reconstruction and thickness computation.
Although comparison with other thickness measurement methods
is beyond the scope of this paper, the effects of several aspects of
the processing system within FreeSurfer were studied as noted

above.

Materials and methods

Data acquisition

Two groups of test– retest data sets were acquired and analyzed
to characterize the reliability of cortical thickness estimation.
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The first group of test– retest data consists of MRI scans
acquired from 15 healthy older subjects (age between 66 and 81
years; mean: 69.5 years; SD: 4.8 years. 8 males, 7 females). All

participants provided informed consent in accordance with the
Human Research Committee of Massachusetts General Hospital.
Each subject underwent 4 scan sessions at 2-week intervals (two of

the subjects were each missing one scan session), including two
sessions on a Siemens 1.5 T Sonata scanner (Siemens Medical
Solutions, Erlangen, Germany), one on a Siemens 3 T Trio scanner

and one on a GE 1.5 T Signa scanner (General Electric,
Milwaukee, WI).

For each Siemens scan session, the acquisition included two

MPRAGE volumes (190 Hz/pixel, flip angle = 7-, 1.5 T: TR/TE/
TI = 2.73 s/3.44 ms/1 s, 3 T: TR/TE/TI = 2.53 s/3.25 ms/1.1 s) and
two multi-echo multi flip angle (30- and 5-) fast low-angle shot
(FLASH) volumes (651 Hz/pixel, TR = 20 ms, TE = (1.8 + 1.82 *

n) ms, n = 0, . . ., 7; both for 1.5 T and 3 T). In each GE session,
only the two MPRAGE volumes were acquired, but no multi-echo
FLASH (MEF). Acquisition time for MPRAGE and MEF

sequences was roughly the same and about 8 min each. All scans
were 3D sagittal acquisitions with 128 contiguous slices (imaging
matrix = 256 ! 192, in-plane resolution = 1 mm, slice thickness =

1.33 mm). In each Siemens scan session, the acquisitions were
automatically aligned to a standardized anatomical atlas to ensure
consistent slice prescription across scans (Van der Kouwe et al.,
2005; Benner et al., in press).

In the second group of test– retest data, 5 healthy volunteers (34
T 3 years of age; 1 male, 4 females) were each scanned four times,
twice before and twice after an MRI scanner upgrade (within 1

week for the repeated scans on the same scanner and the total time
span was about 6 weeks). The upgrade was from a Siemens
Magnetom Sonata to a Magnetom Avanto, which included the

following major changes: a) main magnet (both are 1.5 T, Avanto’s
length is 150 cm, Sonata’s is 160 cm), (b) gradient system (Avanto
coils are more linear, Sonata 40 mT/m at 200 T/m/s, Avanto 45

mT/m at 200 T/m/s), c) head RF coil (circularly polarized on
Sonata, 12 channels in Avanto) and d) software upgrade. During
each of the four scan sessions, two MPRAGE volumes were
acquired for each subject with the same sequence parameter

settings as the MPRAGE scans in the first group. This second
group of data is used to evaluate the thickness measurement
reliability with respect to changes in scanner platform and also the

measurement reliability before and after the scanner upgrade.

Cortical surface reconstruction and cortical thickness

measurement

Reconstruction of the cortical surfaces was performed using the

FreeSurfer toolkit (which is freely available to the research com-
munity through the website http://www.surfer.nmr.mgh.harvard.
edu/). This suite of methods was initially proposed in 1999 (Dale et
al., 1999; Fischl et al., 1999a) and has undergone several important

improvements over the years (Fischl et al., 1999b, 2001, 2002;
Segonne et al., 2004).With these updates, the current method is fully
automated. All the surface reconstruction results reported in this

paper were generated using the fully automated processing pipeline,
and no manual intervention was involved.

In FreeSurfer, when multiple acquisitions of the same pulse

sequence are available for the same subject in each scan session,
they are usually simply averaged after motion correction to
generate a single volume with better signal-to-noise ratio (SNR)

(the effect of number of acquisitions on thickness measurement
reliability is also investigated in this study). The multiple volumes
from the MEF sequence, however, have very different contrast

properties due to the different flip angle settings. Thus, a weighted
average is adopted instead. The weighting coefficients (a unit
vector of length 16) were pre-computed using a set of 11 MEF

scans that have complete manual labeling for gray matter (GM) and
white matter (GM). An optimal weighting was first computed for
each data set based on the principle of linear discriminant analysis

(Duda et al., 2001), with the objective to maximize the contrast-to-
noise-ratio (CNR) between GM and WM. The weighting vectors
from the 11 training data sets were then averaged to get the final

weighting coefficients that are used for the processing of new MEF
data.

Cortical thickness estimates in this study are computed as
follows. For each point on the gray/white surface, the shortest

distance to the pial surface is first computed. Next, for each point
on the pial surface, the shortest distance to the gray/white surface is
found, and the cortical thickness at that location is set to the

average of these two values. Other thickness computation methods
have been reported (Jones et al., 2000; Yezzi and Prince, 2003), but
comparing their effects on the thickness reliability is outside the

scope of this paper. We refer interested readers to Lerch and Evans
(2005) for one such comparison.

