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Abstract. Many computer and robot vision applications require multi-scale image analysis. Classically, this has
been accomplished through the use of a linear scale-space, which is constructed by convolution of visual input
with Gaussian kernels of varying size (scale). This has been shown to be equivalent to the solution of a linear
diffusion equation on an infinite domain, as the Gaussian is the Green’s function of such a system (Koenderink,
1984). Recently, much work has been focused on the use of a variable conductance function resulting in anisotropic
diffusion described by a nonlinear partial differential equation (PDE). The use of anisotropic diffusion with a
conductance coefficient which is a decreasing function of the gradient magnitude has been shown to enhance edges,
while decreasing some types of noise (Perona and Malik, 1987). Unfortunately, the solution of the anisotropic
diffusion equation requires the numerical integration of a nonlinear PDE which is a costly process when carried out
on a uniform mesh such as a typical image. In this paper we show that the complex log transformation, variants
of which are universally used in mammalian retino-cortical systems, allows the nonlinear diffusion equation to be
integrated at exponentially enhanced rates due to the nonuniform mesh spacing inherent in the log domain. The
enhanced integration rates, coupled with the intrinsic compression of the complex log transformation, yields a speed
increase of between two and three orders of magnitude, providing a means of performing rapid image enhancement
using anisotropic diffusion.

Keywords: anisotropic diffusion, complex log map, space-variant vision, image enhancement, polar exponential
grid

1. Introduction hard to accurately localize. Errors can also arise when
conflicting results at different scales require cross-scale
Multi-scale image enhancement and representation isarbitration.
an important part of biological and machine early vi- Attempts to solve problems of this type resulted in
sion systems. The process of constructing this repre- the linear scale-space formulation of Witkin (1983)
sentation must be both rapid and insensitive to noise, in which an image is convolved with Gaussian ker-
while retaining image structure at all scales. This is nels of various sizes. Edges delineating the bound-
a complex problem as small-scale structure is diffi- aries between objects can then be found in a number of
cult to distinguish from noise, while larger scale struc- ways, for example, by tracing the zero-crossings of the
ture requires more computational effort, and can be Laplacian through scale-space, similar to the manner
proposed by Marr and Hildreth (1980). This approach

