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Adaptive Nonlocal Filtering:
A Fast Alternative to Anisotropic
Diffusion for Image Enhancement

Bruce Fischl and Eric L. Schwartz

Abstract—Nonlinear anisotropic diffusion algorithms provide
significant improvement in image enhancement as compared to linear
filters. However, the excessive computational cost of solving nonlinear
PDEs precludes their use in real-time vision applications. In the
present paper, we show that two orders of magnitude speed
improvement is provided by a new image filtering paradigm in which an
adaptively determined vector field specifies nonlocal application points
for an image filter.

Index Terms—Segmentation, diffusion, scale-space, anisotropic
diffusion, nonlinear diffusion, filtering, permutation filter, nonlocal filter.
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1 INTRODUCTION

MANY early vision systems employ some type of filtering in order
to reduce noise and/or enhance contrast in regions that corre-
spond to borders between different objects within an image. The
logical extreme of this process is the creation of a piecewise con-
stant image with step discontinuities at region boundaries. This
goal is unattainable using linear filtering techniques, as noise re-
duction blurs the locations of boundaries between regions, some-
times to the point of fusing them.

In order to address this problem, Perona and Malik [27], [28]
introduced a nonlinear version of the diffusion equation previ-
ously used by Koenderink and Hummel [17], [16] for early visual
processing. In this formulation, image intensity is treated as a con-
served quantity and allowed to diffuse over time, with the amount
of diffusion at a point being inversely related to the magnitude of
the intensity gradient at that location. This process produces visu-
ally impressive results in terms of the creation of sharp boundaries
separating uniform regions within an image, but is computation-
ally expensive (see [11] or [30] for a more complete discussion of
these issues).

Because of the extremely high computational cost of nonlin-
ear diffusion approaches, we recently introduced an adaptive
technique which provides an approximate “Greens Function”
kernel, transforming the partial differential equation describing
diffusion into an integral equation [12], [11]. The advantage of
this approach is that the kernel estimator can be trained off-
line, since the adaptive process generalized extremely well, and
the run-time application of filtering with the approximated
“Greens Function” can then be performed in a single-time step.
This allows the intrinsically serial PDE diffusion approach to be
replaced by a parallelizable integration, yielding roughly an
order of magnitude improvement in performance even on a
serial architecture.

An alternative approach to nonlinear image enhancement was
developed by Nitzberg and Shiota [25], whose nonlinear filter has
excellent performance, comparable to nonlinear diffusion meth-
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ods, and whose theoretical basis includes the notion of “offset fil-
tering” as developed in the present paper.

Specifically, Nitzberg and Shiota introduced an offset term
which displaces kernel centers away from presumed edge loca-
tions, thus enhancing the contrast between adjacent regions with-
out blurring their boundary. While their technique works well for
many images, we have found that the particular offset field that
they used does not perform adequately in images which contain
edges at different scales, unless it is applied iteratively, a computa-
tionally expensive procedure. Since their nonlinear filter combines
the “offset” and “filtering” functions in a single (eight-parameter)
expression, it is difficult to design a filter that performs adequately
for a variety of images. Moreover, the resulting application re-
quires large and complex kernels and is therefore still extremely
slow, as was the case for the original nonlinear diffusion ap-
proaches. The key idea of the present paper is that by separating
the estimation of an offset vector field from image filtering per se,
we obtain a simpler, more robust and faster class of algorithms. We
show in this paper that these “nonlocal” filters have better per-
formance than the original Nitzberg-Shiota method, and provide
results comparable to nonlinear anisotropic diffusion methods,
with a speed-up of roughly two orders of magnitude. This enables
the use of anisotropic diffusion methods, for the first time, in real-
time vision applications.