Evaluation of thickness measurement reliability

Reliability (or reproducibility) of cortical thickness measure-
ments was evaluated by comparing within subject thickness values

between scan sessions. For example, using the within subject
repeated MPRAGE scans from the first group of subjects, the
measurement reliability can be evaluated either within the same

scanner platform (using the two Sonata scans), or across different
scanner platform (one Sonata and one Signa scan), or across dif-
ferent field strength (one Sonata and one Trio scan), or across both

scanner platform and field strength (one Signa and one Trio scan).
In this study, both global and local thickness measurement

reliability is evaluated, with the focus being on the latter. The
global evaluation is performed by computing the global mean

thickness value across the whole cortex for each subject and
evaluating its reliability across difference scan sessions. To
evaluate the error in local thickness measurements, surface point

correspondence must be built to find thickness measurements at
homologous cortical locations. The gray/white surface is used as
reference to establish surface point correspondence since the gray/

white surfaces are in general insensitive to atrophy, which could
otherwise confound the alignment procedure.

Although each gray/white surface was mapped to the same

surface atlas and their spherical coordinates can be used to find
point correspondence between one surface and another, variations
in the nonlinear surface registration or morphing often give rise to
extra noise in the computed thickness difference or error map.

Instead, a simpler linear registration is adopted to perform the intra-
subject surface alignment, and surface point correspondence is then
built according to their Euclidean distance in the registered space

(typically, the maximal distance is less than 5 mm, and the mean
and standard deviation of the absolute Euclidean distances are both
less than 0.3 mm). The linear registration is computed using the

FLIRT linear registration tool (Jenkinson et al., 2002). The
volumetric registration matrix is then applied to the corresponding
surfaces. It is found that, for registering surfaces across different
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scan sessions of the same subject, the linear registration is
sufficient and more robust than a nonlinear registration, which
has an unnecessarily large number of degrees of freedom for this

case. The nonlinear surface morphing is still necessary, however, in
order to align thickness or thickness difference maps across
different subjects for the computation of group-wise statistics. It

should be noted that perfect surface node correspondence cannot
be guaranteed and the computed thickness variability may include
contributions from the surface registration error. Surface registra-

tion error, however, is unlikely to contribute significantly to the
thickness variability measure, and its effect is further reduced if the
raw thickness map is smoothed.

After the thickness difference maps have been computed for
each subject and surface correspondence built across the group of
subjects using the nonlinear surface morphing, the mean and
standard deviation of the thickness differences can be computed at

each location of the surface atlas over the group of subjects to
evaluate the local thickness measurement variability. The relation-
ship between the statistics of the thickness differences and the

measurement variability (standard deviation of the measurement
error) is worth some explanation. Assume that the measurement
error can be modeled by a normal distribution N(0,re

2) with zero

mean (that is, unbiased) and standard deviation re. Note that the
standard deviation re is a direct characterization of measurement
variability that is often used in hypothesis testing and statistical
power analysis. Given two measurements X and Y of the same

thickness value l (e.g., from two repeated scans of the same
subject), under the above assumption, X and Y both follow a
normal distribution of N(l,re

2). From probability theory, their

difference Z(= X " Y) follows a normal distribution of N(0,2re
2).

Clearly, given multiple observation of the difference Z at each
homologous cortical location (each subject provides one such

observation), its standard deviation rZ can be estimated, which in
turn gives an estimate of the standard deviation of the measurement
error according to the relationship re ¼ rZ=

ffiffiffi

2
p

.

Another simpler statistic, used in this study, is the mean value
of the absolute differences, E(|Z |), computed at each surface atlas
location. Through simple derivation, it can be obtained that
E jZjð Þ ¼ 2re=

ffiffiffi

p
p

¼ 1:128re. We chose E(|Z|) because it is more

intuitive and can be interpreted as the mean measurement error and
also because the estimation of means is more robust than the
estimation of variance when sample sizes are small. We drop the

factor of 1.128 when reporting the results, but keep in mind that it
gives a slight overestimation of the measurement variability. In the
Results section, maps of E(|Z|) will be presented to show the

spatial pattern of measurement error. Note that, if the measurement
noise is biased (i.e., having a non-zero mean (), E(|Z|) is still a
good approximation of re as long as ( N re, but the overestimate is

further increased.

Effect of smoothing on thickness measurement reliability

Note that, in the application of cortical thickness measurements
for neuroscience studies, it is often necessary to perform spatial
smoothing of the raw thickness maps (Fischl and Dale, 2000;

Rosas et al., 2002; Kuperberg et al., 2003; Chung et al., 2005;
Lerch and Evans, 2005; Narr et al., 2005). The smoothing reduces
noise in the thickness measurements and increases the sensitivity

and validity of statistical analysis (Chung et al., 2005; Lerch and
Evans, 2005). The tradeoff is the reduction in the spatial resolution
of the smoothed thickness maps. In this study, the effect of

different levels of spatial smoothing on the thickness reliability is
also evaluated. The results can be used as a guide for users to
choose the optimal smoothing when applying the thickness

measurement method in practice.
Similar to a previous approach (Fischl and Dale, 2000),

smoothing of the raw thickness maps is performed intrinsically

on the surface tessellation using an iterative nearest-neighbor
averaging procedure. At each iteration, the thickness value at a
surface vertex is replaced by the average of the values at its

immediate neighbors and at its own location. This procedure
simulates the solution of a linear diffusion equation on the surface
mesh and as such approximates a Gaussian smoothing kernel on

the surface mesh. The total amount of smoothing is determined by
the total number of iterations. A conservative approximation for
the equivalent Gaussian kernel size is r V

ffiffiffiffiffiffiffiffiffi

NDx
p

, where N is the
number of iterations and Dx is the average vertex spacing. In the

surface reconstruction results, a typical surface mesh contains
about 120K vertices and the vertex spacing is less than 1 mm.
From empirical simulation, it was found that N iterations of local

averaging can be well approximated by a surface-based Gaussian
filter of kernel size r ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2N=p
p