*Supported in part by the office of naval research (ONR N00014-95- 1S Problematic as the Zeros can change pOSition_and dis-
1-0409). appear as scale-space is traversed due to the influence
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of neighboring structure. In this situation it is unclear regimes, although this is still a point of investigation
how to arbitrate between conflicting results at different (Peronaetal., 1994). Furthermore, it can amplify small-
scales. scale noise which gives rise to high gradient magni-
Koenderink (1984) and Hummel (1986) pointed out tudes. Many variants of the Perona and Malik scheme
that the one parameter family of images comprising have been proposed to improve its sensitivity to noise,
scale-space can be equivalently viewed as snapshots ofts speed, its instability, and its equilibrium behavior
the time-evolution of the diffusion (or heat) equation: (Alvarezetal., 1992; Alvarez and Mazorra, 1994, Catte
et al., 1992; Cottet and Germain, 1993; Dang et al.,
1994; El-Fallah and Ford, 1994; Engquist et al., 1989;
llinerand Neunzert, 1993; Liand Chen, 1994; Nitzberg
and Shiota, 1992; drdstrom, 1990; Osher and Rudin,
1990; Pauwels et al., 1993; Price et al., 1990; Whitaker
A is the Laplacian operator with respect to the spatial and Pizer, 1991; Whitaker, 1993; Kacur and Mikula,
coordinates. 1995; Fischl and Schwartz, 1996, 1997a, 1997b; Shah,
The diffusion equation provides a mathematical 1996; Malladi and Sethian, 1995).
framework with which to analyze the scale-space for-  The diffusion paradigm, while impressive in the
malism, but it does not address the issue of cross-scalequality of the images it produces, suffers from a num-
comparison. While Koenderink restricted his analy- ber of drawbacks. The most prominent of these is
sis to isotropic diffusion characterized by the linear the computational cost of the algorithms used to in-
heat equation, Perona and Malik (1987, 1990) sug- tegrate the PDEs, coupled with their inherently serial
gested that a nonlinear anisotropic version of the heat nature. This makes them problematic as models of
equation could remedy some of the difficulties encoun- actual neural processes, as well as impractical for use
tered in the use of a linear scale-space. This followed in real-time or quasi real-time machine vision applica-
earlier psychophysical and neurophysiological model- tions. The biological difficulties stem from the rapid
ing work which used variable (edge determined) dif- nature of perception relative to neural conduction de-
fusion to account for a variety of human perceptual lays and peak firing rates<Q00 Hz). Psychophysical
phenomena (Cohen and Grossberg, 1984; Grossbergand neurophysiological experiments indicate that per-
and Mingolla, 1985). Perona and Malik proposed the ception can occur as rapidly as 100-150ms (Thorpe
following equation in which the conduction coefficient and Imbert, 1989; Oram and Perrett, 1992) which is
is not constant in space, but is rather a function of the only 40 ms or so longer than the latency of cells in pri-
magnitude of the intensity gradient of the image: mary visual cortex (Mogels and Orban, 1991). Using
these figures together with typical firing frequencies
and synaptic transmission delays, Thorpe and Imbert
argue that the number of synaptic connections (as-
In this way, the amount of diffusion at each point in sumed to be equivalent to the number of serial steps)
space is modulated by the functi@Vl|), and the used by the visual system in rapid identification tasks
image gradient at that point. They chose to mekkea is somewhere between 10 and 50, although probably
decreasing function of the image gradient magnitude, closer to the lower bound (Thorpe and Imbert, 1989).
so that regions of high contrast undergo less diffusion, Thus, while complex processing is possible in these sit-
and are therefore preserved over time. This is in con- uations, it is almost certainly parallel in nature, ruling
trast to the linear heat equation which blurs uniformly, out numerical schemes which require more than a few
destroying small scale structure as time evolves. Sys- iterations. In other work (Fischl and Schwartz, 1997a,
tems such as Eq. (1.2) are intended to yield a single 1997b) we have discussed the more general problem
intensity image which retains edge information at all of rapidly obtaining diffusive effects using a minimal
scales of interest, thus obviating the need for any type number of serial steps. In contrast, this paper specifi-

Iy = cAl, (1.1)

wherel is the intensity image; is a diffusion constant,
I; is the partial derivative of with respect to time, and

Iy = V-[c(VIDVI]. (1.2)

of cross-scale arbitration.
The Perona-Malik Eq. (1.2) is a nonlinear partial
differential equation (PDE) of a type which is diffi-

cally addresses the advantages derived from the use of
diffusion in a space-variant coordinate system.
Almost without exception the use of anisotropic dif-

cult to analyze. It has been suggested (Nitzberg and fusion in machine and biological vision research has
Shiota, 1992) that (1.2) is unstable for some parameter been performed in the space-invariant or Cartesian
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domain. However, it has been shown that the map- fields (Merigan and Katz, 1990), as well as ganglion
ping from the mammalian retina to striate cortex is cell density (Wassle et al., 1990).

a space-variant one which can be well approximated The mapping from the retina to striate cortex has
by a complex log transformation (Schwartz, 1977, been shown to be well approximated by a complex
1980) and more accurately by numerical conformal log map (Schwartz, 1977, 1980). This discovery has
mappings which have qualitatively similar structure motivated the use of the complex log mapping in the
(Schwartz, 1994). Despite some notable advantagesconstruction of space variant sensors and algorithms
(dramatic pixel count reduction, quasi size and rotation for machine vision systems (Rojer and Schwartz, 1990;
invariance), the complex log map has not been widely Weiman, 1988; Sandini and Dario, 1989; Sandini etal.,
used in the machine vision community. In large part 1989; Messner and Szu, 1986; Schenker et al., 1981,
this has been due to the lack of shape invariance underBonmassar and Schwartz, 1994, 1995, 1996a, 1996b;
translation, which severely complicates object recog- Yamamoto et al., 1996).

nition. This drawback has recently been addressed via It is important to keep in mind that there are two
the development of a fast exponential chirp transform aspects to “space-variance” in vision systems, and
(Bonmassar and Schwartz, 1995), allowing frequency that clarification of this issue will go a long way to-

domain techniques to be applied in the complex log
domain at video frame rates using a single DSP chip.

