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Abstract. Many computer and robot vision applications require multi-scale image analysis. Classically, this has
been accomplished through the use of a linear scale-space, which is constructed by convolution of visual input
with Gaussian kernels of varying size (scale). This has been shown to be equivalent to the solution of a linear
diffusion equation on an infinite domain, as the Gaussian is the Green’s function of such a system (Koenderink,
1984). Recently, much work has been focused on the use of a variable conductance function resulting in anisotropic
diffusion described by a nonlinear partial differential equation (PDE). The use of anisotropic diffusion with a
conductance coefficient which is a decreasing function of the gradient magnitude has been shown to enhance edges,
while decreasing some types of noise (Perona and Malik, 1987). Unfortunately, the solution of the anisotropic
diffusion equation requires the numerical integration of a nonlinear PDE which is a costly process when carried out
on a uniform mesh such as a typical image. In this paper we show that the complex log transformation, variants
of which are universally used in mammalian retino-cortical systems, allows the nonlinear diffusion equation to be
integrated at exponentially enhanced rates due to the nonuniform mesh spacing inherent in the log domain. The
enhanced integration rates, coupled with the intrinsic compression of the complex log transformation, yields a speed
increase of between two and three orders of magnitude, providing a means of performing rapid image enhancement
using anisotropic diffusion.

Keywords: anisotropic diffusion, complex log map, space-variant vision, image enhancement, polar exponential
grid

1. Introduction

Multi-scale image enhancement and representation is
an important part of biological and machine early vi-
sion systems. The process of constructing this repre-
sentation must be both rapid and insensitive to noise,
while retaining image structure at all scales. This is
a complex problem as small-scale structure is diffi-
cult to distinguish from noise, while larger scale struc-
ture requires more computational effort, and can be
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hard to accurately localize. Errors can also arise when
conflicting results at different scales require cross-scale
arbitration.

Attempts to solve problems of this type resulted in
the linear scale-space formulation of Witkin (1983)
in which an image is convolved with Gaussian ker-
nels of various sizes. Edges delineating the bound-
aries between objects can then be found in a number of
ways, for example, by tracing the zero-crossings of the
Laplacian through scale-space, similar to the manner
proposed by Marr and Hildreth (1980). This approach
is problematic as the zeros can change position and dis-
appear as scale-space is traversed due to the influence
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of neighboring structure. In this situation it is unclear
how to arbitrate between conflicting results at different
scales.

Koenderink (1984) and Hummel (1986) pointed out
that the one parameter family of images comprising
scale-space can be equivalently viewed as snapshots of
the time-evolution of the diffusion (or heat) equation:

It = c1I , (1.1)

whereI is the intensity image,c is a diffusion constant,
It is the partial derivative ofI with respect to time, and
1 is the Laplacian operator with respect to the spatial
coordinates.

The diffusion equation provides a mathematical
framework with which to analyze the scale-space for-
malism, but it does not address the issue of cross-scale
comparison. While Koenderink restricted his analy-
sis to isotropic diffusion characterized by the linear
heat equation, Perona and Malik (1987, 1990) sug-
gested that a nonlinear anisotropic version of the heat
equation could remedy some of the difficulties encoun-
tered in the use of a linear scale-space. This followed
earlier psychophysical and neurophysiological model-
ing work which used variable (edge determined) dif-
fusion to account for a variety of human perceptual
phenomena (Cohen and Grossberg, 1984; Grossberg
and Mingolla, 1985). Perona and Malik proposed the
following equation in which the conduction coefficient
is not constant in space, but is rather a function of the
magnitude of the intensity gradient of the image:

It = ∇ · [c(|∇ I |)∇ I ]. (1.2)

In this way, the amount of diffusion at each point in
space is modulated by the functionc(|∇ I |), and the
image gradient at that point. They chose to makec(·) a
decreasing function of the image gradient magnitude,
so that regions of high contrast undergo less diffusion,
and are therefore preserved over time. This is in con-
trast to the linear heat equation which blurs uniformly,
destroying small scale structure as time evolves. Sys-
tems such as Eq. (1.2) are intended to yield a single
intensity image which retains edge information at all
scales of interest, thus obviating the need for any type
of cross-scale arbitration.

The Perona-Malik Eq. (1.2) is a nonlinear partial
differential equation (PDE) of a type which is diffi-
cult to analyze. It has been suggested (Nitzberg and
Shiota, 1992) that (1.2) is unstable for some parameter

regimes, although this is still a point of investigation
(Perona et al., 1994). Furthermore, it can amplify small-
scale noise which gives rise to high gradient magni-
tudes. Many variants of the Perona and Malik scheme
have been proposed to improve its sensitivity to noise,
its speed, its instability, and its equilibrium behavior
(Alvarez et al., 1992; Alvarez and Mazorra, 1994; Catte
et al., 1992; Cottet and Germain, 1993; Dang et al.,
1994; El-Fallah and Ford, 1994; Engquist et al., 1989;
Illner and Neunzert, 1993; Li and Chen, 1994; Nitzberg
and Shiota, 1992; N¨ordstrom, 1990; Osher and Rudin,
1990; Pauwels et al., 1993; Price et al., 1990; Whitaker
and Pizer, 1991; Whitaker, 1993; Kacur and Mikula,
1995; Fischl and Schwartz, 1996, 1997a, 1997b; Shah,
1996; Malladi and Sethian, 1995).

