Publications
PDF files for most of the following articles can be
obtained by clicking on the article. Copyright and all rights therein for these
articles are retained by the respective publishers. This material may not be
copied or reposted without explicit permission from them.
[1] Characterization
of the active site of p21 ras by electron spin-echo envelope modulation
spectroscopy with selective labeling; Comparison between GDP and GTP forms.
C.J. Halkides, C.T. Farrar, R.G. Larsen, A.G. Redfield, and D.J. Singel. Biochemistry 33(13), 4019-4035 (1994).
[2] Characterization of optical centers in Mn:Ba3(VO4)2
by spin-echo EPR spectroscopy.
M.H. Whitmore, C.T. Farrar, D.J. Singel, B. Buysee, J. Coremans, and J. Schmidt.
OSA Proc. on
Adv. Solid-State Lasers 20, 219-221 (1994).
[3] Electronic structure of the
tris-(1,3-diphenyltriazenido)aluminum radical anion: A theoretical and
experimental EPR and ESEEM
study. C.T. Farrar, J.T. Leman,
S.C. Larsen, J. Braddock-Wilking, D.J. Singel, and A.R. Barron. J. Am. Chem. Soc. 117, 1746-1753 (1995).
[4] Radical anion complexes of tris-(1,3-diphenyltriazenido)aluminum.
J. Braddock-Wilking, J.T. Leman, C.T. Farrar, S.C. Larsen, D.J. Singel, and
A.R. Barron. J. Am. Chem. Soc. 117, 1736-1736-1745 (1995).
[5] The active site of p21 ras: Conformational changes
induced by the binding of nucleotides.
C.J. Halkides, C.T. Farrar, A.G. Redfield, and D.J. Singel. Biolog. Str. & Dynamics, Vol. 1, R.H Sarma
& M.H. Sarma, Eds., Adenine Press, Guilderland, New York (1995).
[6] High frequency (139.5 GHz) electron
paramagnetic resonance spectroscopy of the GTP form of p21 ras with selective 17O-labeling
of threonine. C.J. Halkides, B.F.
Bellew, G.J. Gerfen, C.T. Farrar, P.H. Carter, B. Ruoll, D.A. Evans, R.G.
Griffin, and D.J. Singel. Biochemistry 35(37), 12194-12200 (1996).
[7] Electronic structure of the YD
tyrosyl radical in photosystem II: A high frequency EPR spectroscopic and
density functional theoretical study.
C. T. Farrar, G. J. Gerfen, R. G. Griffin, Dee Ann Force, and R. David
Britt. J.
Phys. Chem. B 101, 6634-6641 (1997).
[8] The frozen solution structure of p21
ras determined by ESEEM spectroscopy reveals weak coordination of Thr35 to the
active site metal ion. C.T. Farrar, C.J. Halkides, and D.J. Singel. Structure 5(8), 1055-1066 (1997).
[9] Characterization of a substrate
derived radical detected during the inactivation of ribonucleotide reductase
from Escherichia coli by 2'-fluoromethylene-2'-deoxycytidine
5'-diphosphate. G.J. Gerfen, W.A.
van der Donk, G. Yu, J.R. McCarthy, E.T. Jarvi, D.P. Matthews, C.T. Farrar,
R.G. Griffin, and J. Stubbe. J. Am. Chem. Soc.
120(16),
3823-3835 (1998).
[10] The effects of cryoprotectants on the
structure and activity of p21 ras: Implications for electron spin-echo envelope
modulation spectroscopy. C.J. Halkides, C.T.
Farrar, and D.J. Singel. J. Magn. Reson.
134,
142-153 (1998).
[11] The use of a 250 GHz gyrotron in a
DNP/EPR spectrometer. K.E. Kreischer, C.T. Farrar, R.G. Griffin, and R.J.
Temkin, Proc.
23rd Intl. Conf. Infrared and Millimeter Waves, 357-358 (1998).
[12] Pulsed electron nuclear double
resonance (ENDOR) at 140 GHz. M.L.
Bennati, C.T. Farrar, J.A. Bryant, S.J. Inati, V. Weis, G.J. Gerfen, P.
Riggs-Gelasco, J. Stubbe, and R.G. Griffin. J. Magn. Reson. 138, 232-243 (1999).