. This relationship is used
throughout the presentation of the experimental results.

Effect of number of acquisitions on thickness measurement

reliability

The MPRAGE scans from the first group of 15 subjects are
used to study the effect of different number of image acquisitions
on the thickness measurement reliability. For this purpose, cortical

surface reconstruction and thickness measurement are also
computed using only a single MPRAGE volume from each scan
session. The thickness measurement reliability is then compared to

the results when using the average of two MPRAGE volumes
(which is the default approach).

Effect of different processing schemes on thickness measurement

reliability

The surface reconstruction and thickness estimation procedure

described above was designed for the processing of individual
scans, and it is thus not optimal for the processing of longitudinal
data (scans obtained at multiple time points from each subject). We

also designed a longitudinal processing scheme that aims to
incorporate the subject-wise correlation of longitudinal data into
the processing stream in order to further reduce the measurement

noise. Its performance in thickness measurement reliability is also
evaluated and compared to the original cross-sectional method.

The longitudinal scheme differs from the original procedure in

three major steps: preprocessing, intensity normalization and
surface deformation. Assuming that a series of scans of the same
subject are obtained at different time points, the data from time
point one is first processed using the original procedure. For the

processing of later time points, the three major steps mentioned
above are modified. First, a linear registration is computed between
the image volume of a later time point and that of the first time

point. Note that the volume itself is not transformed, but only the
registration matrix is stored and will be used in later steps. Second,
at the intensity normalization step, instead of re-computing the

WM control points, the control points (automatically computed)
from time point one are mapped to the current volume using the
previously computed linear registration, which are then used to
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estimate the bias field. Third, at the surface deformation step,
instead of starting the deformation from the topology-corrected
WM tessellation, the gray/white and pial surfaces reconstructed

from time point one are first transformed using the linear
registration and then used to initialize the deformation for the
gray/white and pial surfaces respectively for the current time point.

Such an initialization scheme reduces the problem of deformable
model methods being sensitive to initialization and local optimality
(Dale et al., 1999; Xu et al., 1999; Han et al., 2005a). It also

eliminates variation in initial surface tessellation and topology
correction since these two steps are no longer needed in the
processing of later time points. The performance of this method is

evaluated in this study by considering the repeated scans from the
different scan sessions as a longitudinal time series. It is noted that
scripts for performing the longitudinal analysis are not included in
the current distribution of FreeSurfer, but they will be made

available to the public very soon.

Effect of different imaging sequences on thickness measurement

reliability

In this comparison, cortical thickness measurements are compu-

ted using the MEF scans for the first group of 15 subjects, and the
measurement reliability is compared with that of the MPRAGE
scans. As explained earlier, the two MEF acquisitions from each
scan session have different image contrast due to the different flip

angle used, and thus a weighted average is applied to combine
them into one single volume, which is then used as input for the
cortical surface reconstruction and cortical thickness measurement.

Since the MEF scans were not acquired on the GE scanner, the
reliability of thickness from the MEF sequence data is only
evaluated for the Siemens platform, both within and across field

strengths.

Reliability of thickness measurement with respect to scanner

upgrade

The second group of test– retest data is used to study the effect
of scanner upgrade on thickness measurement reliability. For this

purpose, thickness maps are first generated using data from each
individual scan session of the 5 subjects (using the original cross-
sectional scheme). Thickness difference maps are then computed

between each pair of scans of the same subject. In particular, the
pair of repeated scans before the scanner upgrade are used to
estimate the measurement reliability on the old scanner platform

and the other two for estimating the measurement reliability after
the scanner upgrade. A third pair is formed by choosing one scan
before the scanner upgrade and one afterward in order to evaluate

the thickness reliability with respect to the upgrade. The thickness
difference maps are all mapped to the common surface template,
and their statistics (mean of the absolute thickness differences) are
then computed over the group of subjects in order to estimate the

measurement variability.

Power analysis

Given an estimation of the measurement error standard
deviation, power calculations can be conducted to help answer

questions such as how many subjects or samples are needed in
order to detect a thickness change of a certain number of
millimeters. This type of sample size determination is an important

step in planning a statistical study or clinical trial. The sample size
is in general determined by the chosen significance level (the
probability of type I error), desired statistical power (one minus the

probability of type II error), the effect size and the standard
deviation of measurement error (Cohen, 1988). There are no
closed-form formulae for sample size determination, and the

computation is usually done iteratively or using a look-up table.
In the Results section, sample size estimates results are presented

based on the estimated thickness measurement variability. The first

calculation was performed to estimate the sample size of detecting
between-group differences between a group of patients with
Alzheimer’s disease (AD) and a group of controls. One estimate

of the effect size for this type of study is 10%, based on data
comparing mean cortical thickness between AD patients and
controls (Thompson et al., 2003). Variability measures were derived
from the cross-sectional cortical thickness analysis approach

described above. A sample size estimate for a hypothetical clinical
trial of a putative disease-modifying therapy for Alzheimer’s disease
was also performed. For this calculation, data from Thompson et al.