Of equal importance, from an implementation point of view,
the nonlocal filtering is attractive as it can be carried out as a post-
processing procedure. This allows us to apply the desired filter
(e.g., 3 x 3 median filter) to the original image, and then use the
offset vector field, in the form of a spatial look-up table (LUT), to
produce the final result by a simple pixel permutation. This tech-
nique permits conventional hardware (e.g., fast 3 x 3 filtering)
and/or existing code to be applied, unchanged, to produce results
which appear comparable to the much more computationally expen-
sive nonlinear diffusion methods. In addition, the modularization of
this method in terms of a separate generalized skeletonization op-
eration, coupled with a simple single scale (but nonlocally ap-
plied) image filter, should allow for efficient and easy develop-
ment of hardware and further improved algorithmic aspects of
the procedure.

2 IMAGE FILTERING AND DISPLACEMENT VECTOR
FIELDS

The purpose of filtering an image is to exchange the intensity
value at each pixel for some linear or nonlinear function of its near
neighbors, with the intent of producing a pixel value that is more
representative of the region in which it lies. In image regions
which correspond to the interior of an object this type of filtering
produces desirable results. However, pixel values that lie on the
border of two regions are not representative of either, but rather of
some intermediate value. In this case, instead of calculating a new
value for the border pixel using neighboring intensities, it is more
effective to use a neighborhood which is offset in the interior di-
rection from the edge, and thus more representative of the interior
values. A useful metaphor for this procedure is to imagine that the
boundary “repels” the filter, pushing it into the interior of a region.

Offset filtering requires the generation of a vector field over the
image domain which specifies an appropriate displacement at
each point. Intuitively, the displacement direction should be either
parallel or antiparallel to the dominant local gradient direction,
based on which interior region the point is judged to be a member
of. Nitzberg and Shiota [25] proposed a method based on gradient
direction as well as magnitude which performs well, but fails in
regions which contain edges at a number of scales, an issue we
resolve in the computation of our offset field.
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3 NONLINEAR FILTERING VERSUS ANISOTROPIC
DIFFUSION

The key idea for simplifying computationally intensive approaches
to nonlinear diffusion came from earlier work, in which we stud-
ied the structure of the intermediate kernels produced by the nu-
merical integration of standard nonlinear diffusion image seg-
mentation algorithms [11]. In this work, it became apparent that
most of the detailed structure, produced at great computational
cost, of the intermediate diffusion kernels was not relevant to the
final goal of enhancing and segmenting images. It appeared that a
few relatively simple kernels, when applied at an appropriate off-
set relative to image discontinuities, were doing the effective work
of the algorithm, while the high-spatial frequency details of kernel
structure were basically irrelevant.!

We exploited this observation by simplifying the final kernels
via blurring and principal components analysis. We then em-
ployed a nonlinear adaptive function approximator to “learn” how
to produce an approximation to the final desired nonlinear diffu-
sion kernel, using 3 x 3 Sobel gradient estimates to initialize the
learning algorithm. This approach, which obviously could be ap-
plied to a wide variety of nonlinear diffusion and filtering appli-
cations, generalized well and provided about an order of magni-
tude speed-up. Also, by allowing us to estimate the final kernel, or
“Greens Function Appoximator” as we termed it, we changed the
iterative, sequential diffusion process into a potentially parallel,
one step integration.

In the present paper, we show a further exploitation of the rela-
tively low information content of the intermediate diffusion ker-
nels that has led both to an additional order of magnitude increase
in speed, and also to what we believe is an important insight into
the structure of geometry driven image enhancement algorithms.
This insight is that the diffusion process itself, as well as the de-
tailed kernels (filters) it generates, is largely irrelevant to the re-
sults achieved. The key action of this class of algorithms appears to
consist of two distinct components. The first is the construction of
an “offset” vector field, which specifies the location, direction and
magnitude at which a filter is to be applied. The second is the na-
ture of the filter itself. We have found that the filter specification is
relatively unimportant, from the point of view of image segmenta-
tion: Gaussian low pass filters, median filters, and band-pass filters
of various characteristics all produce similar results, when applied
at the correct vector field locations. The determination of the offset
vector field is itself crucial, and we supply a simple and fast algo-
rithm for determining this vector field, which is a form of skeleto-
nization of the image with respect to its implicit edge structure.

