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We present a novel skull-stripping algorithm based on a hybrid

approach that combines watershed algorithms and deformable surface

models. Our method takes advantage of the robustness of the former as

well as the surface information available to the latter. The algorithm

first localizes a single white matter voxel in a T1-weighted MRI image,

and uses it to create a global minimum in the white matter before

applying a watershed algorithm with a preflooding height. The

watershed algorithm builds an initial estimate of the brain volume

based on the three-dimensional connectivity of the white matter. This

first step is robust, and performs well in the presence of intensity

nonuniformities and noise, but may erode parts of the cortex that abut

bright nonbrain structures such as the eye sockets, or may remove

parts of the cerebellum. To correct these inaccuracies, a surface

deformation process fits a smooth surface to the masked volume,

allowing the incorporation of geometric constraints into the skull-

stripping procedure. A statistical atlas, generated from a set of

accurately segmented brains, is used to validate and potentially correct

the segmentation, and the MRI intensity values are locally re-estimated

at the boundary of the brain. Finally, a high-resolution surface

deformation is performed that accurately matches the outer boundary

of the brain, resulting in a robust and automated procedure. Studies by

our group and others outperform other publicly available skull-

stripping tools.
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Introduction

Whole-brain segmentation, called skull stripping, is an important

technique for the analysis of neuroimaging data. Many applications,

such as presurgical planning, cortical surface reconstruction and

brain morphometry, depend on the ability to accurately segment

brain from nonbrain tissue, e.g., remove extracerebral tissue such as

skull, eyeballs, and skin. In addition, these techniques allow the
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construction of detailed head models that can be used to fuse MRI

data with EEG and MEG sensor information to generate spatiotem-

poral maps of brain activity (Dale and Sereno, 1993; Faugeras et al.,

1999).

Current automatic approaches to automated skull stripping can

be roughly divided into three categories: region-based, boundary-

based, and hybrid approaches.

n Region-based methods identify connected regions based on

predefined criteria (typically intensity), employing thresh-

olding, clustering, and morphological filtering to identify the

targeted volume. While some published approaches are

effective, region-based methods generally involve some degree

of user interaction, and are sensitive to scanning parameters and

intensity inhomogeneity. For example, Atkins and Mackiewich

(1998) use thresholding and morphology techniques, combined

with an anisotropic diffusion process to localize and segment

the brain. Meegama et al. (2001) propose a similar approach.

The method proposed by Ward (Cox, 1996; Ward, 1999)

generates a segmented brain volume by assembling segmented

slices. Morphological operations are used to smooth the brain

envelope and refine the final segmentation. Another example

can be found in Lemieux et al. (1999). Watershed techniques

constitute a special case of region-based methods. The gradient

intensity is usually the criterion defining connectivity, but some

intensity-based approaches are used in a similar way, with the

advantage of being less noise-sensitive. One of the main

drawbacks of these methods is that they suffer from over-

segmentation, which is the reason why they are usually

followed by a postprocessing step to merge separate regions

that belong to the same structure. Hahn and Peitgen (2000)

proposed a solely intensity-based watershed algorithm, which

makes use of a simple merging criterion to avoid the

oversegmentation problem. In contrast to most region-based

methods, their technique is particularly well adapted to brain

segmentation, and is quite robust to intensity inhomogeneities.

n Boundary-based methods primarily rely on gradient informa-

tion to locate the brain surface, usually modeled by an active

contour. For instance, template-based methods incorporate

shape information into the segmentation process, iteratively

matching a balloon-like template to the brain surface, using

image-based and smoothing forces (Dale et al., 1999; Kapur et
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al., 1995; Smith). Compared to region-based methods, these

approaches seem more robust and less sensitive to image

artifacts, and require less user-interaction. On the other hand,

their success often depends on the quality of initialization and

manual adjustment to scanning parameters. Furthermore,

boundary-based segmentation produces recurrent errors in

some part of the brain, such as the base of the cerebellum and

temporal poles.

n Hybrid approaches combine the two previous methods. Kapur et

al. (1995) propose a hybrid approach that uses morphological

operations and active contour segmentation. Their method

requires a preprocessing step, ‘‘Adaptative Segmentation’’ by

Wells et al. (1995), which corrects for the gain introduced in the

data by the imaging equipment. Shattuck and Leahy (in press),

based on Shattuck et al. (2001), use adaptive anisotropic

diffusion, edge detection and morphological erosions to identify

the brain component. More recently, new hybrid approaches

have been proposed to accurately locate the inner and outer

surfaces of the brain, even in the depths of sulci. For this

purpose, level-set methods are becoming of great use,

representing the targeted evolving surface by the zero level set

of a three-dimensional function. For instance, Xu et al. (1999)

deform the active surface under a gradient vector field computed

from a binary edge map. Motivated by the nearly constant

thickness of the cortex, Zeng et al. (1999) use a coupled surface

evolution to extract bounding surfaces of the cortex. Another

method is proposed by Dawant et al. (1999), in which a

combination of global similarity transforms and local free-form

deformations to delineate internal structures of the brain. Other

methods can be found in Atkins and Mackiewich (1998),

Baillard et al. (2001), Fischl et al. (2002), Goldenberg et al.

(2001), MacDonald et al. (2000), Pham and Prince (1999),

Rajapakse (1997), Rehm et al. (1999) and Zhang et al.

Nevertheless, due to the presence of imaging artifacts, anatom-

ical variability, varying contrast properties, and poor registration,

most of these techniques do not give satisfactory results over a wide

range of scan types and neuroanatomies without manual interven-

tion. In this paper, we propose a hybrid approach to robustly and

automatically segment brain from non-brain in T1-weighted MR

images. We note that the algorithm does not aim at extracting the

brain surface in its deepest folds; some techniques for doing so as a

post-processing step can be found in Atkins andMackiewich (1998),

Dale et al. (1999), Xu et al. (1999) and Zeng (1999). Our method

combines the robustness to noise that makes watershed approaches

attractive, with the geometric information that are available to

deformable surface algorithms. Appropriate values for the parame-

ters of the algorithm are automatically computed during the pro-

cessing. A comparison with existing techniques is reported in the

final section.
Fig. 1. The different steps of the algorithm.
Methods

Regarding brain anatomy, our approach relies on a few

general assumptions:

n Similar to other approaches, our first basic assumption is the

connectivity of the white matter. The white matter (WM)

constitutes a connected region that is bordered by gray matter

(GM) and cerebrospinal fluid (CSF). In T1-weighted MR
images, WM voxels have bright intensities and are surrounded

by darker GM voxels and even darker CSF voxels.

n The brain surface, which separates brain from nonbrain regions,

is a smooth manifold with relatively low curvature. In addition,

we note that these surfaces have similar global shapes, which

motivates the use of a statistical atlas to ensure that an extracted

brain volume possesses the shape of a brain within a certain

tolerance.