(2003) were used to estimate the annual rate of cortical thinning in
AD at 5% and in normal aging at 1%. In addition, a 50% treatment
effect for a 1-year clinical drug trial was assumed, as was done by

Jack et al. (2003). Thus, the effect size used in this calculation was
50% of the difference in the atrophy rates between the groups or
0.5 ! 4%/year = 2%/year. For this calculation, variability measures
were derived from the longitudinal cortical thickness analysis

approach described above. For all sample size estimates, a
significance level of 0.05 (one-sided) and a statistical power of
0.9 were assumed. The computation was performed using the

standard formula as implemented in an online Java software
algorithm developed by David A. Schoenfeld at our institute
(http://www.hedwig.mgh.harvard.edu/sample_size/size.html).

Results and discussion

Reliability of global cortical thickness measure

Global thickness measures for each subject are presented in

Table 1, where the mean and standard deviation were computed

Table 1

Global thickness statistics (mean T SD) for each individual subject as

measured using data from each scan session (in mm)

Subjects Siemens 1.5 T Siemens 1.5 T GE 1.5 T Siemens 3 T

1 2.06 T 0.79 2.06 T 0.78 2.05 T 0.78 2.17 T 0.81

2 2.12 T 0.74 2.09 T 0.75 2.13 T 0.76 2.26 T 0.78

3 2.03 T 0.71 2.07 T 0.71 2.07 T 0.73 2.17 T 0.73

4 2.00 T 0.71 1.98 T 0.71 1.98 T 0.72 2.07 T 0.75

5 1.93 T 0.66 1.95 T 0.68 1.94 T 0.70 2.06 T 0.71

6 1.79 T 0.68 1.81 T 0.68 1.83 T 0.68 1.90 T 0.69

7 2.15 T 0.75 2.11 T 0.74 2.12 T 0.74 2.19 T 0.76

8 1.98 T 0.72 1.95 T 0.73 1.98 T 0.75 2.08 T 0.77

9 2.02 T 0.74 2.05 T 0.76 2.08 T 0.76 2.18 T 0.79

10 1.91 T 0.71 1.95 T 0.68 1.94 T 0.74 2.01 T 0.75

11 1.96 T 0.70 1.99 T 0.71 1.96 T 0.71 "
12 1.97 T 0.70 1.99 T 0.70 " 2.10 T 0.72

13 2.08 T 0.78 2.05 T 0.78 2.12 T 0.77 2.21 T 0.79

14 1.93 T 0.71 1.87 T 0.70 1.96 T 0.72 1.98 T 0.73

15 1.82 T 0.67 1.83 T 0.67 1.79 T 0.68 1.91 T 0.70

‘‘"’’ indicates two data sets not acquired.
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over the whole cortical surface combining left and right hemi-
spheres. Overall, the range of cortical thickness values is similar
for each individual subject across different scan sessions. The

reproducibility of global mean cortical thickness is further
demonstrated in Fig. 1 for the four test– retest comparisons. As
can be seen, the global mean thickness is an exceedingly reliable

measure and highly reproducible across scan sessions. On average,
the absolute difference in global mean cortical thickness is less
than 0.03 mm within the same scanner platform. The mean

absolute difference stays roughly the same even when comparing
across different scanner platforms (i.e., Siemens Sonata vs. GE
Signa). The variability is increased when comparing across field

strengths but is still within 0.12 mm or about 1/8th of the voxel size
on average. It is noted that the global mean thickness value is not
affected by the degree of linear smoothing applied to the raw
thickness maps, and thus the reproducibility of global mean

thickness is independent of the level of smoothing.
The results in Fig. 1 also show that field strength has a larger

effect on the reproducibility of mean cortical thickness than

scanner platform, which is observed in all other thickness
comparisons that were studied as well. As shown in the last
column of Table 1, mean thickness values are slightly higher at 3 T

than at 1.5 T. This effect is largely due to the fact that the
underlying tissue NMR parameters and, in particular, the longitu-
dinal relaxation time T1, change with field strength, which leads to
changes in the intensity and contrast of the images. As a result,

thickness measurements are biased across different field strengths,
which contributes to the larger difference in global mean thickness
when comparisons of 1.5 T and 3 T data are made. Note that this

effect could be reduced by explicitly deriving sequences that
minimize the contrast differences across field strength. Further
study is required to determine which field strength gives thickness

measurements that are more consistent with histological results.