The use of offset filters in the context of nonlinear diffusion and
segmentation, was first suggested by [25]. This algorithm produces
results which compare favorably to those produced by nonlinear
diffusion methods, but shares with them the problem of being too
computationally intensive for use in real-time machine vision. The
principle practical contribution of the present algorithm, which
will now be presented, is simplification, improved performance,
and roughly two orders of magnitude of speed increase. The prin-
ciple theoretical contribution of the present algorithm is the com-
bination of two different aspects of image processing, i.e., gener-
alized skeletonization in the form of an offset vector field, and
conventional image filtering, and the demonstration of what ap-
pears to be the core element of contemporary nonlinear diffusion
algorithms.

1. The enhanced image which results from applying the diffusion kernels
is actually quite insensitive to the spatial structure of the kernels. Blurring
and/or thresholding of the kernels results in images which are visually
indistinguishable from the image generated by the full diffusion process.

4 OFFSET VECTOR FIELD COMPUTATION

Filtering with a kernel that is symmetric around the central pixel
results in averaging of edge values, and therefore blurring of the
edge. In order to alleviate this problem Nitzberg and Shiota pro-
posed an offset term which “pushes” the center of the kernel away
from the point being filtered. The purpose of generating this type
of offset vector field is to displace filters away from border areas.
We have found that a reasonable means of accomplishing this is to
displace in the direction normal to the boundary of a region, as
this is the direction with no component along the edge. In order to
compute this type of vector field, three issues must be addressed,
each of which depends on an estimation of the position and ori-
entation of the local edge, if one exists.

The first is the determination of the normal vector itself. Since
the gradient is normal to the level sets of an image, using the gra-
dient direction as an estimation of the normal is a reasonable ap-
proach. Once the normal vector has been computed, it must be
assigned a sign. That is, a determination must be made as to
whether the displacement should be in the direction of increasing
or decreasing gradient. This choice reflects a decision as to which
region the point in question has been assigned—the region at the
“top” of the gradient, or the region at the “bottom.” The criterion
for making this choice is to attempt to displace away from the
midpoint of the presumed edge location. Finally, once the normal
vector and its sign have been fixed, the magnitude of the dis-
placement must be determined. This is a critical decision, as the
magnitude must be sufficient to displace the kernel entirely out of
the border area, but small enough to avoid displacing it out of
small regions representing fine-scale image structure.

The offset vector field v(z) can be written as’

O(2)
V(z) = m(2)d(z) ——,
()= e gy
O(z) in (1) is the offset orientation, and refers to the choice of the
normal vector. Offset direction, denoted d(z), is a binary value
(1 or -1) corresponding to the choice of a sign for the normal vec-
tor. The offset direction term determines whether the offset vector
is in the orientation direction or the opposite one (i.e., orientation
+ 7). Finally, offset magnitude m(z) encodes the length of the offset
vector. In this section we will outline a simple procedure for com-
puting each of these quantities.

z=[x y]'. @

4.1 Offset Orientation

The orientation of the offset vector at each point in an image
should reflect the estimated orientation of the local edge, if one
exists. Specifically, we wish the offset orientation to be orthogonal
to that of the local edge, and hence normal to the boundary. A
simple means for accomplishing this in a manner insensitive to
noise is to use the gradient of the smoothed image. Denoting the
smoothed image by I, the offset orientation at the point is then
given by

O(z) = VI(z2). )

4.2 Offset Direction

Once the offset orientation has been fixed through (2), the direction
of the offset field must be computed, corresponding to the choice
of sign of the normal vector. The choice of direction is therefore a
binary one, and can be seen as a preliminary, local segmentation
decision, reflecting whether the current point has been assigned to
the region at the top of the local intensity gradient or to the region
at the bottom. Note that this decision is made on a per pixel basis,

2. Each of these quantities is also a function of the image intensity gradi-
ent. We suppress this functional dependence to avoid unnecessary
notational clutter.
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so it amounts to a form of evidence gathering, and is, in our expe-
rience, quite robust over a wide range of images, as illustrated by
results presented later in this paper.