Deformable surface models are attractive techniques in that

they permit the incorporation of geometric and atlas-based

information into a deformation process targeting the brain sur-

face. However, these methods often require a good initialization,

positioning the initial active contour close enough to the final

targeted surface to avoid local minima. On the other hand, some

recent watershed methods have proven robustness to noise and

could lead to a good initial extraction of the brain surface. For

this reason, we have decided to combine an initial watershed

brain extraction with a subsequent deformable surface model.

Thus, the skull-stripping consists of a series of sequential steps.

First, some relevant parameters are estimated from the input image I.

Next, a watershed algorithm is performed on the intensity image,

with a global minimum initialized within the cerebral white matter.

Finally, a deformable surface procedure is applied to the output of

the watershed algorithm to recover parts of cortex that may have

been erroneously removed, using smoothness constraints on the

shape of the skull and atlas information. Each of these steps is

discussed in detail below. Fig. 1 provides a diagram of the different

steps. For simplicity, certain explanations will be carried out in

Appendix A.

Preprocessing

Before applying the watershed transform on the original image,

we need to compute a set of parameters required for subsequent

processing. Following the work of Stephen Smith in BET (Smith),

we estimate an upper bound for the intensity of the cerebrospinal

fluid (CSFMAX), the coordinates of the centroid of the brain (COG),
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and the average brain radius (BR) (see Appendix A.1). The upper

bound CSFMAX is a roughly chosen threshold, estimated to distin-

guish between brain and nonbrain tissue.

Next, we determine the white matter parameters. We use the

fact that, in T1-weighted MRI, white matter can be identified as a

uniform region localized near the interior of the brain. That is, we

assume that the variance within the quasi-constant white matter

intensity is small relative to other brain regions. We compute the

white matter parameters from a region located at the center of the

brain volume, i.e., a cubic region centered on the centroid of the

brain, with an edge length of BR. Fig. 2 shows an example for

the location of the cubic region of interest. This region will

include nonbrain regions such as the ventricles, but voxels, with

intensity smaller than CSFMAX, will be ignored. Using a cumu-

lative histogram, we compute WM estimates, which are not

corrupted by presence of other tissue classes. Two bounding

values for the white matter intensity values, a lower bound

WMMIN and an upper bound WMMAX, are computed and we

estimate a value for the variance of the white matter rWM (see

Appendix A.1).

Finally, we locate the white matter voxel with minimum

variance in the region of interest, with intensity greater than

WMMIN and smaller than WMMAX. This location is then used to

establish a global minimum in the image I, ensuring that the main

basin of the watershed algorithm will represent the brain, and

therefore preventing it from being merged with nonbrain regions

such as the eye sockets. An example of the location of the global

minimum is shown by the white cross in Fig. 2.

The watershed algorithm

The goal of the watershed algorithm is to extract an initial brain

volume, removing most of the nonbrain tissue, such as scalp, skull,

neck tissue. . . The surface of the segmented brain volume will

constitute an initialization for a deformable model integrating

geometrical and atlas-based information.

Watershed algorithms are based on image intensities. They

typically attempt to locate the local maxima/minima of the norm

of the image intensity gradient to segment the image into different

connected components. The image intensity is often interpreted as

height information: voxel values are used as ‘‘heights’’ in a

landscape in which the brightest points correspond to the hills,
Fig. 2. The region of interest is a cube, with side length BR, centered at the COG, l

of the global minimum.
and the darkest points represent the valleys. The image is then

segmented into different basins, following the ridges of the virtual

landscape. One of the main drawbacks of these techniques is that

they frequently result in an oversegmentation, and appropriate

merging criteria are required to postprocess the segmented image

(Hahn and Peitgen, 2000). An interesting approach has been

proposed by Hahn and Peitgen (2000), in which a solely intensi-

ty-based watershed algorithm is described: A simple merging

criterion is defined to overcome the oversegmentation problem

resulting in a fast and robust segmentation technique when

relatively uniform regions are targeted.

The basic assumption of the watershed algorithm is the

connectivity of the white matter. Because darker gray matter

and even darker CSF surround the connected white matter, this

region can be interpreted as the top of a hill in a three-dimen-

sional virtual landscape. We apply to the MRI image a watershed

transform based on the concept of preflooding to avoid over-

segmentation, a common problem in watershed techniques. Our

approach is exactly the one described in Hahn and Peitgen (2000).

We consider the inverted gray level in the T1-weighted brain

image: Under this transformation, the WM hill becomes a valley.

Two points of the inverted image are connected if a path of

adjacent voxels exists between them that are at least as dark as the

brighter one of the two points. Under this strict definition of

‘‘connectivity’’, the transformation would result in an overseg-

mented brain. For that reason, we have to weaken our criterion for

connectivity and utilize the concept of preflooding. We do so by

allowing the connectivity path to contain a lower intensity than

the darker of the two connected points up to a maximum

difference: the preflooding height, hpf. After the watershed trans-

form with an appropriate preflooding height, one basin should

exist that represents the whole brain, and will include the

previously identified white matter voxel in ‘‘Preprocessing’’

section. Appendix A.2 gives detailed explanations of the water-

shed segmentation.

The main objective of the skull-stripping algorithm is to be

robust: This first step performs well in the presence of intensity

nonuniformities and noise. For any given image, the parameter

hpf can be varied over a certain range without significantly

changing the output. For the current algorithm, we use a value

of 25 (corresponding to 25% of the maximum intensity IMAX).

We refer to the work of Hahn and Peitgen (2000) for detailed
ocated with a black cross on the images. The white cross locates the position
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explanations on the choice of hpf and robustness issues. After

the watershed computation, the segmented volume contains

some nonbrain tissue such as CSF or some parts of the skull,

and often the full brain stem. Fig. 3 shows a typical result of

the watershed transform. The white arrows in Fig. 3 indicate

nonbrain regions of the original image, which have been kept in

the segmented brain volume. The deformable model, described

in next section, incorporates geometric information such as

curvature, which will be able to remove these regions. In some

infrequent cases, important parts of the brain may be removed,

particularly if the connectivity of the white matter is not

preserved. Cerebellum white matter has frequently different

intensity values from cerebral white matter due to coil sensitiv-

ity profiles or differences in intrinsic tissue properties. The

complete cerebellum may not be merged into the main basin,

and be detached from the whole brain by the watershed

segmentation. The deformable model, integrating atlas-based

shape constraints, will recover potential missing parts by cor-

recting the shape of the template and iteratively refine the

watershed segmentation by accurately fitting the surface onto

the pial surface of the cortex.

Deformable surface algorithm

The watershed segmentation outputs a segmented volume,

with most of nonbrain tissue removed. This brain volume is used

to initialize a deformable balloon-like template. An initial tem-

plate deformation is first completed using global parameters

regarding the brain/nonbrain border to roughly match the bound-

ary of the brain. Then, an atlas-based analysis verifies the

correctness of the resulting surface, and modifies it if important

structures have been removed. Finally, a deformation using

estimates of local brain parameters will match the surface onto

the true brain boundary.

We first describe the active contour model and the initializa-

tion of the template. We then describe the construction of the

atlas. The final deformation integrating geometric and atlas-based

information ends this section.