Reliability of local cortical thickness measurement

To assess the local variability of cortical thickness measure-
ment, the group-wise mean (in absolute value) of the thickness
differences was computed at every location of the surface atlas, as

described in the Materials and methods section. The thickness
estimates were computed using the average of two MPRAGE

volumes. Fig. 2 shows the maps for the local measurement
variability, i.e., maps of the mean absolute thickness difference
(E|Z| in the Materials and methods section) for the four test– retest

comparisons, where a small surface-based blurring kernel (kernel
size r = 6 mm) was used to smooth the raw thickness maps before
the differences were computed (the effect of different smoothing

level will be presented in the next section). Only the left
hemisphere is shown; the right hemisphere is similar. Note that
non-cortical regions were excluded in the computation using a

mask that was initially drawn on the surface atlas and then mapped
to each subject’s surface, as indicated by the gray areas. The mask
was drawn based on the surface curvature map and the surface

parcellation scheme of Fischl et al. (2004b). It is intended to
exclude non-cortical areas of the surface including the medial wall
and the corpus callosum.

As shown in Fig. 2, the measurement variability (the average

absolute thickness difference) is less than 0.12 mm for the bulk of
the cortex when comparing thickness measurements within the
same scanner platform. The average absolute difference value is

slightly increased when comparing across platform or field strength
but is still less than 0.15 mm for the majority of the cortex when
platform but not field strength differs and less than 0.2 mm when

field strength differs. The thickness measurement variability can be
further reduced if a larger smoothing kernel is applied, as will be
demonstrated in the next experiment. Note that the smoothing
kernel size used here (6 mm) is very conservative when compared

to what has been suggested in the literature as an optimal
smoothing kernel, such as for example 30 mm (Chung et al.,
2005; Lerch and Evans, 2005).

It is also clear from the maps in Fig. 2 that the thickness
measurement variability is non-uniform across the cortex. The
most variable area that is consistent across all the comparisons is a

region around the precentral gyrus, which we believe reflects the
local cytoarchitecture of this region of primary motor cortex. In
particular, the special cytoarchitecture in this region leads to

reduced gray/white contrast in T1-weighted images (Steen et al.,
2000). Other areas with low gray/white contrast due to high degree
of myelination, such as primary visual areas (Braitenberg and
Schuz, 1991), also show larger measurement variability. To

improve the reliability and accuracy of cortical estimations over
the entire brain, it may thus be necessary to design new pulse
sequences to achieve sufficient contrast in these regions.

There are some other regions that show higher levels of
variability due to difficulties in the surface reconstruction. For
example, the presence of dura tangential to the cortex and the close

proximity of the two hemispheres often cause errors in localizing
the pial surface in the medial frontal and anterior temporal regions
and lead to larger thickness measurement variability. The narrow

separation between putamen or hippocampus and the adjacent
cortical gray matter also causes a problem in finding the gray/white
surface around the insular and entorhinal cortex regions and also
increases the thickness variability.

Effect of smoothing on thickness measurement reliability

Smoothing of raw thickness maps can reduce noise in the
thickness measurements and thus improve reliability. To quantify
the effect of smoothing on thickness reproducibility, different

levels of smoothing were applied to the raw thickness map before
computing the thickness differences and their statistics. Instead of
showing all the measurement error maps as in Fig. 2, the results

Fig. 1. Reproducibility of global mean cortical thickness across sites. The

bar plots show the average absolute difference in global mean cortical

thickness between pairs of repeated scans, and the error bars indicate one

standard deviation. The names indicate scanner platform: Sonata, Siemens

1.5 T; Trio, Siemens 3 T; and Signa, GE 1.5 T.
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were summarized by computing the overall mean of the thickness

measurement error over each hemisphere of the surface atlas
(masked areas being excluded), and these statistics were plotted as
a function of the size of the smoothing kernel. The results are

shown in Fig. 3.
These figures illustrate the observation that the thickness

measurement variability becomes smaller as smoothing level

increases (mean difference and standard deviation both become
smaller). The rate of reduction of variability is high initially with

increasing blurring kernel size but slows with further increment of

smoothing, which indicates that the autocorrelation of the
measurement noise falls off rapidly with distance on the surface.
Thus, it is sufficient to use a small kernel size to improve the

reliability of the thickness comparisons without sacrificing much of
the spatial resolution. As shown in Fig. 3, with a small smoothing
kernel of 6 mm (much smaller than typically applied in the

literature), the average error in thickness measurements with the
same scanner is reduced to about 0.12 mm and is about 0.15 mm

Fig. 3. Effects of smoothing on thickness measurement reproducibility. The plots show the overall mean of the absolute thickness difference map plotted as a

function of smoothing kernel size. Left column: left hemisphere; right column, right hemisphere.

Fig. 2. Maps of thickness measurement variability for four test– retest comparisons (the left hemisphere only; the right hemisphere is similar). Subcortical

regions and corpus callosum area are masked out since thickness is not defined there. The measurement variability is less than 0.12 mm for most the cortex for

the within-scanner test – retest comparison and less than 0.2 mm for across platform comparisons. Left column: lateral view; right column: medial view.
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for cross platform and 0.17 mm for cross-field strength compar-

isons. With further increased smoothing (e.g., a size of 30 mm), the
average within-scanner measurement error is only about 0.05 mm
or 1/20th of the voxel size. Note that, when the kernel size is

increased to infinity, the thickness at every surface location will be
equal to the global mean and the differences reduce to the
difference in the global means discussed in Fig. 1.