[13] High frequency dynamic nuclear
polarization in the nuclear rotating frame. C.T. Farrar, D.A. Hall, G.J. Gerfen, M. Rosay, and R.G.
Griffin. J.
Magn. Reson. 144, 134-141 (2000).
[14] Structural changes induced in p21Ras
upon GAP-334 complexation as probed by ESEEM spectroscopy and molecular
dynamics simulation. C.T. Farrar, J. Ma, D.J. Singel, and C.J. Halkides. Structure 8(12), 1279-1287 (2000).
[15] Electron spin resonance of TOAC
labeled peptides: Folding transitions and high frequency spectroscopy. J.C. McNulty, J. L. Silapie, M. Carnevali,
C.T. Farrar, R.G. Griffin, F. Formaggio, M. Crisma, C. Toniolo, and G.L.
Millhauser. Biopolymers (Peptide Science) 55, 479-485
(2000).
[16] Mechanism of dynamic nuclear
polarization at high magnetic fields. C.T. Farrar, D.A. Hall, G.J. Gerfen, S.J.
Inati, and R.G. Griffin. J. Chem. Phys. 114, 4922-4933 (2001).
[17] Dynamic nuclear polarization at 9
Tesla using a novel 250 GHz gyrotron microwave source. V.S. Bajaj, C.T. Farrar,
M.K. Hornstein, I. Mastovsky, J. Vieregg, J. Bryant, B. Elena, K.E. Kreischer,
R.J. Temkin, and R.G. Griffin. J. Magn. Reson.
160,
85-90 (2003).
[18] Cylindrical meanderline
radiofrequency coil for intravascular magnetic resonance studies of
atherosclerotic plaque. C.T. Farrar, V.J. Wedeen, and J.L. Ackerman. Magn. Reson. Med.
53,
226-230 (2005).
[19] In vivo imaging of siRNA delivery and
silencing in tumors. Z. Medarova, W. Pham, C.T. Farrar, V. Petkova, A. Moore. Nature Med. 13, 372-377
(2007).
[20] Effects of a nucleoside reverse
transcriptase inhibitor, stavudine, on glucose disposal and mitochondrial
function in muscle of healthy adults. A. Fleischman, S. Johnsen, D.M. Systrom,
M. Hrovat, C.T.Farrar, W. Frontera, K. Fitch, B.J. Thomas, M. Torrian,
H.C.F. Cote, S.K. Grinspoon. Am. J. Physiol. Endriconol. Metab. 58, E1666-E1673 (2007).
[21] MR contrast
probes that trace gene transcripts for cerebral ischemia in live animals. C.H. Liu,
S. Huang, J. Cui, Y.R. Kim, C.T. Farrar, M.A. Moskowitz, B.R. Rosen, P.K. Liu. FASEB 21,
3004-3015 (2007).
[22] Impact of field
strength and iron-oxide nanoparticle concentration on the linearity and
diagnostic accuracy of off-resonance imaging. C.T. Farrar, G. Dai, M. Novikov,
A. Rosenzweig, R. Weissleder, B.R. Rosen, and D.E. Sosnovik. NMR Biomed.
(published online, October 2007).
[23] Corrections for artifacts in chemical
exchange saturation transfer (CEST) imaging from B0 and B1 field errors. P.Z.
Sun, C.T. Farrar, and A.G. Sorensen. Magn. Reson. Med. 58, 12017-1215 (2007).
[24] Influence of
molecular parameters and increasing magnetic field strength on relaxivity of T1 contrast agents. P. Caravan, C.T. Farrar,
L. Frullano, and R. Uppal.
Contrast Media Molec Imag 4, 89-100 (2009).
[24] Edema control by cediranib, a
vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs
survival despite persistent brain tumor growth in mice. W.S. Kamoun, C.D. Ley,
C.T. Farrar, A.M. Duyverman, J. Lahdenranta, D.A. Lacorre, T.T. Batchelor, E.
di Tomaso, D.G. Duda, L.L. Munn, D. Fukumura, A.G. Sorensen, and R.K. Jain. J. Clin. Oncol.
27, 2542-2552 (2009).
[25] Target specific contrast agents for
magnetic resonance microscopy. M.L. Blackwell, C.T. Farrar, B. Fischl, B.R.
Rosen. NeuroImage 46, 382-393 (2009).