Active contour formulation: the parametric deformable model

To find the true brain boundary, we use the traditional frame-

work of active contour introduced by Kass et al. (1988). In its most

general form, the motion of an active contour S constitutes a family
Fig. 3. Result of the watershed transform. T
of surfaces S: P � R+ ! R3,( p,t) i S( p,t) with an evolution

equation formulated as:

bp a P Sðp; 0Þ ¼ S0ðpÞ

bðp; tÞ a P � Rþ ASðp; tÞ
At

¼ Fðx; tÞ

where S0 represents the initial contour, P is the parameter space and

F(x,t) is the local force applied to the surface S at location x = S( p,t).

The force F integrates geometric, atlas-based and image informa-

tion, driving the active contour toward the desired boundary.

Following the work of Dale et al. (1999), the implementation

of the evolution equation is accomplished with a parametric

active contour: The brain surface is modeled using a super-

tessellated icosahedral surface tessellation. The initial model is

an icosahedron, for which each triangle was iteratively subdivided

into four smaller triangles. In this common tessellation, each

vertex has five or six neighbors, according to its position relative

to the original icosahedron. Our deformable template uses a

super-sampled icosahedron with 10,242 vertices (resulting in a

mean triangle edge length of approximately 2.5 mm on the final

brain surface).

The deformation process is driven by three different forces F =

FS + FMRI + FA:

n An intrinsic curvature reducing force, enforcing a smooth-

ness constraint on the deformed template: FS (x,t). Following the

work of Smith, the curvature-reducing force penalizes high local

mean curvatures of the surface, ensuring smoothness of the

template during the deformation process. The exact design of

FS can be found in Appendix A.3.

n An MRI-based force designed to drive the template toward

the true brain boundary: FMRI (x,t). In T1-weighted MRI, the

contrast between gray matter and cerebrospinal fluid is large.

Denoting the volume intensity at position x by I(x), we define the

following energy functional:

JMRI ¼
1

2

X
vertices k

ðTk � IðxtkÞÞ
2 ;

where xk
t represents the coordinates of the kth vertex at iteration t,

Tk is a local threshold at vertex k that corresponds to a transition

intensity between CSF and GM. The value of I(x) is computed on
he black cross locates the new COG.
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a subvoxel basis using trilinear interpolation. The following MRI-

based force is then defined as follows:

FMRIðxtk ; tÞ ¼
�nðxtkÞif IðxtkÞ > WMMAX þ rWM

� AJMRI

Axtk
otherwise

;

8<
:

where n(x) denotes the unit normal vector of S at location x.

The first term is introduced to avoid bright regions, such as

the eye sockets: in such regions, the surface is pushed inward.

The second term minimizes the energy functional JMRI, driving

the surface toward local targeted threshold intensities, which

locate the interface between GM and CSF.

n An atlas-based force ensures that the deformed template

possesses the shape of a brain within certain tolerance: FA (x,t).

The force FA is defined in the next section.

Taking a forward-difference approach to discretizing the evo-

lution equation, we update the coordinate xk
t , of each vertex k at

iteration tV = t + 1 according to the forces mentioned above:

xtþ1
k ¼ xtk þ ½FSðxtk ; tÞ þ FMðxtk ; tÞ þ FAðxtk ; tÞ	dt :

We use a forward time step of 0.5.

Initialization of the deformable model

Before alignment of the deformable model, no shape information

is available and the atlas-based forceFA is set to zero. The template is

initialized as follows.

We first center the template at recalculated COG coordinates

(see Fig. 3), with its radius set to include the whole previously

segmented brain. Once the initial spherical template has been

positioned, we gradually deform it through a series of iterative

steps, using the segmented brain produced by the watershed

process as a mask. In this stage, the MRI-based force FMRI is

simple: The force acting on each vertex is designed to drive the

surface to regions out of the segmented brain (i.e., with 0 MRI

intensity values), repelling the surface outward from contiguous

regions consistent with the segmented brain (i.e., with strictly

positive MRI intensities). The yellow surface in Fig. 4 illustrates

the results of this coarse initialization. The balloon-like template

has been deformed onto the segmented volume.

Next, we estimate a set of global parameters including the

mean intensity and variance of CSF and gray matter intensities,

denoted by lCSF, lGM, rCSF, and rGM, respectively. These

parameters will be used to refine the coarse initialization. Our

main assumption is that the contrast between gray matter and

CSF is sufficiently large that using unique predefined global

transition intensity should suffice to distinguish the two tissues.

We compute these parameters by examining the intensity values

along the surface normals, extending from a few millimeters

inward to a few millimeters outward from the previously

calculated surface (see Appendix A.3). Assuming normal dis-

tributions for the CSF and the GM, we compute a global

threshold based on the Mahalanobis distance:

T ¼ ðlCSF � rGM þ lGM � rCSFÞ=ðrCSF þ rGMÞ;

to distinguish between brain and nonbrain tissue.

Finally, we use this global parameter T to refine the coarse

initialization. Each vertex of the tessellation is moved toward the
desired threshold intensity according to the previously defined

MRI-based force, FMRI, in ‘‘Active contour formulation: the

parametric deformable model’’ section, where each local thresh-

old Tk is set to the constant global threshold T. Some regions of

the brain are difficult to distinguish from nonbrain regions, such

as the temporal lobes or the base of the cerebellum; in these

complex areas, where the boundary of the brain is not easy to

find, a general MRI-based force could occasionally expand the

surface away from the correct boundary into nonbrain tissues. In

addition, the use of a global threshold is not sufficient in the

presence of strong image inhomogeneities. Therefore, we stop the

iterative deformation of the template after 40 iterations, prevent-

ing large deviations from the expected final surface. The resulting

surface should approximately follow the brain/nonbrain boundary.

Fig. 4 illustrates the results of this process.

Brain atlas comparison, consistency and brain shape correction

As we pointed out in the last section, the watershed compu-

tation may rarely cause oversegmentation, and remove some brain

voxels. In our experience, this kind of oversegmentation often

leads to the removal of much or all of the cerebellum. To detect

and correct these errors, which are mainly due to a deterioration

of the apparent connectivity of the white matter, the surface is

compared to an atlas containing geometric information compiled

from successfully segmented brains. The atlas integrates two

types of information, which effectively models the shape of a

brain: The distance to the center of gravity, which contains

important information regarding the location of the brain surface

in comparison with a statistical average shape, and the curvature,

which will model the convexity of the surface. In comparison

with accurate brain segmentations, incorrectly removed regions

often lead to brain surface patches with lower distances to COG

and different convexities. On the other hand, erroneously includ-

ed regions frequently produce surface patches with higher dis-

tances to COG.

Based on its local curvature map and its distance to the center of

gravity map, which we first smooth and normalize over space (zero

mean and unit variance), the surface correctness is evaluated and

the errors precisely localized. By normalizing the fields locally

attached to the surface, we avoid incorporating prior information

on the expected size of the brain, making the algorithm more

general. If necessary, based on the information given by the brain

atlas, the shape of the surface is iteratively corrected, as detailed

below.