Effect of number of acquisitions on thickness measurement

reliability

The above experiments used the average of two MPRAGE

scans for the cortical thickness measurement. In this experiment,
only a single MPRAGE acquisition is used (the first scan volume
from each scan session was chosen for all subjects except one in

Fig. 4. Maps of thickness measurement variability for four test – retest comparisons using single MPRAGE acquisition. Left column: lateral view; right column:

medial view. Only the left hemisphere is shown here; the right hemisphere is similar. A smoothing kernel of size r = 6 mm was applied when generating the

thickness difference maps.

Fig. 5. Comparison of method reliability with one or two MPRAGE acquisitions. The bar plots show the overall mean thickness variability, and the error bars

indicate one standard deviation. Left: left hemisphere; right: right hemisphere. A smoothing kernel of size r = 6 mm was applied.
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whom the first scan had obvious motion artifact; the second

volume from this session was used instead). The resulting
thickness measurement variability is compared against the case
when using the average of both scans. The results are illustrated in
Figs. 4 and 5, where Fig. 4 shows the maps of local thickness

measurement variability for the four test–retest comparisons (left
hemisphere only; the right hemisphere is similar) and Fig. 5

compares the overall mean of the measurement error. For this

experiment, the surface smoothing kernel is fixed at 6 mm.
Comparing Fig. 4 with Fig. 2, and from Fig. 5, it is clear that
FreeSurfer performs almost as well on a single acquisition as on the
average of two acquisitions.

The results appear surprising at first glance since averaging two
acquisitions can improve the image SNR by a factor of square root

Fig. 6. Comparison of thickness measurement reliability using the cross-sectional and longitudinal processing schemes. The bar plots show the overall mean

thickness variability, and the error bars indicate one standard deviation. Left: left hemisphere; right: right hemisphere. A smoothing kernel of size r = 6 mm

was applied.

Fig. 7. Maps of thickness measurement variability for the longitudinal processing scheme (the left hemisphere only; the right hemisphere is similar). A

smoothing kernel of size r = 6 mm was applied when generating the thickness difference maps.
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of 2, which could be expected to have a significant effect on the
reproducibility of image segmentation. However, it should be
noted that, when discriminating between two or more tissue classes

like in cortical segmentation, it is the contrast-to-noise ratio (CNR)
between tissue classes that matters. The ‘‘noise’’ in the term CNR
refers to intensity variations within each tissue class, which not

only includes background imaging noise, but also comprises
intensity variations caused either by intrinsic tissue parameter
variation across the brain or other imaging artifacts such as
intensity non-uniformity and partial volume effects. Averaging

multiple scans can only reduce background noise, but not the other
sources of intensity variations. With current scanner technology (as
for the scanners used in this study), background noise in a single-

acquisition 1 mm MPRAGE scan is usually rather low and is
certainly not the dominant factor for determining the segmentation
accuracy or reliability. We observed that normal intensity variation

within a tissue class (such as white matter) can be two or three
times larger than the standard deviation of noise in the background.
In addition, we found that it is difficult to obtain a perfect
alignment between multiple acquisitions, and the averaged image

volume typically appears to be more blurred than individual scans,
which leads to increased error in boundary estimation and variation
in thickness measurements. All these factors should be taken into

account when designing image acquisition and data processing.
Note that, for subject populations for which movement is likely
(e.g., pediatric or cognitively impaired subjects), acquiring

multiple scans may always be desirable to ensure that there is at
least one good scan to use for data analysis. Note also that the
comparison results reported here may not be obtainable for data
acquired at old scanners or be generalized to high-resolution scans

(resolution <1 mm) where imaging noise in a single acquisition
scan is still significant.

Effect of the data processing scheme on thickness measurement

reliability

Fig. 6 compares the reliability of the longitudinal processing
scheme against the cross-sectional one in thickness measurement.
The two MPRAGE acquisitions in each scan session were used as
inputs to the processing pipeline. The surface reconstruction results

Fig. 8. Maps of thickness measurement variability with the MEF sequence (the left hemisphere only; the right hemisphere is similar). Left, lateral view; right:

medial view. Note that the color scale used here is slightly different than in Fig. 2. A smoothing kernel of size r = 6 mm was applied when generating the

thickness difference maps.

Fig. 9. Comparison of thickness measurement reliability with the MPRAGE and MEF sequences. The bar plots show the overall mean thickness variability, and

the error bars indicate one standard deviation. Left: left hemisphere; right: right hemisphere. A smoothing kernel of size r = 6 mm was applied.
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from the first scan session of each subject were used as
initialization for the processing of later scans as described in the
Materials and methods section. From the overall mean thickness

measurement error, it is clear that the longitudinal processing
scheme can further reduce the variability of the thickness
measurements. The improvement due to the longitudinal method

was found to be statistically significant at the significance level of
0.05 for all cases using paired t tests. Fig. 7 further shows the
detailed maps of local thickness measurement error for the four

comparisons. In the within-scanner test– retest case, the longitudi-
nal scheme reduces the measurement variation to be lower than
0.09 mm for most of the cortex.

It should be noted that only the thickness measurement
reliability is evaluated in this study. It is possible that errors in
the surface reconstruction of an early time point might be
propagated to a later time point with the longitudinal scheme,

thus adversely affecting the accuracy of the later time point.
Evaluating the effect of the longitudinal method on thickness
accuracy is outside the scope of this paper but is worthy of further

investigation.