The diffusion paradigm, while impressive in the
quality of the images it produces, suffers from a num-
ber of drawbacks. The most prominent of these is
the computational cost of the algorithms used to in-
tegrate the PDEs, coupled with their inherently serial
nature. This makes them problematic as models of
actual neural processes, as well as impractical for use
in real-time or quasi real-time machine vision applica-
tions. The biological difficulties stem from the rapid
nature of perception relative to neural conduction de-
lays and peak firing rates (≤200 Hz). Psychophysical
and neurophysiological experiments indicate that per-
ception can occur as rapidly as 100–150 ms (Thorpe
and Imbert, 1989; Oram and Perrett, 1992) which is
only 40 ms or so longer than the latency of cells in pri-
mary visual cortex (Vogels and Orban, 1991). Using
these figures together with typical firing frequencies
and synaptic transmission delays, Thorpe and Imbert
argue that the number of synaptic connections (as-
sumed to be equivalent to the number of serial steps)
used by the visual system in rapid identification tasks
is somewhere between 10 and 50, although probably
closer to the lower bound (Thorpe and Imbert, 1989).
Thus, while complex processing is possible in these sit-
uations, it is almost certainly parallel in nature, ruling
out numerical schemes which require more than a few
iterations. In other work (Fischl and Schwartz, 1997a,
1997b) we have discussed the more general problem
of rapidly obtaining diffusive effects using a minimal
number of serial steps. In contrast, this paper specifi-
cally addresses the advantages derived from the use of
diffusion in a space-variant coordinate system.

Almost without exception the use of anisotropic dif-
fusion in machine and biological vision research has
been performed in the space-invariant or Cartesian
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domain. However, it has been shown that the map-
ping from the mammalian retina to striate cortex is
a space-variant one which can be well approximated
by a complex log transformation (Schwartz, 1977,
1980) and more accurately by numerical conformal
mappings which have qualitatively similar structure
(Schwartz, 1994). Despite some notable advantages
(dramatic pixel count reduction, quasi size and rotation
invariance), the complex log map has not been widely
used in the machine vision community. In large part
this has been due to the lack of shape invariance under
translation, which severely complicates object recog-
nition. This drawback has recently been addressed via
the development of a fast exponential chirp transform
(Bonmassar and Schwartz, 1995), allowing frequency
domain techniques to be applied in the complex log
domain at video frame rates using a single DSP chip.

In this paper we derive the form that the nonlinear
diffusion equation takes in the space-variant coordi-
nate system, and show that performing diffusion af-
ter a log mapping has a number of notable benefits.
Most importantly, the nonuniform pixel spacing inher-
ent in the log domain allows integration to proceed
at a nonuniform rate which is an exponential function
of the radial coordinate. Thus, the peripheral parts of
a log plane image move rapidly through scale-space,
achieving large-scale image enhancement in dramati-
cally fewer time steps than the corresponding process
in Cartesian space. The reduction in integration time
coupled with the compressive effect of the complex
log transformation itself yields more than two orders
of magnitude speed increase diffusion directly in the
log plane.

2. Space-Variant Vision

The mammalian retina is a space-variant sensor: the
spacing of sensory neurons across the retinal surface is
not uniform. The density of cells is greatest in the
high acuity fovea, and falls off with retinal eccentric-
ity. This allows the simultaneous achievement of high
resolution and a wide field of view without requir-
ing an enormous number of sensing elements. This
anatomical feature has clear perceptual correlates. Vi-
sual acuity in the fovea is greater than in the periph-
ery by at least a factor of 40 (Wertheim, 1894). This
is the result of many factors including the optics of
the eye (Campbell and Green, 1965), photoreceptor
sampling density (Williams and Coletta, 1987), spa-
tial averaging due to the size of peripheral receptive

fields (Merigan and Katz, 1990), as well as ganglion
cell density (Wässle et al., 1990).

The mapping from the retina to striate cortex has
been shown to be well approximated by a complex
log map (Schwartz, 1977, 1980). This discovery has
motivated the use of the complex log mapping in the
construction of space variant sensors and algorithms
for machine vision systems (Rojer and Schwartz, 1990;
Weiman, 1988; Sandini and Dario, 1989; Sandini et al.,
1989; Messner and Szu, 1986; Schenker et al., 1981;
Bonmassar and Schwartz, 1994, 1995, 1996a, 1996b;
Yamamoto et al., 1996).

It is important to keep in mind that there are two
aspects to “space-variance” in vision systems, and
that clarification of this issue will go a long way to-
wards clarifying several basic issues concerning the
nature of “pyramidal visual architectures” (e.g., Burt
and Adelson, 1983). For simplicity, we will refer to
these in biological terms:

• One could work in a “retinal” plane in which the
image geometry is still Cartesian, but in which the
size of the pixels increases towards the periphery.

• One could work in a “cortical” plane which has a fun-
damentally different geometry than the “retina”, but
retains the same “space-variance” in pixel structure.