In this paper we derive the form that the nonlinear
diffusion equation takes in the space-variant coordi-
nate system, and show that performing diffusion af-
ter a log mapping has a number of notable benefits.
Most importantly, the nonuniform pixel spacing inher-
ent in the log domain allows integration to proceed
at a nonuniform rate which is an exponential function
of the radial coordinate. Thus, the peripheral parts of
a log plane image move rapidly through scale-space,
achieving large-scale image enhancement in dramati-
cally fewer time steps than the corresponding process
in Cartesian space. The reduction in integration time
coupled with the compressive effect of the complex
log transformation itself yields more than two orders
of magnitude speed increase diffusion directly in the
log plane.

2. Space-Variant Vision

wards clarifying several basic issues concerning the
nature of “pyramidal visual architectures” (e.g., Burt
and Adelson, 1983). For simplicity, we will refer to
these in biological terms:

e One could work in a “retinal” plane in which the
image geometry is still Cartesian, but in which the
size of the pixels increases towards the periphery.

e One couldworkina“cortical” plane which has a fun-
damentally different geometry than the “retina”, but
retains the same “space-variance” in pixel structure.

In mathematical terms, the “retinal” plane corre-
sponds to filtering a conventional video frame with
a space-varying low-pass filter, and sub-sampling the
resultant smoothed image. The “truncated pyramid”
architecture familiar in machine vision provides a data
structure which is a coarsely sampled (e.g., five binary
steps) version of this image format. The complex log
version of the truncated pyramid provides a significant
geometric reorganization of the “truncated pyramid”,
and also, mostimportantly from the point of view of the

The mammalian retina is a space-variant sensor: the Present paper, provides a smooth, rather than coarse,
spacing of sensory neurons across the retinal surface isoinary version of the space-variant sampling.

not uniform. The density of cells is greatest in the
high acuity fovea, and falls off with retinal eccentric-
ity. This allows the simultaneous achievement of high
resolution and a wide field of view without requir-
ing an enormous number of sensing elements. This
anatomical feature has clear perceptual correlates. Vi-
sual acuity in the fovea is greater than in the periph-
ery by at least a factor of 40 (Wertheim, 1894). This
is the result of many factors including the optics of
the eye (Campbell and Green, 1965), photoreceptor
sampling density (Williams and Coletta, 1987), spa-
tial averaging due to the size of peripheral receptive

This now becomes significant, due to the use of par-
tial differential equations which require the smooth
complex log sampling to avoid instability. Thus, there-
sults of the present paper provide one example in which
the complex logarithmic alternative to the “truncated
pyramid” architecture is advantageous. We will return
to this point in the discussion section of this paper.

2.1. Space-Variant Vision in Biology

The investigation of the space-variant properties of the
mammalian retino-cortical mapping dates back to the
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early 1940s (Talbot and Marshall, 1941). In the 1960s The cortical poin{p(2), ¢(z)) can then be specified by
Daniel and Whitteridge (1961) introduced the concept a single complex variable as
of the cortical magnification facto;, measured in
millimeters of cortex per degree of visual angle, inor- w=p(2) +i¢(2)=Klog(z+a), Re&2z >0,
der to characterize the transformation of visual data (2.5)
from retinal coordinates to primary visual cortex. The
magnification factor is not constant across the retina, \\harek is a scale factor determined by cortical area,
but rather varies as a function of eccentricity. Exper- | ni-h will be dropped in the following discussion, and
imentally, the cortif:al magnification factor has been g 3 real positive constant, called the map parameter.
found to be approximated by (Schwartz, 1977) The value ofa determines the size of the quasi-linear
region around =0, and is generally believed to be in

, (2.1) the range 0.3 to 0.7 degrees (see Schwartz (1994) for
1+ Cor a discussion of the significance &f anda). The ef-

fect of modifyinga on the mapping can be seen in the
' following way (see Fig. 1). For smatl(i.e.,z « a),
the mapping can be approximated using a series expan-
sion around the poirg=0:

C,

Mc(r) =

wherer is the retinal eccentricity measured in degrees
andC; andC, are experimentally determined constants
related to the foveal magnification and the rate at which
magnification falls off with eccentricity respectively.