We will make use of the following notation: the curvature at

vertex k is curvk and the distance from the k th vertex to COG is

dk
COG = Oxk

t � xCOGO. We denote Xk as the two-dimensional

vector formed by the two fields: Xk = (curvk, dk
COG)T.

Mapping the brain surface onto a sphere. We base our consis-

tency assessment on two fields that include much of the requisite

information: the mean curvature of the surface and the distance to

its COG. Before calculating these two fields, we first smooth the

surface by a series of iterative steps. The mean curvature map is a

measure of the convexity of the surface, and the distance to the

COG contains information concerning the corrective deformation

field (between the surface and the atlas). To assess the validity of

the segmentation, we need to map the surface into a parameter-

izable shape, which will allow us to compare surfaces across

subjects. The sphere is a natural choice as it allows the preser-

vation of the topological structure of the original surface (no cuts
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need to be introduced preserving the local connectivity), and it

retains much of the computational attractiveness of a flat space

(which would not be the case with asymmetric surfaces such as

ellipsoids). We note that some high-resolution cortical coordinate

systems based on this shape have been proposed in the literature
Fig. 4. Initialization of the deformable template. The yellow surface represents the i

curve is the result of the matching with global parameters.

Fig. 5. Three views of the curvature fie

Fig. 6. Ventral, lateral, and dorsal views of the curvature fiel
(Fischl et al., 1999a,b; Thompson and Toga, 1996; Thompson et

al., 1996; Van Essen and Drury, 1997). In our case, the spherical

surface will facilitate the rigid registration of the individual

surface with an atlas, and will allow us to calculate the maximum

likelihood at each iteration of the template deformation in a
nitial template matched onto the segmented volume used as a mask. The red

ld and its mapping onto a sphere.

d (first row) and distance to COG field (second row).
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simple manner. Therefore, we need to find a mapping from the

brain surface onto a sphere. Fortunately, we can avoid unfolding

our surface (Dale et al., 1999; Fischl et al., 1999b, 2001), by

noting that the initial tessellated surface is modeled using an

icosahedron, meaning that our original surface is exactly a

tessellated sphere (see Fig. 5).

Atlas construction. The first step in verifying the shape of a

surface is the construction of an atlas that contains the information

necessary to detect and correct inaccuracies in the segmentation. We

build this atlas from a training set of accurately segmented brains for

which the curvature and distance to COG fields are computed,

smoothed (1-cm Gaussian smoothing) and normalized (zero mean

and unit variance). We assume that the curvature and distance fields

follow two nonstationary uncorrelated Gaussian distributions in the

spherical atlas space. Future work will incorporate the full covari-

ance matrix.

First, a nonaligned template is built, containing the mean and

variance of each field at each vertex. Next, each brain is rigidly

alignedwith the template and a new canonical surface is constructed;

we note that the two fields are used to align each brain with the

canonical template. Details of the alignment procedure are given in

the next sections. Fig. 6 shows three different views of the spherical

atlas, with the means of the curvature and distance fields.

Consistency of the shape of the surface. Once an initial repre-

sentation of the brain surface has been found (see ‘‘Initializa-

tion of the deformable model’’ section), the curvature and

COG distance fields are computed and spatially smoothed with

a surface-based Gaussian filter (1-cm Gaussian smoothing).

Next, the mapped sphere is rigidly aligned with the canonical

surface. Assuming Gaussian distributions for the curvature and

distance fields, we compute the maximum-likelihood estimate

of the alignment R*, by minimizing the following energy

functional:

JR ¼ 1

2

X
vertices k

ðXk � X̄kÞT 
 V̄
�1

k :ðXk � X̄kÞ ;

where Xk is a two-dimensional vector containing the curvature

and distance fields at the kth vertex, X̄k = X̄(/R(k), hR(k)) is a

mean vector obtained from the parameterized template, and V̄k

= V̄(/R(k), hR(k)) the corresponding covariance matrix. /R(k)

and hR(k) are the spherical (/,h) coordinates of the kth vertex

after rotation by an alignment transform R. As previously

stated, we assume that the two fields are uncorrelated and

hence V̄k is diagonal.

After alignment, the energy functional JR* provides a

measure of the alignment error. An incorrect segmentation will

lead to regions with large errors, as the result of aligning

dissimilar regions. A vertex is said to be inaccurate if it

satisfies (Xk � X̄k*)
T
V̄k*

�1 
 (Xk � X̄k*) > (2.6)2. Assuming

Gaussian distribution, this means that the likelihood of a vertex

to be classified as inaccurate is less than 1%. We first localize

the incorrect vertices, and then identify regions with a simple

erosion–dilatation step. The overall segmentation is then said

to be invalid if the number of incorrect vertices is greater than

1%. Fig. 7 shows the resulting error map for a case in which

the segmentation fails and removes a large portion of the
cerebellum. In this case, the number of inaccurate vertices

was about 10%.

Correction of the geometry of the surface. If the surface segmen-

tation fails to give the expected contour, we correct its shape with a

series of deformations that iteratively minimize an energy func-

tional JG. The mean vectors X̄k and covariance matrices V̄k of the

parameterized template, which are zero mean and unit variance

over the whole spherical space, are scaled such that they match the

means and variances of the fields of the incorrect surface, ignoring

inaccurate vertices.

Ultimately, the energy that we would like to minimize would be

the following:

JG ¼ 1

2

X
vertices k

ðXk � X̄k*ÞT 
 V̄k*
�1 
 ðXk � X̄k*Þ ;

where X̄k*and V̄k* are the previous projected and scaled mean

vectors and covariance matrixes. We note that Xk depends on a set

of neighbors of the vertex k, necessary to calculate the local

curvature at kth vertex. The resulting gradient is quite complex,

due to the curvature term that leads to a gradient that is dependent

on the square of the inverse of the vertex spacing, and is therefore

somewhat numerically unstable. Therefore, we have adopted a

different approach to minimize the energy.

In the regions labeled as incorrectly segmented, we correct the

shape of the tessellated surface according to the following atlas-base

force:

FAðxtk ; tÞ ¼
1

2
tanhðOdCOGk OM

k Þ 
 nðxtkÞ

with Ndk
COGNk

M being the signed Mahalanobis distance for the

distance field at the kth vertex: Ndk
COGNk

M = (dk
COG� d̄ k

COG) / rk
COG.

The force FA pushes the surface toward its expected shape,

minimizing the functional JG. A small number of iterative steps is

usually enough to correct the surface. Fig. 8 illustrates this process,

with a deformation, which recovers the cerebellar hemisphere.