In mathematical terms, the “retinal” plane corre-
sponds to filtering a conventional video frame with
a space-varying low-pass filter, and sub-sampling the
resultant smoothed image. The “truncated pyramid”
architecture familiar in machine vision provides a data
structure which is a coarsely sampled (e.g., five binary
steps) version of this image format. The complex log
version of the truncated pyramid provides a significant
geometric reorganization of the “truncated pyramid”,
and also, most importantly from the point of view of the
present paper, provides a smooth, rather than coarse,
binary version of the space-variant sampling.

This now becomes significant, due to the use of par-
tial differential equations which require the smooth
complex log sampling to avoid instability. Thus, the re-
sults of the present paper provide one example in which
the complex logarithmic alternative to the “truncated
pyramid” architecture is advantageous. We will return
to this point in the discussion section of this paper.

2.1. Space-Variant Vision in Biology

The investigation of the space-variant properties of the
mammalian retino-cortical mapping dates back to the
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early 1940s (Talbot and Marshall, 1941). In the 1960s
Daniel and Whitteridge (1961) introduced the concept
of the cortical magnification factorMc, measured in
millimeters of cortex per degree of visual angle, in or-
der to characterize the transformation of visual data
from retinal coordinates to primary visual cortex. The
magnification factor is not constant across the retina,
but rather varies as a function of eccentricity. Exper-
imentally, the cortical magnification factor has been
found to be approximated by (Schwartz, 1977)

Mc(r ) = C1

1 + C2r
, (2.1)

wherer is the retinal eccentricity measured in degrees,
andC1 andC2 are experimentally determined constants
related to the foveal magnification and the rate at which
magnification falls off with eccentricity respectively.
Integrating Eq. (2.1) yields a relationship between reti-
nal eccentricity and cortical distanceρ

ρ(r ) =
∫ r

0

C1

1 + C2r ′ dr ′ = C1

C2
log(1+ C2r ) (2.2)

Schwartz has pointed out that the retino-cortical
mapping can be conveniently and concisely expressed
as a conformal transformation (Schwartz, 1977, 1980).
In this approach, a complex variablez is used to de-
scribe the retinal coordinates

z= rei θ = x + iy, (2.3)

where polar coordinates replace Cartesian ones in the
retina

r =
√

x2 + y2, θ = tan−1

(
y

x

)
. (2.4)

Figure 1. Example of an image (left), and its complex log transformation (right), for various values of the map parametera. Note that
decreasinga (moving from left to right) increases the representation of the foveal region in the log plane. Dark areas correspond to regions
outside the domain of the mapping.

The cortical point(ρ(z), φ(z)) can then be specified by
a single complex variablew as

w = ρ(z) + i φ(z) = K log(z+ a), Re(z) ≥ 0,

(2.5)

whereK is a scale factor determined by cortical area,
which will be dropped in the following discussion, and
a is a real positive constant, called the map parameter.
The value ofa determines the size of the quasi-linear
region aroundz= 0, and is generally believed to be in
the range 0.3 to 0.7 degrees (see Schwartz (1994) for
a discussion of the significance ofK anda). The ef-
fect of modifyinga on the mapping can be seen in the
following way (see Fig. 1). For smallz (i.e., z ¿ a),
the mapping can be approximated using a series expan-
sion around the pointz= 0:

w ≈ log(a) + z

a
. (2.6)

Thus, in the fovea, the mapping is essentially linear.
The magnitude of the derivative of the mapping gives
an approximation to the cortical magnification factor:∣∣∣∣dw

dz

∣∣∣∣ =
∣∣∣∣ 1

z + a

∣∣∣∣, (2.7)

which is approximately constant forz ¿ a. The com-
plex log transformation of Eq. (2.5) therefore smoothly
varies from a linear map in the fovea to a logarithmic
one in the periphery, with the magnitude ofa con-
trolling the size of the region of approximate linearity.
This is in contrast with other techniques which explic-
itly overlay a Cartesian fovea on a log image to obtain a
similar effect (Sandini and Dario, 1989; Sandini et al.,
1989), thereby introducing a discontinuity in the rep-
resentation.
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Equation (2.5) is analytic everywhere in the do-
main and is hence conformal, implying that local an-
gles are preserved by the transformation (Churchill and
Brown, 1984). The singularity at the origin for the more
commonly used complex log mappingw = log(z) is
removed at the cost of mapping the two hemifields sep-
arately and managing a discontinuity along the verti-
cal meridian. The full form of the mapping for both
hemifields1 is given by

w =
{

log(z+ a), Re(z) ≥ 0

2 log(a) − log(−z+ a), Re(z) < 0
. (2.8)

Figure 1 shows an example of an image, and its com-
plex log transformation for a variety of values of the
map parametera. As can be seen, decreasing the value
of a (moving from left to right) increases the magnifi-
cation of the map, corresponding to an increased foveal
representation. The original image on the left contains
512× 512= 256 K pixels, as compared to the images
after the complex log transform which contain 14,307
pixels, 5,000 pixels, and 496 pixels, respectively. For
a more complete discussion of the issues involved in
the design of a complex log transformation, see (Rojer
and Schwartz, 1990). They show that up to four or-
ders of magnitude of reduction of pixel complexity is
provided by versions of the complex log map based on
human anatomical parameters. In machine vision ap-
plications, algorithms can be expected to run an order
of magnitude or two faster in the log domain as com-
pared to the Cartesian one, using contemporary sensor
chips.