The direction calculation is intended to determine which side of
the center of the local edge the current point is on, as computed
using two criteria. The first is that we only wish gradients which
are similar to the offset orientation to contribute significantly to the
choice of direction. This discounts nearby corner and/or noise-
induced gradients which do not contain information about the
local point. The second criterion is that gradients of the proper
orientation on one side of a point with respect to the offset orien-
tation should contribute towards a displacement in the opposite
direction. Combining these two constraints yields the following
expression for the calculation of offset direction.

d(z) = -sgn J(O(z) Mi(z + 2'))(O(z) ')dz’ |, ®3)
w

where sgn is the sign function and z' refers to (x, y) coordinates
relative to the filter center. The first term in (3) reflects the first
criterion given above: it weights gradients in the offset direction
more strongly than those at other orientations. As noted previ-
ously, this term is important as it discounts noise and corner-
induced gradients. The second term represents the second con-
straint, and is similar to computing a first moment. It weights the
contribution of a point based on its distance in the direction or-
thogonal to the estimated local edge. Points with an appropriate
gradient (as computed via the first term) that are distant from the
central point indicate the presence of an edge in that direction, and
hence push the offset in the opposite direction. If d(z) is positive,
the displacement direction is in the orientation direction, otherwise
it is in the opposite direction.

4.3 Offset Magnitude

Once the offset direction and orientation have been fixed, all that
remains to be determined is how far the displacement should be in
the selected direction. This is a critical decision, as the displace-
ment must be large in broad edges, but small in regions which
contain small-scale image structure. In order to satisfy both these
constraints, we use a one-dimensional search mechanism which
allows the offset magnitude to grow based on information outside
the window W. Specifically, we search in the offset direction for a
zero crossing of the vector field in that direction (i.e., until the dot
product of the offset at the central point with a point in the offset
direction is nonpositive). This indicates that the vector field has
either vanished, signifying the interior of a region, or has changed
orientation by at least 90°, possibly indicating the presence of the
far edge of the region. The dot product therefore provides a barrier
which prevents the offset vector from extending across additional
edges in the offset direction.

The offset calculation is thus a two step procedure. First, an ini-
tial offset field is computed using (2)-(3) via

vi(2) = d(2)0(2). )

Next, we search in the offset direction for the first point z’ such

that the dot product of the initial offset at z’ with the initial offset
at the central point z is nonpositive.

m(z) = mina : v(z +av,(2)) (2) < 0 (5)

Finally, we form the final vector field using m(z) as the magnitude
of the initial vector field

zZ)=m(z Vi(z)
@)= mar o

It is worth noting that the adaptive offset magnitude embeds a
different notion of scale into offset filtering than is usually used in

(6)

contemporary applications of diffusion or scale-space architec-
tures. The diffusion formalism grew out of linear filtering tech-
niques such as those of Burt [5], Witkin [35] and Marr [23]. In these
approaches, the scale of a feature is defined by the size of the
kernel required to detect it. In the anisotropic extension of the dif-
fusion paradigm, scale is associated with integration time modu-
lated by local gradient magnitude, and by extension with the dis-
tance across which intensity values diffuse to arrive at a given
location. Regions of high gradient inhibit the amount of diffusion,
and are thus associated with a smaller scale than smoother image
areas. The integration of the anisotropic diffusion equation there-
fore results in intensity values near edges being replaced with
smoothed versions of interior intensity values from the direction
away from the local edge. In our approach, the relationship be-
tween scale and distance is made explicit via the magnitude of the
displacement vector at a given location. Larger scale (i.e., more
blurred) edges result in longer displacement vectors, but no
change in filter size. Conversely, the presence of small scale image
features constrains the length of the displacement vectors, pre-
serving the features in question. The smoothing associated with
diffusion can then be accomplished using any of a variety of stan-
dard fixed-size filters, which are applied nonlocally at the offset
location.