Local parameters estimation and final deformation

Once the shape has been corrected, the resulting template

closely follows the pial surface of the brain. However, intensity

inhomogeneities can significantly degrade the performance of

methods that assume that the intensity value of a tissue class is

constant over space. This could be particularly problematic in the

cerebellum, where the tissue intensity is often different from the

intensity of the cerebral cortex, due to differences in intrinsic tissue

properties (e.g., T1) and coil sensitivity profile. To avoid this, we

compute local intensity values. The border of the brain is localized

along the surface normal, as the region, where the directional

‘inward’ gradient reaches its maximum and for which the imme-

diately exterior intensity value is close to the previously estimated

CSF intensity. The local CSF and GM intensities are computed

from the voxels located immediately outside and inside the border

position. From these local values, we compute the second-neigh-

boring mean and variance values for each tissue (CSF and gray

matter: lk
CSF, lk

GM, rk
CSF, and rk

GM), and we set, for each vertex, a

transition threshold Tk. Assuming local normal distributions, the

threshold is based on the point at which the Mahalanobis distances

are equal:

Tk ¼ ðlCSF
k � rGM

k þ lGM
k � rCSF

k Þ=ðrCSF
k þ rGM

k Þ

The final deformation process is driven by the previously defined
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curvature-reducing and MRI-based forces, FS and FMRI, and the

following atlas-based force:

FA ¼ FD þ FC; with

FD ¼ kD
ðdCOGk � d̄COGk Þ

r̄COG2

k


 nðxtkÞ; and

FC ¼ kC
ðcurvk � curvkÞ

r̄curv2

k


 nðxtkÞ

The update force FD is derived from the functional JG when only

the ‘distance to COG’ field is considered; assuming Gaussian

distributions, it corresponds to a derivative of the maximum-

likelihood estimate. The second term FC tends to push the surface
i -
Fig. 7. The curvature, distance

Fig. 8. The corrective deformation process with the curvature field of the canonic

part of the cerebellum that is iteratively recovered.

Fig. 9. A final supersa
nward when the local curvature is greater than the template, and to

push outward if it is smaller. The two constants kD and kC are

empirically set to 0.25 and 0.025, respectively. Convergence is

achieved when the maximum displacement falls below a certain

threshold of 0.5 mm. The set of all necessary parameters is

summarized in Appendix A.4. The final surface accurately matches

the pial surface of the brain (see Fig. 9).
Assessment of the results and discussion

Stripping the skull and other nonbrain tissues from the struc-

tural images of the head is a challenging and critical component for

a variety of post-processing tasks. Large anatomical variability

among brains, different acquisition methods, and the presence of
and global error maps.

al template projected for visualization. The white arrows locate the missing

mpled surface.



1 We thank Randy Buckner and the Washington University Alzheimer’s

Disease Research Center for providing the second data set.
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artifacts increase the difficulty of designing a robust algorithm,

thus current techniques are often susceptible to problems and

require manual intervention. To validate the proposed algorithm,

we compared it to four existing techniques, and suggest ways of

characterizing the correctness of the segmentation.

The validation problem

We compared our algorithm to four other existing automated

skull-stripping programs: the FMRIB’s Brain Extraction Tool (BET

v1.2: Smith), Freesurfer’s strip skull (denoted FSS; Dale et al.,

1999), Hahn and Peitgen’s (2000) watershed algorithm (denoted

WAT), and Brain Surface Extractor (BSE in Shattuck and Leahy, in

press; Shattuck et al., 2001).Wewill refer to our method as HWA. To

assess the validity of each segmentation, we ran a study on 43 T1-

weighted brain volumes that had also been manually skull stripped.

Hence, we were able to use the manually segmented brain images as

a gold standard for comparison.

Presentation of different algorithms

The five selected skull-stripping programs are all rapid. HWA is

the slowest method with an average time of 5 min (on a 1 GHz

Pentium III running Linux), due to the spherical registration. FSS

assumes that the white matter intensity distribution peaks around a

specific value, therefore requiring preprocessing (Dale et al., 1999).

Other methods do not require any preprocessing. We briefly present

the main concepts of each method.

n WAT: Hahn and Peitgen’s skull stripping corresponds to a

watershed segmentation as the one described in ‘‘The

watershed algorithm’’ section and in Hahn and Peitgen (2000).

n BSE: Brain Surface Extractor—version 2.99—combines edge

detection and morphology-based techniques. Adaptive aniso-

tropic diffusion, edge detection and morphological erosions are

used to identify the brain component (based on Shattuck et al.,

2001).

The three other methods use deformable surfaces with different

driving forces.

n FSS: The Dale et al. algorithm uses a linear smoothness

constraint for the curvature reducing force and an intensity-

based force described in Dale et al. (1999).

n BET: Brain Extraction Tool—version 1.2—makes use of a

nonlinear smoothness constraint, as the one discussed in

Appendix A.3, and of an intensity-based force described in

Smith. The MRI-based force of BET’s algorithm is based on

regional properties of the image and the thresholds pushing the

template outward are locally computed at each vertex.
n HWA: Our hybrid approach makes use of local statistics (see

‘‘Local parameters estimation and final deformation’’ section)

for the template deformation, and integrates an atlas-based term

constraining the shape of the brain. The template is initialized

by a watershed presegmentation.

Description of the validation data

Validation data consisted of two data sets. All scans were

MP-RAGES.

n First data set: Seventeen scans were acquired in the past 2 years

using a Siemens Sonata system with the following parameters:
TR: 7.25 ms; TE: 3.22 ms; TI: 600.00 ms; flip angle: 7.00j;
1.3-mm sections (resampled to 1 mm isotropic). This data set

consists of 8 young (YNC), 7 elderly normal controls (ENC),

and 2 Alzeihmer’s (AD).

n Second data set: A second data set with 26 scans was acquired

using a Siemens Vision system in 1994/1995 with the

following parameters: TR: 9.70 ms; TE: 4.00 ms; TI: 621.00

ms; flip angle: 10.00j; 1.25 sections (resampled to 1-mm

isotropic). Data comes from studies reported in Buckner et al.

(2000) and Logan et al. (2002) and also later subjects imaged

using the same anatomic protocol.1 This data set consists of 6

YNC, 14 nondemented and 6 demented adults.

Risk evaluation

To compare the performance of various segmentation techni-

ques, we compute different coefficients reflecting how well two

segmented volumes match. The manually segmented brains are

used as a gold standard, and the automatically extracted brains are

compared to them. Some of the automated algorithms include the

third and fourth ventricles or the full brain stem in the final

segmentation, while some other techniques remove these struc-

tures. To provide fair comparison between methods, the third and

fourth ventricles and the brain stem were excluded from manual

and automated segmentations.

Jaccard similarity coefficient. The Jaccard similarity coefficient

J is formulated as J = vol(A \ B)/vol(A

\

B), where A is the

brain region of the manually stripped image, B is the automat-

ically skull stripped region, and vol(X) denotes the volume of

the region X. A Jaccard similarity coefficient of 1.0 represents

perfect overlap, whereas an index of 0.0 represents no overlap.

The Jaccard similarity coefficient is related to the Dice coeffi-

cient D = 2vol(A \ B)/vol(A + B) = 2J/(1 + J).

False-positives and false-negatives. We define the probability

of a miss pm by the number of false negatives over the total

volume of A

\

B. The probability of a miss is given by pm =

vol(A\B)/vol(A

\

B), where A represents the gold standard

segmentation and B an automated segmentation. Similarly, the

probability of false detection pf is related to the number of

false positives by pf = vol(B\A)/vol(A [ B). The Jaccard

similarity coefficient is directly related to the false detection

probability and the probability of a miss through the formula:

J = 1 � pm � pf.