3. Diffusion in the Log Domain

In this section we derive an algorithm for numerically
integrating the anisotropic diffusion Eq. (1.2) directly
in the log domain. This requires the derivation of the
space-variant form of the gradient and divergence op-
erators, the details which are given in Appendix A. For
a more comprehensive examination of the form of a va-
riety of differential operators in the complex log plane
see (Fischl et al., 1997).

Using the space variant forms of the gradient and
the divergence given by Eqs. (A.8) and (A.12), respec-
tively, we can write the anisotropic diffusion Eq. (1.2)
in log coordinates as

It = e−2ρ((cIρ)ρ + (cIφ)φ), (3.1)

where theρ, φ and t subscripts denote partial differ-
entiation with respect to the subscripted variable, and

we have suppressed the arguments toc( ) and I ( ) in
the interests of conciseness. Substituting (3.1) into a
Taylor series expansion ofI aroundt = t0 yields the
first-order approximation:

I (t0 + 1t) ≈ I (t0) + 1t (e−2ρ [(cIρ(t0))ρ

+ (cIφ(t0))φ ]). (3.2)

Using a discrete lattice with1ρ = 1φ = 1, and con-
sidering the central pixel (ρ0, φ0), and its four con-
nected neighbors(ρ0, φ−1), (ρ0, φ1), (ρ−1, φ0), and
(ρ1, φ0) we use a centered difference approximation
of the derivatives in (3.2). Labelling these pixels with
superscripts 0, N, W, E, S respectively, we have:

(
c0(t0)I 0

ρ (t0)
)
ρ

≈ cE(t0)I E
ρ (t0) − cW(t0)I W

ρ (t0)

2
(3.3)

(
c0(t0)I 0

φ(t0)
)
φ

≈
(
cS(t0)I S

φ (t0) − cN(t0)I N
φ (t0)

)
2

(3.4)

We use both backwards and forward differences to ap-
proximate the partial derivatives with respect to the
spatial variables so as to limit the domain of our nu-
merical implementation to the four nearest neighbors
of the central pixel:

I W
ρ (t0) = I 0(t0) − I W(t0), I E

ρ (t0) = I E(t0) − I 0(t0),

I N
φ (t0) = I 0(t0) − I N(t0), I S

φ (t0) = I S(t0) − I 0(t0),

(3.5)

Substituting (3.3), (3.4) and (3.5) into (3.2) we arrive
at

I 0(t0 + 1t) ≈ I 0(t0)

(
1− 0.5e−2ρ1t

(∑
i 6=0

ci (t0)

))

+ 0.5e−2ρ1t

(∑
i 6=0

ci (t0)I i (t0)

)
.

(3.6)

Equation (3.6) can equivalently be written as the cor-
relation of the image with a set of space and time vary-
ing masks:

I (ρ, φ, t0 + 1t) ≈
∑
ρ ′

∑
φ′

K t0
ρ,φ(ρ ′, φ′)

× I (ρ + ρ ′, φ + φ′, t0), (3.7)
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where the mask weights are given by

K t0
ρ,φ = e−2ρ1t

2

×




0 cN(t0) 0

cW(t0)
2e2ρ

1t
−
(∑

i 6=0

ci (t0)

)
cE(t0)

0 cS(t0) 0


 .

(3.8)

In two dimensions the two components of the spatial
gradient used in the computation of the conductance
function are calculated using a Sobel operator with a
negative exponential weight as specified by Eq. (A.8).
At first sight Eq. (3.8) seems problematic. It indicates
that diffusion falls off exponentially with eccentricity.
However, with the increased pixel spacing in the pe-
riphery comes increased numerical stability. An upper
bound on the allowable stable time step1t can be com-
puted using Fourier-von Neumann stability analysis. In
Cartesian space the numerical implementation will be
stable if (Haberman, 1987)

1t ≤ (1x)2

4c
. (3.9)

If we choosec to be in the range (0,1] and let1x = 1,
we then have1t ≤ 0.25 (the lower bound onc is nec-
essary given the ill-posed nature of the backwards heat
equation (Haberman, 1987, p. 74)). In the complex log
plane the spatial grid of Eq. (3.9) is nonuniform. The
interpixel distance is an exponential function of the
radial coordinate, which implies that the stability con-
straint for an allowable time step in the log domain
becomes

1t ≤ e2ρ

4
. (3.10)

Equation (3.10) has important implications. It suggests
that the nonlinear diffusion Eq. (1.2) can be integrated
using exponentially large time steps in the periphery,
resulting in large scale structure enhancement in rel-
atively few iterations. That is, we assume thatt is
approximately constant for a pixel and its four nearest
neighbors, and allow the integration to proceed at dif-
ferent rates across the log domain image. Of course,
this is at the cost of fine scale peripheral image struc-
ture, but since such details are not preserved in the
periphery by the log mapping this is not a concern. Ef-
fectively, the space-variant time step allows different

regions of the log plane to move through scale space
at different rates—faster in the periphery and slower
in the foveal region. Furthermore, if we replace1t
in Eq. (3.8) with 0.25e2ρ the numerical implementa-
tion becomes identical to the implementation of the
anisotropic diffusion equation in Cartesian space. That
is, if we treat the log-domain image as a Cartesian one,
then we are effectively allowing the integration to occur
at different rates across the image.