5 POSTPROCESSING WITH DISPLACEMENT VECTOR
FIELDS

The most straightforward implementation of offset filtering is to
apply the displaced filter directly to the (remote) pixel neighbor-
hood. However, filtering with a displacement vector field can be
formulated in a different way which greatly simplifies both soft-
ware development, and potential hardware implementation of this
process. The offset filter process outlined in Section 4 is identical to
filtering an image without a displacement vector field, then using
the displacement vectors to shuffle the positions of the image in-
tensity values.? In this way, the value at each point in the filtered
image is replaced with the value at the location specified by the
displacement vector field.

The transformation of the offset filtering into a postprocessing
procedure has a number of notable advantages. Most impor-
tantly, it allows efficient implementations of offset filtering using
existing algorithms and fast hardware. The median filter is an
excellent example of this process, since efficient implementations
exist which make use of the overlap of neighboring windows to
speed up the median computation [15], [9]. Straightforward use
of displaced windows renders this method inapplicable. How-
ever, applying the displacement vectors after the application of a
standard median filter enables the use of this type of optimiza-
tion. From an implementation standpoint, the postprocessing
procedure obviates the need to modify each individual filter to
employ a displacement field. Furthermore, postprocessing per-
mits the offset computation to be carried out on the smoother
filtered image. The postprocessing approach is obviously ad-
vantageous with respect to both hardware development, as the
pixel permutation procedure has a straightforward hardware
implementation, as well as software implementations, because
the filters can be developed independently from the application
of the offset field.

Finally, we have typically found that only a relatively small
percentage of image values are used in this technique (30 percent

3. This is true for image-independent filters such as the mean or median.
For the Nitzberg-Shiota type nonlinear filter this technique uses the filter
shape at the remote location as opposed to the shape at the current pixel.
This is probably advantageous as it is the structure of the neighborhood
around the filter we are concerned with, not that around the pixel being
assigned a new value.
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(b) (c)

Fig. 1. Postprocessing with an offset vector field. (a) Image filtered with standard (i.e., nonoffset) median filter. (b) Offset locations computed from
median filtered image. Pixel intensity indicates the number of image locations mapped to each location. Light spots indicate positions whose in-
tensity values are used in final image (c), while dark regions are not used. This indicates the generalized “skeletonization” associated with the
offset vector field. In this particular case, the offset field is similar to a medial axis transform.
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Fig. 2. Plot of the cost of the different filtering methods as shown in Table 1. The timing is based on filtering a 64 x 64 pixel image on a Sparc-10.
The anisotropic diffusion requires between 15 and 16 seconds to complete 50 iterations on this size image, and extends off the top of the graph.
The Nitzberg-Shiota filtering was applied iteratively (three applications) using an 11 x 11 filter and a 7 x 7 window size for the vector field calcula-
tion, resulting in a processing time comparable to that of the anisotropic diffusion. The other filters all use a 3 x 3 window size.

or less depending on the noise and small scale structure present
in the image). This implies that the filter computation can be
limited to these sites, providing an increase in speed by a factor
of three or more. Examining the distribution of these locations, as
depicted in Fig. 1, verifies the behavior of the algorithm. Intensi-
ties in the central image indicate the number of locations
mapped to each pixel.4 The most used locations tend to be clus-
tered close to the center of each region, giving the image the ap-
pearance, for some image structures, of a form of skeletonization
similar to a medial axis transform [1]. This occurs due to the
search in the offset direction, which proceeds until the vector
field reverses direction due to the influence of either an edge in
the search direction, or a relatively homogenous region which
gives rise to small offset vectors. In some cases, as we have
shown, this is close to the medial axis of the region, as it contains
intensity values which are more representative of the typical
intensity than are intensities close to the border. Nevertheless, it
must be emphasized that the medial axis per se occurs in this
particular example because of a favorable relation between the
window size (i.e., the size of the smoothing kernel) and the scale
of the image features. For image structures which are large rela-
tive to the window size, the offset locations will occur on an inte-
rior border of the region, which may be far from the medial axis.
A more correct statement of the nature of the offset vector field is
that although in some cases it is medial axis in appearance, in
general it is a form of adaptive skeletonization that is more gen-
eral than the medial axis.