Risk evaluation. In our view, it is significantly more important

to avoid removing any brain structures than to remove all

nonbrain structures. Skull-stripping methods are often used as

a preprocessing step in cortical surface reconstruction (Dale et

al., 1999; Fischl and Dale, 2000; Fischl et al., 1999a, 2001), or

other morphometric analysis. Although skull-stripping techniques

generate masks that can be used on the original data and

therefore do not lead to lost information, postprocessing algo-

rithms do not try to regain information from the exterior of the

skull-stripped volume. For that reason, we define the following

error function: E(c) = ( pf + cpm)/(1 + c). A factor of c > 1

penalizes the eliminated brain voxels more than the added



Table 2

Mean (standard error) coefficients for Jaccard similarity, probability of a

miss and probability of false detection for the second data set

Algorithm J pf pm

FSS 0.702 (0.052) 0.261 (0.040) 0.036 (0.041)

BET 0.570 (0.156) 0.428 (0.155) 0.001 (0.003)

BSE 0.541 (0.128) 0.428 (0.193) 0.030 (0.026)

WAT. 0.651 (0.086) 0.320 (0.052) 0.026 (0.118)

HWA 0.858 (0.029) 0.113 (0.047) 0.003 (0.017)
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nonbrain voxels, implying that we would equate retaining c

nonbrain voxels with removing 1 brain voxel.

Results and discussion

The results of the study are reported in Tables 1 and 2 and Figs.

10–12. Our method performed the best overall. In most cases, our

algorithm was able to precisely determine the pial boundary of the

brain, resulting in an accurate segmentation. Also, our method

performed well independently of the data set, and proved to be

more robust than others.

First data set

HWA performed the best followed by BSE and FSS. In one

case, BSE identified the wrong component and completely

removed the brain volume, leading to a Jaccard similarity

coefficient of 0. We did not include this subject in the BSE

results. We note that HWA is slightly more conservative than

BSE, resulting in lower probabilities of a miss. FSS generated

good segmentations, except for one Alzheimer’s subject (with a

Jaccard similarity coefficient of J = 0.56). WAT segmentations

were conservative, always including lots of nonbrain dark tissue

(CSF, bone. . .). On this data set, BET did not perform well: Brain

segmentations were accurate around the upper cerebral cortex, but

often included large neck regions of nonbrain tissue, leading to

lower Jaccard similarity coefficients. Table 1 and Fig. 10 sum-

marize the results.

Second data set

The second data set was of lower quality than the first one.

HWA performed the best. On this data set, BET performed

significantly better but still included some nonbrain tissue in

the neck region. BSE did not give satisfying results. WAT

performed well but failed on one subject. Our method was able

to recover from the failing watershed segmentation. FSS was the

only method that clearly performed more poorly on images of

demented adults than others [with J = 0.633 (0.047) compared to

J = 0.728 (0.022) for nondemented adults]. Results can be found

in Table 2 and Fig. 11.

Discussion and risk evaluation

On these two data sets, HWA outperformed other methods,

resulting in segmentations with better Jaccard similarity coeffi-

cients. No method seemed to be sensitive to a specific group of

individuals, except FSS that did not give satisfactory results over

images of demented adults. We note that although FSS achieved

good results, it consistently shaved off parts of the cortex. On the

other hand, BET proved to be more conservative than other
Table 1

Mean (standard error) coefficients for Jaccard similarity, probability of a

miss and probability of false detection for the first data set

Algorithm J pf pm

FSS 0.718 (0.046) 0.242 (0.016) 0.039 (0.040)

BET 0.483 (0.171) 0.510 (0.176) 0.007 (0.007)

BSE 0.751 (0.104) 0.181 (0.120) 0.070 (0.024)

WAT 0.681 (0.039) 0.315 (0.040) 0 (0)

HWA 0.885 (0.023) 0.010 (0.026) 0.014 (0.007)
techniques (low pm), but often included lots of nonbrain tissue in

the neck area, leading to large probability of false detection. BSE

performed really well on the first data set, but proved to have

difficulties coping with the second data set of lower quality.

Finally, we note that WAT is associated with a zero probability

of a miss for the first data set.

In our view, it is significantly more important to avoid

removing brain than to remove all nonbrain structures. For this

reason, we introduced an error function c i E(c) defined in

‘‘Risk evaluation’’ section. Fig. 12 reports the two error

functions for both data sets. Our method minimized both risks

for 1 V c V 10.

Finally, we provide some skull stripping results in Fig. 13. In

our experience, the proposed algorithm is robust to noise,

artifacts and bias fields. Studies of other groups (Fennema-

Notestine et al., submitted for publication) have shown that

our method outperformed several others, proved to be more

sensitive and robust, and most successfully retained brain tissue

even within the difficult AD group. We note that our method

has been successfully used in several different studies, requiring

automated brain segmentations (Fischl et al., 2002, 2004; Salat

et al., in press).
Conclusion

Our goal, when implementing this new skull-stripping algo-

rithm, was to develop an automated algorithm able to success-

fully segment the whole brain, without any user intervention.

This new segmentation process, based on a hybrid approach,

which combines watershed algorithms and deformable surface

models, offers the user both the robustness of watershed

algorithms and the accuracy of deformable surface models.

Surface-based methods, which easily incorporate geometric in-

formation, do not have access to interior intensity information,

whereas watershed methods ignore geometric information. Our

Hybrid method, combining both approaches, achieves better

results than either one individually. Specifically, we extend the

watershed approach proposed by Hahn and Peitgen in (2000)

and improve the robustness of the algorithm by introducing a

postwatershed analysis that validates and eventually corrects the

segmentation. Template-based approaches, which incorporate

shape information into the segmentation process and model the

brain by a smoothed deformed surface, have been successfully

used to extract the brain from MR images (Dale et al., 1999;

Smith). However, some parts of the brain are difficult to

correctly extract and are subject to recurrent errors. In this

work, we propose a new approach that incorporates an atlas-

based term, which preserves the shape of the surface during the

deformation. The atlas, compiled from a set of successfully



Fig. 10. Bar chart of the mean and standard errors for the Jaccard Similarity Coefficient (left), the probability of false detection and probability of a miss (right):

first data set.

Fig. 11. Bar chart of the mean and standard errors for the Jaccard similarity coefficient (left) and the probability of false detection and probability of a miss

(right): second data set.

Fig. 12. Evaluation of the risk: c i E(c).
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Fig. 13. Results of the proposed method.
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segmented brains, is used to verify the shape of the brain

surface and to correct it if needed.