Effect of different imaging sequence on thickness measurement

reliability

In this experiment, the thickness measurement reliability was
evaluated using the MEF scans acquired on the Siemens scanners.

The local thickness measurement error maps are shown in Fig.
8 and Fig. 9 summarizes their overall mean and standard deviation.
As Fig. 9 indicates, the average measurement error is less than 0.25

mm for both the within and across field strength comparisons (no
cross-platform comparisons are available since MEF data were not
acquired on the GE scanner).

Fig. 9 shows that the thickness reliability is poorer when using
the MEF sequence than when using the MPRAGE. Fig. 10 helps
explain the reason, where corresponding slices from an averaged

MPRAGE volume and an averaged MEF volume from the same
subject are shown side by side. Note that for the MEF volume a
weighted averaging was used to achieve optimal gray/white
contrast, as explained in the Materials and methods section. From

the images, it is clear that MPRAGE gives better gray/white
contrast than MEF (the average MEF image appears also more
blurred, largely due to imperfect registration between the two

individual acquisitions of different flip angles); this effect is

consistently seen in all other subjects’ data as well. In a related
study (Han et al., 2005b), we compared the CNR of the MPRAGE
and MEF sequences (and also a single echo FLASH) using a set of

manually labeled data. It was found that, even in the native space
of original echos, MEF scans still have lower gray/white CNR (as
measured by the Mahalanobis distance between the two tissue

classes) than MPRAGE, although CNR for subcortical structures is
higher. Thus, although the MEF sequence provides the advantage
of allowing tissue parameter estimation (Fischl et al., 2004a),

MPRAGE is currently a better sequence for studying morphomet-
ric changes in the cortical ribbon. Nonetheless, work is ongoing to
further improve the segmentation of MEF data, including the

investigation of better registration across different flip angles, and
segmentation in the original multi-spectral space.

Effect of scanner upgrade on thickness measurement reliability

In this experiment, cortical thickness maps were generated from
each of the four scans of the 5 subjects in the second group of test–

retest data. Note that the four scans for each subject consist of two
repeated scans before the scanner upgrade (Siemens Sonata) and
two after the scanner upgrade (Siemens Avanto). Fig. 11 plots the

Fig. 10. Visual comparison of (a) MPRAGE and (b) MEF images: the MPRAGE image provides better gray/white CNR than the MEF image.

Fig. 11. Global mean cortical thickness of 5 subjects as measured from each

of four repeated scans, including two before the scanner upgrade (Sonata)

and two afterwards (Avanto). The global mean thickness measure is highly

repeatable, and there is no noticeable bias due to scanner upgrade.
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global mean of the cortical thickness of each subject as measured

from each individual scan session. As can be seen, the global mean
thickness measure is again highly repeatable, and there is no
noticeable bias caused by the scanner upgrade.

Fig. 12 illustrates the average thickness measurement variability
and its standard deviation for each hemisphere, computed using
repeated scans on the old and new scanner respectively and also for

repeated measurements across the scanner upgrade. Detailed maps
of the local thickness measurement variability are shown in Fig. 13
(only the left hemisphere is shown; the right hemisphere is similar).
From these figures, it can be seen that pooling data across the

scanner upgrade does not degrade the measurement reproducibility,
and the overall measurement variability across the scanner upgrade
stays roughly the same as that on the old scanner platform. It is also

clear that the scanner upgrade significantly reduces the within-

scanner measurement variability, which is below 0.1 mm in
average for both hemispheres (a smoothing kernel of size r = 6
mm was used). In a separate study (Jovicich et al., 2005), it was

found that the scanner upgrade substantially improves the image
intensity reproducibility across repeated scans of the same subject,
which we believe is the major reason for the much improved

thickness measurement reliability.

Power analysis

Using the measurement error estimation from the reliability
studies, we computed the sample size table shown in Table 2,
where we assumed a significance level of 0.05 (one-sided) and a

Fig. 12. Mean and standard deviation of thickness measurement variability before and after the scanner upgrade and variability between measurements across

the scanner upgrade. The bar plots show the overall mean thickness variability, and the error bars indicate one standard deviation. Left: left hemisphere; right:

right hemisphere. A smoothing kernel of size r = 6 mm was applied on the raw thickness maps. The scanner upgrade significantly reduces the measurement

variability, while the reproducibility error across-scanner upgrade is comparable with that on the old scanner platform.

Fig. 13. Maps of thickness measurement variability both before and after the scanner upgrade. Left, lateral view; right: medial view. Only the left hemisphere is

shown here; the right hemisphere is similar. A smoothing kernel of size r = 6 mm was applied when generating the thickness difference maps.
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statistical power of 0.9. Three scenarios are used to illustrate the
application of the techniques used in this paper to clinical

neuroscience research. For a study that aims to find group
differences in cortical thickness in Alzheimer’s disease compared
to controls, subjects are typically scanned on the same scanner and

data would be analyzed cross-sectionally. The average measure-
ment standard deviation is about 0.12 mm (with a 6 mm spatial
smoothing kernel for the thickness maps; cf. Figs. 3 and 6) or 6%
of the cortical ribbon (assuming a mean cortical thickness of 2

mm). The computation shows that it requires 7 subjects per group
(or 14 subjects in total) to detect a thickness difference of 10% (0.2
mm) (Thompson et al., 2003). For a study that aims to find group

differences in the rate of regional cortical atrophy in Alzheimer’s
disease compared to controls, subjects are typically scanned on the
same scanner and data would be analyzed longitudinally. The

number of subjects required for this type of study is 15 per group,
based on an estimated effect size of 5% (0.1 mm) (Thompson et al.,
2003) and a measurement error of 4.5% (0.09 mm; cf. Fig. 6).