These observations are of interest as there is recent physiologi-
cal [20], [21], [19] as well as psychophysical [13], [18] evidence for

4. This image is actually the log of the mapping frequency plus one. The
compression is necessary for display purposes.

the importance of structures which vaguely resemble the medial
axis in primate visual systems. These findings have given rise to a
number of computational models which make use of the medial
axis as a shape descriptor [1], [2], [3], [4] or for image enhancement
[26], [22]. In our approach, the skeletonization is generated as a by-
product of contrast enhancement and noise reduction. The image
skeletonization is performed not as an end, or for shape descrip-
tion, but merely as the locus of points at which offset filters will be
located to provide image contour enhancement.

6 RESULTS

In this section, we present a comparison of an offset median filter
with a standard median filter as well as the result of using aniso-
tropic diffusion for image filtering. We use the median as it is a
nonlinear filter with good noise suppression capabilities at rela-
tively low computational cost. The Perona-Malik technique for
nonlinear diffusion is not noise-tolerant [34], [7], [10], and is hence
inappropriate for comparison purposes. For that reason, the im-
ages presented in this section are generated using the mean cur-
vature based diffusion algorithm of El-Fallah and Ford [10] which
has good noise-suppression qualities (50 iterations of diffusion,
with A = 500). For comparison purposes we also present images
filtered with a standard Gaussian (o = 2), an offset Gaussian, as
well as the nonlinear filter of Nitzberg and Shiota outlined in Sec-
tion 3.2. This highlights an additional advantage of nonlocal fil-
tering: the choice of filter can be made independently from the use
of the offset vector field, perhaps on the basis of estimated image
statistics.

The offset computation slows down the median and Gaussian
filters by a factor of six or seven, but is still approximately an order
of magnitude faster than our earlier Greens Function approxima-
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TABLE 1
COMPARISON OF DIFFERENT TYPES OF FILTERING

original

Gaussian
filter

median filter

offsset
Gaussian

offset
median filter

Nitzberg-
Shiota filter

Anisotropic
diffusion

tion to nonlinear diffusion [11], [12], which was itself roughly an
order of magnitude faster than the nonlinear diffusion process.>®
Running on a 50 MHz Sparc-10 workstation, a 3 x 3 median filter
applied to a 64 x 64 pixel image requires approximately 0.06 sec-
ond. Using the displacement vector field increases the time to 0.35
second, while the 50 time steps used to integrate the anisotropic
diffusion necessitate between 15 and 16 seconds. These results
together with timing for the other filters presented below are
summarized in Fig. 2. The Nitzberg-Shiota algorithm was found to
perform well using an 11 x 11 filter (filter parameter o = 0.02,
p1i(X, ) = pa(X, ¥) = ps(x, y) = N(O, 2)) in conjunction with a 7 x 7
window for their vector field calculation (¢ = 0.05, ¢ = 3), result-
ing in a computational expense comparable to that of anisotropic
diffusion.

Table 1 contains the results of the six different types of filter-
ing noted above. Every second row shows edge maps generated
using a Canny edge detector [6] on the output of each filter.
These maps are useful as a means of qualitatively comparing the
different filtering techniques, since they are directly dependent
on the preservation of the differential structure of the image. As
can be seen from these results, the median filter is adequate for
noise reduction, but does not increase contrast, and therefore is
unable to recover edge information which is not of sufficient
strength in the initial image to be recognized by the Canny de-
tector. In contrast, the anisotropic diffusion increases contrast,
and has reasonable noise reduction properties, although it tends
to lose high curvature points such as the corners of the charac-
ters. The application of a displacement vector to the median filter
retains its noise reduction qualities, but also enhances contrast,
bringing out edge information that the Canny detector does not
identify in the initial image. The Gaussian filter used in conjunc-
tion with the adaptive length displacement vector field gives

5. All these algorithms have the same computational complexity depend-
ence on the number of pixels in the image (assuming a fixed number of
iterations for the PDE integration). We use 64 x 64 pixel images as an exam-
ple, but the relative computational times are invariant to the number of
pixels in the image.