The validation of the method has been achieved through the

comparison of our results with ones provided by other methods

(Dale et al., 1999; Hahn and Peitgen, 2000; Smith), and several

manually segmented brains. Our method performed best overall,

leading to few misclassified voxels. The main advantages are its

robustness and its accuracy, as the final surface accurately fits the

outer boundary of the pial surface of the cortex. The algorithm is

fast (c5 min on a 1-GHz Pentium III running Linux), and does not

require any preprocessing of the image such as spatial or intensity

normalization. Other group studies (Fennema-Notestine et al.,

submitted for publication) have shown that our method outper-

formed several others. We note that this method has been success-

fully used in many studies (Fischl et al., 2002, 2004; Salat et al., in

press).
This skull-stripping technique is part of the cortical surface

reconstruction and flattening software Freesurfer, associated with

Dale et al. (1999) and Fischl et al., (1999a,b, 2001).
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Fig. 14. An example of the function f used to compute the intensity

characteristics of white matter.
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Appendix A. To clarify the presentation, certain explanations,

which can be ignored in a first lecture of the paper, are

described in this section.

A.1 . Preprocessing

Computation of estimates of the CSF intensity, COG and brain

radius: Following the work of Stephen Smith in BET (Smith), we

first compute estimates of a set of parameters required for subse-

quent processing. These include an upper bound on the intensity of

the cerebrospinal fluid (CSFMAX), the coordinates of the centroid

of the brain (COG), and an estimate of the average radius of the

brain. We proceed as follows: Ignoring very bright and dark

voxels, which are defined as voxels whose intensity lies above

98% of the cumulative histogram of the image and below 2%,

respectively, the CSF threshold is set to lie 10% of the way

between the minimum intensity and the maximum intensity in

the image. This initial estimate is used to roughly distinguish

between brain and nonbrain tissues (cerebrospinal fluid, skull. . .).
Then, the voxels that are classified as brain are used to estimate the

centroid of the brain: every voxel, whose intensity is above the

previously calculated CSFMAX threshold, is used in a standard sum

of position weighted by their intensity. Finally, a rough estimate of

the brain/head radius is calculated.

Estimation of the white matter parameters: To determine the

white matter parameters, we construct a curve using the fact that, in

T1-weighted MRI, the white matter can be identified as a uniform

region localized in the center of the head, with a quasi-constant

intensity. The white matter parameters are computed from a cubic

region CR centered on the centroid of the brain volume. The length

of each edge of the cube is half the previously estimated brain radius

(see Fig. 2). Within this region, the number of white matter voxels

should be larger than the number of non-white-matter voxels, and

the corresponding average variance should be smaller. Therefore, we

build a histogram f indexed by the intensity i f: i i [n(i)]/[v(i)],

where n(i) is the number of voxels having an intensity equal to i, and

v(i) is the average variance of these voxels. The curve f should have a

sharp maximum for the white-matter-intensity values, leading to

histogram estimates that are not corrupted by presence of other tissue

classes. We proceed as follows.

For each voxel k within the cube, a 27-neighbor mean Ik and

variance vk is computed. For each intensity i encountered in the

region of interest, we calculate the number of voxels k having amean

intensity i: nðiÞ ¼
X

voxels k a CR
dðIk ; iÞ , where d is the classic

delta function: d(Ik,i) = 1 if Ik = i, 0 otherwise. The average variance

of these voxels is then equal to: vðiÞ ¼ 1
nðiÞ

X
voxels k a CR

dðIk ; iÞvk.
The function f, indexed by the intensity i, is used to calculate class

statistics of white matter. We first localize the main lobe of the

function f, defined as the region where f reaches its maximum fmax

(over a 5-point window), and for which f (i) is greater than fmax/3; the

bounds of the main lobe region are used to define WMMIN and

WMMAX. Fig. 5 provides an example. Then, within this region, we

calculate the average variance rWM of the white matter, using all

voxels with intensity within the main lobe of the function f (Fig. 14).

A.2 . The watershed algorithm

The watershed algorithm proceeds in two steps. We first apply

on the image a watershed transform as the one proposed by Hahn

and Peitgen in (2000). Then, we assess the validity of the

watershed segmentation and retrospectively correct it if necessary.
Watershed transform: The first step of the watershed algorithm

is the sorting of all voxels (of the gray level inverted image)

according to their intensity. Then, we process each voxel in

ascending order: If the voxel does not have any already processed

neighbors in its three-dimensional 6-neighborhood (i.e., voxels of

same or less intensity), a new basin is formed. This voxel

represents a local intensity minimum. Otherwise, we merge the

voxel with the deepest neighboring basin, i.e., the basin with the

darkest bottom voxel: ‘‘Voxel-basin merging’’. If two or more

neighbors have already been processed belonging to different

basins, these are tested for ‘‘basin-basin merging’’: All the neigh-

boring basins whose depth relative to the current voxel intensity is

less than or equal to the preflooding height hpf will be merged with

the same basin as the voxel itself, i.e., the deepest neighboring

basin (Fig. 15).

After the transform with an appropriate preflooding height,

one basin should exist that represents the whole brain, and will

include the previously identified white-matter voxel in ‘‘The

watershed algorithm’’ section above.

The complexity of the modified watershed transform is linear

in the number of voxels N (usually on the order of N = 256 �
256 � 256) for the voxel processing, and in the worst case

proportional to NlogN for the sorting. However, taking into

account the fact that the intensity of each voxel intensity can be

represented with a single byte (range from 0 to 255), we can

accomplish the sorting in N operations, resulting in a watershed

transform whose computational complexity is linear in the

number of voxels.

Post-watershed correction: The resulting image is often

inaccurate and nonsmooth, with extracerebral tissues and CSF

frequently remaining. In addition, some artifacts in the original

image, such as susceptibility artifacts, may cause an incorrect

segmentation. The brain may be split in two or more basins,

and the resulting segmentation may give an inaccurate result.

For these reasons, we automatically check the reasonableness of

the initial watershed segmentation and correct it where possible.

We first determine whether the size of the main basin seems to

be correct. We use the previously calculated brain radius to

estimate the volume of the brain, assuming spherical geometry. If

the size of the main basin is significantly smaller than the estimated

volume (four times smaller), we assume that the watershed

segmentation failed and needs to be corrected. This is accom-



Fig. 15. A simple illustration of the merging process. A basin is merged into a deeper basin, if and only if its depth relative to the current voxel intensity is less

than or equal to the preflooding height.
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plished by merging basins into the main basin representing the

initial segmentation. The basin we merge is one that is adjacent to

the main basin, localized in the white matter, and whose volume

would result in the segmentation being the closest to the estimated

brain volume. In the cases in which the watershed segmentation

fails, few basins are found and the chosen basin is often the

biggest. In our experience, this post-watershed basin merging

frequently results in a correct segmentation.

Nevertheless, some artifacts segment the brain in many equally

sized basins. In this case, further corrections are required. To correct

this type of failure, we merge all the ambiguous basins with the main

one. An ambiguous basin is defined as a basin that contains a

significant volume of white matter at its common border with the

already segmented basin. A voxel is said to be ambiguous if it is a

neighbor of themain basin, if its intensity is greater thanWMMIN and

smaller than WMMAX, with a variance smaller than rWM. If the

number of ambiguous voxels is greater than a specific threshold,

then we label this basin as ‘‘ambiguous’’, and merge it to the brain

basin. The empirical threshold, tm, we are using is equal to the cube

root of the considered basin size: if the number of ambiguous voxels

in an uncertain basin is greater than the cube root of its size, then we

merge it to the main one. We found that the use of a threshold

depending on the size of the targeted basin leads to better results: it

avoids merging some large basins with a comparatively small

number of ambiguous voxels. We iterate this process until no new

basin is merged with the main one. Usually, even with an over-

segmentation of the brain basin into many different smaller basins,

this post-watershed analysis merges most of them in a few passes:
Fig. 16. The smoothness update fraction.
typically 2 or 3. In our experience, most watershed segmentations

are correct and do not require post-watershed corrections.