4. Space-Variant Termination Conditions

Given the variable-rate movement of the image through
nonlinear scale space, a natural question to consider
is how one determines a proper ending time for the
numerical integration. If all points in the image are
integrated for the same number of iterations, then dif-
ferent regions of the log image will represent differ-
ent scales or times. If we wish to produce an image
which is entirely at the same point in scale space, then
the integration must be terminated in a space-variant
manner. That is, we specify an ending time, then use
Eq. (3.10) to determine whether a given ring of pixels
(i.e., pixels of constant eccentricity) has reached the
desired termination point, and if so, omit it from the
domain of integration. In this way, the region of the
image being integrated shrinks after each time step.
This approach also compensates for the inadequacies
of the approximation used in the numerical integration
for large integration times (i.e., thatt is constant for
a pixel and its four-connected neighbors). Integration
is halted when the time differential between any point
and its neighbors is at most a fixed ratio, preventing it
from growing without bound.

The number of iterations required for each ring of
pixels can be computed from Eq. (3.10) by fixing the
desired number of iterations at some point in the log
plane. Typically, we fix the number of foveal iterations
as this corresponds to the region of the log image with
the highest resolution and hence requires the maximum
number of time steps. Denoting the number of foveal
time steps to beNfov, we calculate the number of iter-
ations as a function of the radial coordinate to be

N(ρ) = Nfove2 log(a)

e2ρ
. (4.1)

An example of this procedure is given in Figs. 2 and 3.
Figure 2 depicts the number of iterations required
as a function of log coordinate, withNfov = 100. As
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Figure 2. Number of iterations required as a function of log coor-
dinate. Most of the periphery reaches the specified ending time after
only a few iterations. While the fovea requires the full 100.

Figure 3. Types of integration termination schemes Top-left: original noisy image. Top-middle: log mapping of original image. Top-right:
variable end-time diffusion. The far periphery terminates after only a single iteration, while the fovea integrates for the specified 100 steps.
Second row from left to right: uniform end-time integration for 1, 5, and 10 time steps. Bottom row: inverse log mapping of uniform (left) and
variable (right) end-time diffusion. Note that the fixation point for the log transformation is the center of the image for all images shown in this
paper.

can be seen, the majority of the image reaches the
specified termination point in less than 5 iterations,
leaving only a small, shrinking foveal region to be in-
tegrated for the full 100 time steps. The original Carte-
sian image shown at the top-left of Fig. 3 contains
580× 720= 417,600 pixels. The log image, shown
in the top-middle, is constructed by specifying the num-
ber of angular pixels (spokes) to be 64. Following
(Rojer and Schwartz, 1990), this fixes the map para-
metera = 20.37 as well as the number of radial pixels
(rings) to be 111. The total pixel count of the log im-
age is therefore 7,104, a compression of more than
50 to 1. Givena and the size of the original im-
age, the radial coordinate is constrained to be in the
range 3.014≤ ρ ≤ 5.657 which bounds the allowable
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Figure 4. Number of pixels which require integration versus time. As time evolves, peripheral pixels arrive at the ending integration time
and no longer require integration, thus reducing the effective pixel count of the image. The left-hand plot shows the number of pixels being
integrated at each time step. After 4 iterations approximately 1/2 of the log pixels still require integration. The right-hand plot is the integral
of the plot at the left, and illustrates the cumulative number of pixels which have been integrated at a given time as a fraction of the total pixel
count of the Cartesian image. Integrating the log image for 100 foveal iterations corresponds to 1/5 of an iteration of the diffusion on the full
Cartesian image.

time step through Eq. (3.10). Next, we fix the foveal
integration time to beNfov = 100. In this case, the far
periphery requires

N(ρ)|ρ=5.657 = 100e2 log(20.37)

e2(5.657)
≈ 1

2
iteration. (4.2)

Rounding up for numerical reasons, we can see that
the far periphery arrives at the termination time in
scale space in a single iteration! The efficacy of this
scheme is illustrated in Fig. 3. From left to right, the
top row shows the original image, the log mapping of
the image, and the variable end-time diffusion outlined
in this section. The second row depicts the results of
integrating the entire image (i.e., uniform end-time) for
1, 5, and 10 time steps from left to right, with a con-
ductance function given by (Perona and Malik, 1987)

c1(∇ I ) = e−(
|∇ I |

k )2
, (4.3)

wherek is a real constant which controls the relation-
ship between gradient magnitude and amount of dif-
fusion. The bottom row shows the results of the 10
time-step uniform end-time (left) and variable end-time
(right) diffusion mapped back onto a Cartesian mesh.2

Examining these images, we can see that peripheral
details are quickly blurred beyond recognition, while
the fovea has yet to be enhanced by the uniform end-
time diffusion. In contrast, the figures at the top and
bottom right represent the variable end-time diffusion
we have outlined in this section. In these images, foveal
noise has been smoothed while peripheral features are
retained.