6. Recent work using implicit integration schemes has sped up the inte-
gration of the nonlinear diffusion PDE by an order of magnitude [31], [33],
[32].

(Table 1 continues on next page)

comparable results, with the median probably yielding the best
noise-suppression for the 3 x 3 size.

7 CONCLUSION

Linear filtering can be used to efficiently reduce noise in images at
the cost of blurring and possibly fusing region boundaries. Non-
linear techniques are useful in this context, resulting in both con-
trast enhancement as well as noise reduction. The general goal of
the various approaches that have been developed is to avoid
“smoothing” across edge structure in the image, while smoothing
along the edge structure. Anisotropic diffusion equation based
methods achieve this by modifying the diffusion constant adap-
tively so that more diffusion occurs along, as opposed to across
edges [27]. Neural network approaches achieve similar goals by
emulating this behavior with detailed networks of model neurons
[8], [14]. However, the computational cost of these algorithms pro-
hibits their use in real-time or quasi-real-time vision applications.
In this paper, we have presented an alternative technique,
which modifies the use of standard image filters such as the mean
or median, to make use of displacement vector fields. The dis-
placement vectors push kernels away from edge regions, prevent-
ing edge blurring and destruction, while achieving results which
appear to be qualitatively similar to diffusion based approaches,
but with considerable computational savings. The motivation for
this idea came from a detailed study that we made in previous
work in which we examined the effective kernels produced by
several different anisotropic diffusion methods. It was clear from
this work that the diffusion equation was overfitting the final im-
age to the fine-grained “noise” in the image, and could be replaced
by the offset vector field method outlined in this paper. We have
found this method to hold up well for a wide variety of images,
and in all cases to provide significant improvements in speed of
computation. Combining the nonlocal filtering with a space-
variant vision representations (e.g., [29]) we have achieved frame-
rate enhancement.” In principle, the conjunction of these two tech-
niques can provide three to five orders of magnitude of speedup

7. We have run the nonlocal filtering at over 30 Hz on a 180 MHz dual P6
using a relatively large (80 x 64 pixel) log map.
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TABLE 1 (CONTINUED)

original median filter

Gaussian offset offset Nitzberg- Anisotropic
filter Gaussian median filter Shiota filter diffusion

over conventional anisotropic diffusion on space-invariant image
architectures (two orders of magnitude in the diffusion stage, and
one to three orders of magnitude from the space-variant pixel
compression).

In summary, we have outlined a new approach to image filter-
ing which achieves results that are comparable to nonlinear diffu-
sion, but with a much simpler and faster implementation. This
work has the following practical advantages over other methods
with similar goals:

. Speed: The offset vector filter is approximately two or-
ders of magnitude faster than nonlinear diffusion, and
roughly one order of magnitude faster than the Greens
Function approximator [11], [12] to nonlinear diffusion.

. Hardware application: By using the image permutation
form of the offset vector filter, it is possible to use existing,
or future, fast filter hardware, and a simple spatial LUT or
image permutation, to implement the nonlocal filtering.

. Algorithm design: By separating the process into a gen-
eralized skeletonization (i.e., determing the location, direc-
tion and magnitude of the offset vector field), and a simple
single scale filter, the design of new versions of this class of
algorithm is greatly simplified.

Finally, from a theoretical point of view, the following insights

are provided by this work:

e The desirable aspects of scale-space methods are retained
without the need to explicitly introduce scale, which is rep-
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resented in this method by the magnitude of the offset vec-
tor field.

The desirable performance of nonlinear diffusion is retained
without reference to any underlying diffusive, or intrinsi-
cally serial, process.

Nonlocal filter operators, implicit in the work of Nitzberg
and Shiota, are explicitly developed in this paper.

The combination of two very different aspects of image
processing (i.e., generalized skeletonization, as represented
by the determination of the offset vector field locus, direc-
tion, and magnitude) with conventional image filtering,
seem to offer a fertile area for future development.
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