A.3 . Deformable surface algorithm

Computation of the curvature reducing force, FS: The curvature

reducing force FS, which enforces a smoothness constraint on the

deformed template, is based on the work of Smith.

At each iteration t, for each vertex k, the mean position (x̄k
t

of all its neighboring vertices is calculated to form a difference

vector sk = xk
t � x̄k

t, which is decomposed into orthogonal

components, normal and tangential to the surface: sk = sk
n + sk

t.

The smoothness force used in Dale et al. (1999) is given by: FS

(xk
t) = ansk

n + atsk
t, with an and at as two constants (usually set

to 0.5). This approach can be significantly improved by making

an a nonlinear function of sk
n. In this way, small departures from

planarity are not penalized, while large ones are disallowed.

More specifically, we proceed as follows. We estimate the local

radius of curvature rk at vertex k: rk = (d̄k
2) / (2|sk

n|, where d̄k is

the average distance from vertex k to its neighboring vertices.

Then, the update fraction is set to a sigmoid function of rk:

an ¼ 1

2
1þ tanh B*

1

rk
� A

� �� �� �
;

with A and B equal to: A = [1/rmin] + [1/rmax] and B = 6[(1/rmin) �
(1/rmax)]. The two parameters rmin and rmax reflect prior hypotheses
Fig. 17. Construction of the CSF and GM curves.



Fig. 18. The CSF and GM curves.

Parameters Defined in. . . Estimated? Value

CSFMAX ‘‘Preprocessing’’

section;

Appendix A.1

Yes –

Brain radius, BR ‘‘Preprocessing’’

section;

Appendix A.1

Yes –

Centroid of

the brain, COG

‘‘Preprocessing’’

section; Appendix A.1

Yes –

White matter parameters,

WMMIN,

WMMAX and rWM

‘‘Preprocessing’’

section; Appendix A.1

Yes –

Preflooding height, hpf ‘‘The watershed

algorithm’’

section; Appendix A.2

No 25%

of IMAX

Post-watershed

threshold, tm

Appendix A.2 Yes
ffi

3
p

Global brain parameters,

lCSF, lGM,
rCSF and rGM

‘‘Initialization of the

deformable model’’

section;

Appendix A.3

Yes –

rmin ‘‘Active contour

formulation:

the parametric

deformable model’’

section;

Appendix A.3

No 3.33

rmax ‘‘Active contour

formulation:

the parametric

deformable

model’’ section;

Appendix A.3

No 10

(continued on next page)
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about the allowable curvature of the brain/nonbrain boundary and

are set to rmin = 3.33 and rmax = 10. The sigmoid function (see Fig.

16) penalizes high local mean curvatures of the surface, where 1/

rmin is assumed to be an upper bound to the expected local

curvature. Conversely, regions with low local mean curvature (of

the order of 1/rmax or smaller) are little regularized by the curvature

reducing force. Future work will incorporate atlas-based informa-

tion to locally set these two parameters.

Computation of global parameter: After the coarse initialization

described in ‘‘Initialization of the deformable model’’ section, we

need to compute a few parameters regarding the intensity values at

the brain/nonbrain boundary, such as the mean intensity and vari-

ance of CSF and gray matter. We compute these parameters by

examining the intensity values along the surface normals, extending

from a fewmillimeters inward to a fewmillimeters outward from the

previously calculated surface. Along these line segments, similarly

to the estimation of the white matter parameters in Appendix A.1, we

construct two global cumulative histograms, which reach their

maxima around the mean CSF and GM intensities (Fig. 17).

Construction of the CSF curve and extraction of some CSF

parameters: As part of the watershed processing, we have already

determined an upper bound CSFMAX for the value for the CSF

intensity (see ‘‘Preprocessing’’ section). This value now needs to

be refined. Our first estimation corresponds to a simple threshold

that has been set to roughly distinguish between brain and nonbrain

tissues, based on the cumulative histogram of the image. It did not

directly use CSF intensity information. However, the surface that is

a result of the coarse template deformation, described in ‘‘Initial-

ization of the deformable model’’ section, mostly passes through

‘‘dark’’ regions in the T1-weighted image, corresponding to CSF

or skull. For each vertex of the surface, looking 2-mm outward and

2-mm inward among 5 voxels, we find the voxel with the smallest

intensity, and keep it for the construction of the CSF curve if its

intensity Ik is less than 3 CSFMAX (we ignore bright areas where

the surface passes, such as the eye sockets):

fCSFðiÞ ¼
X

all kept voxels k

dðIk ; iÞ:

Following the same approach as for the estimation of the white

matter parameters, we localize the main lobe of the function f: we

find the maximum of the curve, i.e., the new CSF intensity value

lCSF, and identify two inferior and superior limits of the main lobe:

CSFMIN and CSFMAXr. GM. Fig. 18 shows an example of the CSF

curve. Then, we estimate the variance of the CSF: Every voxel

with intensity within the main lobe is used to compute a maximum

likelihood estimate of the variance rCSF.
Construction of the gray matter curve: The gray matter curve is

obtained looking 20-mm along the inward normal. Along the

normal of each vertex of the tessellation, progressing iteratively

mm-by-mm inward, we search for a uniform white matter area, that

we defined as a 3* 3* 3-voxel region, in which the average

intensity falls between WMMIN and WMMAX, with a variance is

smaller than rWM. As soon as we succeed in localizing this area,

meaning that we have identified a uniform white-matter region

along the inward normal, we use the voxels located along the

normal, between this area and the tessellated surface, to increment

a cumulative histogram, as we previously did for the CSF curve.

These voxels, bounded by white-matter voxels and CSF ones, are

expected to represent gray matter. Then, we extract the gray matter

parameters, such as the GM mean intensity lGM and variance rGM

(see Fig. 18). We note that some WM regions might be ignored in

certain parts of the brain due to intensity inhomogeneities or noise

differences, leading to biased estimates of the brain parameters.

However, the goal of this coarse estimation is to generate a unique

threshold able to roughly distinguish between GM and CSF. The

contrast between gray matter and CSF is usually sufficiently large

that using unique predefined global transition intensity should

suffice to distinguish the two tissues. Besides, the number of

iterations in the subsequent iterative surface deformation is re-

stricted to a few iterations, preventing large departures from the

coarse initialization.

A.4 . Table of parameters



Parameters Defined in. . . Estimated? Value

kD ‘‘Local parameters

estimation

and final deformation’’

section

No 0.25

kC ‘‘Local parameters

estimation

and final deformation’’

section

No 0.025

Convergence

threshold

‘‘Local parameters

estimation

and final deformation’’

section

No 0.5 mm

Table (continued)
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