We can quantify the computational savings provided
by this scheme by examining the rate at which the do-
main of integration shrinks, as illustrated in Fig. 4. The
left-hand plot shows the number of pixels in the domain
of integration over time for the image shown in Fig. 3.
The right-hand plot is the integral of the plot at the left,
displaying the cumulative number of pixels integrated
up to a given point in time as a fraction of the number
of pixels in the full Cartesian image. Examining the
left-hand plot, we can see that after only 4 iterations
more than half of the image has reached the specified
termination point, while by the 10th iteration the do-
main of integration has shrunk to less than a quarter
of the image. The total number of pixels integrated
over the full time span is approximately 79,000, or less
than 1/5th of the number of pixels integrated in a single
time step in the Cartesian domain, a computational cost
decrease by a factor of 500. Another way to see the
speed enhancement provided by the variable size time
step is that integrating the image in this way requires
the same amount of time as integrating the full log im-
age for only 11 time steps. On a 180 MHz Pentium Pro,
the full Cartesian diffusion takes approximately 820 s,
while the log diffusion requires a mere 2.15 s, almost
400 times faster.

5. Noise Tolerance

An additional advantage provided by diffusion in the
log domain is enhanced noise tolerance. Noise sensi-
tivity has been shown to be problematic for the Perona
and Malik diffusion using conductance functions such
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Figure 5. Noise tolerance of diffusion in the Cartesian and log domains. From left to right: original image, diffusion in Cartesian domain (100
iterations,k = 0.05), complex log transform of the image, and anisotropic diffusion (Nfov = 100 iterations,k = 0.0001) directly in the log
plane. Far right: inverse mapping of log plane diffusion.

as Eq. (4.3) (Whitaker and Pizer, 1991; El-Fallah and
Ford, 1994). This is due to the large gradient magni-
tudes arising in noisy image regions which inhibit dif-
fusion, and are therefore preserved over time. Noise
tolerance is achieved naturally in the log plane dif-
fusion due to the filtering which is necessary in the
construction of the log image. Each log pixel has vary-
ing support in the Cartesian image, with the region of
support growing with increasing eccentricity. In the
initial construction of the log image, each log pixel
is assigned the average value of all Cartesian pixels
which map to it.3 In this way, movingout (i.e., in-
creasing radial coordinate) in the log domain is equiv-
alent to movingup (i.e., towards coarser scale images)
in scale space. This process lowpass filters the image,
effectively providing noise tolerance for the diffusion
in a manner similar to the multi-scale approach sug-
gested by Whitaker and Pizer (1991).

The enhanced noise tolerance is illustrated in Fig. 5.
From left to right these images are the original Carte-
sian image corrupted with additive white noise (0.1
amplitude), the image after undergoing Cartesian dif-
fusion using the conductance function of Eq. (4.3) (100
iterations, k = 0.05), the log mapping of the noisy
image, the log image after diffusion using the same
conductance function (Nfov = 100, k = 0.0001), and fi-
nally, at the far right, the inverse mapping of the image
which has undergone diffusion directly in the log plane.
We show the inverse maps to facilitate the comparison
of performing diffusion followed by a log mapping as
opposed to the inverse order of operations. These two
processes are functionally similar, but performing the
diffusion after the log mapping increases the speed of
the procedure by between two and three orders of mag-
nitude.

The value of k used in the Cartesian diffusion
in this image represents a compromise between two

undesirable alternatives. Using this value ofk, much
of the license plate is enhanced at the cost of retaining
shot noise in the left-hand side of the image, as well
as the blurring of image detail such as the right-hand
portion of the license plate. Settingk higher results in
greater noise suppression at the cost of the destruction
of more image structure; while a smaller value ofk
preserves more of the image, but also preserves more
of the noise. In contrast, the log diffusion at the far
right eliminates almost all of the noise while preserv-
ing most of the image detail contained in the original
log image.

6. Results

In the prior sections we showed that the form of a sim-
ple numerical implementation of the anisotropic diffu-
sion equation in the log plane is equivalent to a variable
grid size integration of the underlying PDE. In this sec-
tion we show some results of applying Eq. (3.7) with
the variable step size specified by (3.10) as well as the
space-variant termination condition given by Eq. (4.1),
to a variety of images. For comparison purposes, we
also include the results of diffusion on the Cartesian
mesh followed by a log mapping. These images are
shown using an inverse mapping so that they may be
viewed in the more familiar Cartesian plane. Note that
all images presented in this section have intensity val-
ues scaled to be in the range [0, 1], and are integrated
for the same number of effective time steps (100) using
the same parameters (A= 100, k = 0.0001).

As noted earlier, the Perona and Malik scheme
has difficulty in dealing with the types of noise
present in these images. We therefore use the conduc-
tance function proposed by El-Fallah and Ford (1994)
for the Cartesian diffusion, as it has been shown
to have good noise reduction characteristics. Their
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Figure 6. Comparison of anisotropic diffusion on a Cartesian mesh, followed by a log mapping (second column) with diffusion directly in the
log plane (last two columns). First column: original image. Second column: diffusion in Cartesian domain (100 iterations,A = 100) followed
by mapping into and out of the log plane. Third column: complex log transform of the image in the first column. Fourth column: anisotropic
diffusion (Nfov = 100 iterations,k = 0.0001) directly in the log plane. Fifth column: inverse map of log plane diffusion. The images in the
second column are mapped into and out of the log domain to facilitate comparison with the inverse mapping of the images which have undergone
diffusion directly in the log domain (fifth column).

conductance function is of the form

c2(∇ I ) = 1√
1+ A2|∇ I |2

, (6.1)

where the real constantA in this function plays a role
similar tok in Eq. (4.3).