Finally, for a longitudinal, multi-center clinical drug trial of a
compound that aims to slow the rate of atrophy by 50% in 1 year in
a group of AD patients compared to a placebo group, subjects
would be scanned on different scanners and data would be

analyzed longitudinally. The number of subjects required for this
type of study is 155 per group, based on an estimated effect size of
2.5% (0.05 mm) and a measurement error of 7.5% (0.15 mm; cf.

Fig. 6).

Conclusion

The purpose of this study is to evaluate the reliability

(precision) of an automated thickness measurement method both

within- and across-scanner platforms and field strength. We also
evaluated the effects on thickness measurement reliability of
different imaging acquisition protocols (including number of

acquisitions and imaging sequences) and different data processing
or post-processing (smoothing of thickness map) schemes. Finally,
we investigated the impact of a scanner upgrade on thickness

measurement reproducibility. The results reported in this paper can
help the design and assessment of multi-site or longitudinal studies
that require accumulating data across multiple scanner platforms or

across major scanner upgrades.
Two sets of test–retest scans were acquired and analyzed in

this reliability study. From the first data set, within-scanner

variability was found to be less than 0.03 mm for global cortical
thickness measurement and approximately 0.12 mm in average
for local thickness measurement (with a small spatial smoothing
of kernel size 6 mm). The variability of local thickness

measurements is slightly increased to about 0.15 mm in average
across platforms (Siemens and GE) and further increased to 0.17
mm across different field strengths. Although the measurement

variability is still low, it was found that thickness measurements
across field strength were slightly biased. This measurement bias
must be taken into account in the design of multi-site or

longitudinal studies that acquire data across field strength, the
effect of which could be reduced by balancing subject popula-
tions across field strength or by deriving new pulse sequences
that can minimize the differences in image contrast under

different field strengths.
The results from the second data set allow us to conclude that

the thickness measurements were not affected by the scanner

upgrade evaluated. In particular, the major upgrade does not
increase the measurement variability nor introduce any bias to the
thickness measurements. The within-scanner measurement vari-

ability, however, can be further reduced when acquiring data only
on the newer scanner platform, reflecting the increased SNR and
stability afforded by the Siemens Avanto scanner when compared

to that of the Sonata system.
Other results showed that between one or two averaged

MPRAGE scans there was a negligible effect on thickness
measurement reliability, but different data processing or post-

smoothing schemes and different imaging sequences can have a
large impact on the thickness measurement reproducibility. For
example, thickness measurement variability can be substantially

reduced by applying smoothing filters on the raw thickness
maps. The choice of smoothing kernel size in practice should
depend on the estimation of measurement noise and also on

the spatial scale or resolution of the thickness change to be
found.

Overall, predictions from the test– retest results indicate that a

group difference of 0.2 mm (10%) in regional cortical thickness
may be reliably identified with as few as 7 subjects per group when
using data acquired on the same scanner platform, or as few as 11
subjects per group if using data pooled across multiple scanner

platforms. Thus, we can conclude that FreeSurfer is a highly
reliable method for automated cortical thickness measurement and
may be a useful tool for the investigation of longitudinal brain

development, pathophysiological brain changes and the efficacy of
clinical interventions.

It should be noted that the study reported in this manuscripts is

not a random effects study and the results should not be blindly
extrapolated to other pulse sequences and other scanners or scanner
types not included in this study.

Table 2

Calculation of the sample sizes (subjects per group) required to detect

(significance level at 0.05, one-sided, statistical power of 0.9) thickness

difference effects under various conditions of measurements errors (cf. Figs.

1, 3 and 6)

Underlying cortical thickness difference effect

to be detected (mean thickness = 2 mm)

10%a 5%b 2.5%c

Measurement

error (STD)

1%d 2 2 4

4.5%e 5 15 57

6%f 7 26 100

7.5%g 11 40 155

a Approximate effect size for between group differences comparing AD

patients to controls.
b Approximate effect size for longitudinal comparison of atrophy rates in

AD vs. controls.
c Approximate effect size for drug that slows rate of atrophy in AD by

50% in 1 year.
d Conditions for sample data pooled within scanner, analyzing global

mean thickness.
e Conditions for sample data pooled within scanner, analyzing local

thickness maps, applying longitudinal analysis methods (longitudinal group

comparison study).
f Conditions for sample data pooled within scanner, analyzing local

thickness maps (cross-sectional group comparison study).
g Conditions for sample data pooled across scanner and across field

strength, analyzing local thickness maps, applying longitudinal analysis

methods (multi-center longitudinal clinical drug trial).
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