Figure 6 presents the results of Cartesian diffusion
followed by a log mapping, as well as the inverse or-
der of operations. From left to right the five columns
in this figure are the original image, the Cartesian im-
age after 100 time-steps of anisotropic diffusion us-
ing the conductance function of Eq. (6.1), mapped into
and out of the log plane as noted above, the complex
log transformation of the image in column one, the
result of applying diffusion directly in the log plane

with Nfov = 100, and finally, the inverse mapping of
the image in column 4. Examining the log domain im-
ages, we can see that although much of the peripheral
diffusion is accomplished in as few as 2–4 time steps
(each of which requires less than 20 ms on a 180 MHz
Pentium Pro), large-scale structures such as the edge of
the license plate and the boy’s cheek are significantly
enhanced in that time. To achieve comparable enhance-
ment in the Cartesian domain requires between 50 and
100 iterations.

7. Conclusion

Diffusion is a powerful tool of great potential utility in
machine vision. In addition, diffusion processes have
a long history of use in psychophysical and neural
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models of biological vision (Gerrits and Vendrik, 1970;
Cohen and Grossberg, 1984; Grossberg and Mingolla,
1985; Grossberg and Todorovic, 1988; Lee, 1995). In
both contexts, diffusion unifies multi-scale image en-
hancement and analysis into a simple procedure in-
tended to yield a single image containing information at
all scales of interest. However, both the machine vision
and biological uses of nonlinear diffusion encounters a
serious implementation problem. Anisotropic nonlin-
ear diffusion is several orders of magnitude too slow for
real-time application with current computer architec-
tures, and also appears to require too many serial steps
to be in agreement with observed response latencies in
the primate visual system.

In the present paper, we have shown that for ap-
plications in which a space-variant or foveating archi-
tecture is appropriate, the use of nonlinear diffusion
yields a surprisingly synergistic benefit. Specifically,
the nonuniform mesh spacing of the log domain al-
lows the use of integration rates which are exponen-
tial functions of eccentricity, yielding large scale en-
hancement in few time steps. Thus, in addition to the
well known reduction in space-complexity gained from
spacevariant architectures (Rojer and Schwartz, 1992)
there is an additional multiplicative speed-up from en-
hanced integration rates for nonlinear diffusion models.
This performance increase is due to the combination of
the compressive effects of the log mapping combined
with the exponential integration rates possible in this
architecture and is between two and three orders of
magnitude.

From a biological standpoint, these results have im-
portant implications. If diffusion or a related process
occurs at uniformcortical rates in mammalian visual
cortex, then it is effectively proceeding at rates which
are exponential functions ofretinal eccentricity. Fur-
thermore, coarse, features are enhanced prior to fine
scale detail, providing large-scale contrast enhance-
ment and noise reduction in as few as 2 or 3 time steps.
Nevertheless, foveal diffusion remains problematic due
to the severe constraints on the number of possible se-
rial steps in rapid visual processing (Thorpe and Imbert,
1989).

Finally, this paper clarifies some basic issues con-
cerning the nature of “pyramid” or “scale-space” ar-
chitectures. In the usual binary form of the pyramid
architecture, integrating a nonlinear PDE is problem-
atic at the discontinuities at each level of the pyra-
mid, and must be handled with great care to avoid
introducing instabilities into the solution. The complex

log map architecture outlined in this paper, which is
closely related to the biological architecture of vision,
yields a smooth space-varying representation which
appears to provide the most natural “pyramid” architec-
ture for the application of nonlinear diffusion to space-
variant vision.

Appendices A: Differential Operators

In this section we compute the form of the∇ operator,
which yields the space-variant form of the gradient and
the divergence, As noted in Section 2, the complex log
coordinate transform considered in this work is of the
form

w = log(z+ a), a ∈ <, z, w ∈ C, Re(z) ≥ 0.

(A.1)

More explicitly, the log coordinates (ρ, φ) are given in
terms of their Cartesian counterparts (x, y) by

ρ = log
(√

(x + a)2 + y2
)
, φ = tan−1

(
y

(x + a)

)
.

(A.2)

The inverse relations are

x = eρ cosφ − a, y = eρ sinφ (A.3)

The log mapping of Eq. (A.2) as well as the inverse
mapping given by (A.3) are both complex and analytic
everywhere in their respective domains, and are hence
conformal. This has a number of interesting and useful
implications. For the present purposes, the most im-
portant of these is that the conformal nature of the map-
ping ensures that local angles are preserved (Churchill
and Brown, 1984). This in turn implies that the log-
polar coordinate basis is orthogonal when projected
into Cartesian space. This fact will be used to simplify
the derivation of the log domain gradient in Section A.1.

A.1. Space-Variant Form of∇ f

The conformal nature of the complex log mapping
yields a simple derivation of the form of the gradient
in the log domain. As noted in the introduction to this
section, the conformality of the log mapping implies
that local angles are preserved by the transformation.
This simplifies the derivation considerably. Specif-
ically, it insures that the basis vectors of the (ρ, φ)
space which are orthogonal in the log domain, are also
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Figure 7. Representation of the relationship between the basis vectors and the gradient in the two spaces. The mapping preserves the angles
between the vectors, but not their lengths.

orthogonal when projected into Cartesian space (see
Fig. 7). Since the gradient is the combination of the
directional derivative inanytwo orthogonal directions,
we are assured that the gradient in the log space is of
the form

∇ f = A(ρ, φ)

(
∂ f

∂ρ
eρ + ∂ f

∂φ
eφ

)
, (A.4)

whereeρ andeφ are an orthonormal basis (in the in-
duced metric) for the log domain, and theA(ρ, φ) term
accounts for the variation in length a vector experiences
under the log mapping. Note that Eq. (A.4) holds for
anyconformal mapping, with the specifics of the trans-
formation expressed in the coefficient functionA. An-
other way to see that the gradient must be of the form
given in (A.4) is to observe that any inhomogenous
scaling of the basis vectors would result in the angle
between the gradient and the basis vectors being differ-
ent in the two spaces, which cannot be the case since
the mapping is conformal. All that remains is to deter-
mine the form of the coefficient function. To do so,
we use the invariance of the magnitude of the gradient
under a change of coordinates. That is, the length of
the gradient (or its square) must be the same in both
domains. Hence

A(ρ, φ)2
(

f 2
ρ + f 2

φ

)= f 2
x + f 2

y . (A.5)

Using the chain rule to express∂ f/∂ρ and∂ f/∂φ in
terms of fx and fy yields

A(ρ, φ)2(( fxxρ + fyyρ)
2 + ( fxxφ + fyyφ)2)

= f 2
x + f 2

y (A.6)

Expanding (A.6) using the derivatives of Eq. (A.3) and
solving for A(ρ, φ) results in

A(ρ, φ)2(( fxeρc+ fyeρs)2 + (− fxeρs+ fyeρc)2)

= f 2
x + f 2

y (A.7a)

A(ρ, φ)2
(

f 2
x e2ρc2 + f 2

y e2ρs2 + 2 fy fxe2ρsc+ f 2
x e2ρc2

+ f 2
y e2ρs2 − 2 fy fxe2ρsc

)= f 2
x + f 2

y ,

(A.7b)

⇒ A(ρ, φ)= e−ρ, (A.7c)

wheres= sinφ andc= cosφ. Thus, the gradient in
the space-variant domain is given by4

∇ f = e−ρ

(
∂ f

∂ρ
eρ + ∂ f

∂φ
eφ

)
. (A.8)

From Eq. (A.8) it is apparent that the∇ operator has
the general form

∇ = e−ρ

(
∂

∂ρ
eρ + ∂

∂φ
eφ

)
, (A.9)

Which allows the direct computation of quantities such
as the Laplacian, the divergence and the curl in the log
plane.

A.2. Space-Variant Form of∇ f

The form of the divergence of a vector field in the log
plane can be calculated in a straightforward manner
using the form of the∇ operator derived in the prior
section. To do so we will require the derivatives of
the log plane orthonormal basis vectorseρ andeφ with
respect to the log coordinates. Like their polar coun-
terparts,eρ andeφ do not change in the radial direction
and hence both derivatives with respect toρ are zero.
To calculate the change in the basis vector with respect
to the angular log coordinate we use the chain rule as
follows:

eρ = cosφ
∂

∂x
+ sinφ

∂

∂y
, eφ = cosφ

∂

∂y
− sinφ

∂

∂x
,

(A.10a)
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∂eρ

∂φ
= cosφ

∂

∂y
− sinφ

∂

∂x
= eφ,

∂eφ

∂φ
= −sinφ

∂

∂x
− cosφ

∂

∂y
= −eρ. (A.10b)

Given these relations, the divergence of an arbitrary
vector field whose components expressed in the or-
thonormal log basis (eρ, eφ) are (f ρ, f φ) can be calcu-
lated as

∇ · f = e−ρ

(
∂

∂ρ
eρ + ∂

∂φ
eφ

)
· ( f ρeρ + f φeφ).

(A.11)

Using Eq. (A.10b) and the orthonormality of the basis
vectors, the divergence simplifies to

∇ · f = e−ρ
(

f ρ
ρ + f φ

φ + f ρ
)
. (A.12)

Notes

1. The complex log transformation requires a branch cut which di-
vides the complex plane along the imaginary axis. This division
was originally motivated by brain anatomy: the two half-planes
in the range of the mapping correspond to the primary visual area
in each hemisphere of the brain.

2. We use a point resampling to minimize any filtering effects of the
inverse mapping.

3. The log plane images shown in this paper are all constructed using
overlapping regions of support such that the image is sampled at
or above the Nyquist rate at all eccentricities (Bonmassar and
Schwartz, 1995).

4. Note that this derivation does not account for the varying support
of each log pixel. As one moves into the periphery of the log plane,
each log pixel is typically generated by averaging a larger region
of Cartesian space, both in the mammalian retina and in machine
vision systems. The averaging is done to avoid aliasing in the
periphery, and attenuates high frequency information, partially
offsetting the need for a negative exponential weighting to account
for varying pixel separation.
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