Integrating Eq. (2.1) yields a relationship between reti-

z
nal eccentricity and cortical distanpe w ~ log@) + . (2.6)

TG . C Thus, in the fovea, the mapping is essentially linear.
P = / Tror dr=g, o9 +Car) (22)  The magnitude of the derivative of the mapping gives
0 2 2 an approximation to the cortical magnification factor:
Schwartz has pointed out that the retino-cortical
mapping can be conveniently and concisely expressed d_w
as a conformal transformation (Schwartz, 1977, 1980). dz
In this approach, a complex variat#ds used to de-
scribe the retinal coordinates

1
Z+a

, (2.7)

which is approximately constant far« a. The com-
plex log transformation of Eq. (2.5) therefore smoothly
varies from a linear map in the fovea to a logarithmic
one in the periphery, with the magnitude afcon-
trolling the size of the region of approximate linearity.
where polar coordinates replace Cartesian ones in theThjs is in contrast with other techniques which explic-
retina itly overlay a Cartesian fovea on a log image to obtain a
similar effect (Sandini and Dario, 1989; Sandini et al.,
r=yx2+y2 6O=tan? (X) (2.4) 1989), thereby introducing a discontinuity in the rep-
X resentation.

z=re'’ =x+iy, (2.3)

g age I s

Figure 1 Example of an image (left), and its complex log transformation (right), for various values of the map paramétete that
decreasing (moving from left to right) increases the representation of the foveal region in the log plane. Dark areas correspond to regions
outside the domain of the mapping.
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Equation (2.5) is analytic everywhere in the do- we have suppressed the arguments(tpand| () in
main and is hence conformal, implying that local an- the interests of conciseness. Substituting (3.1) into a
gles are preserved by the transformation (Churchill and Taylor series expansion df aroundt =t, yields the
Brown, 1984). The singularity at the origin for the more first-order approximation:
commonly used complex log mapping= log (2) is
removed at the cost of mapping the two hemifields sep-
arately and managing a discontinuity along the verti-
cal meridian. The full form of the mapping for both

hemifield$ is given by
log(z+a), Re(z) > 0 _
. nected neighborgpo, ¢_1), (0o, #1), (0-1, ¢0), and
{Zlog(a) —log(-z+a), Re@z) <0 (p1, Po) We use a centered difference approximation

Figure 1 shows an example of an image, and its com- of the derivatives in (3.2). Labelling these pixels with
plex log transformation for a variety of values of the superscripts 0, N, W, E, S respectively, we have:
map paramete. As can be seen, decreasing the value
of a (moving from left to right) increases the magnifi-

| (to+ Ab) & | (to) + At(€2[(cl, (o)),

+ (Clg(t0))g])- (3.2)

Using a discrete lattice withp = A¢ = 1, and con-
sidering the central pixelpg, ¢o), and its four con-

(2.8)

cE(to) 1 5 (to) — cV(to) 1)V (to)

(o)1 Jtw), ~

cation of the map, corresponding to an increased foveal 2

representation. The original image on the left contains (3.3)
512x 512=256 K pixels, as compared to the images (cS(to)15(t0) — (1) M)
after the complex log transform which contain 14,307 (Co(to)|$(to)) ~ 0)7¢ 70 0)7¢ 110
pixels, 5,000 pixels, and 496 pixels, respectively. For ¢ 2

a more complete discussion of the issues involved in (3-4)

the design of a complex log transformation, see (Rojer

and Schwartz, 1990). They show that up to four or- We use both backwards and forward differences to ap-
ders of magnitude of reduction of pixel complexity is Proximate the partial derivatives with respect to the

provided by versions of the complex log map based on spatial variables so as to limit the domain of our nu-

human anatomical parameters. In machine vision ap- merical implementation to the four nearest neighbors

plications, algorithms can be expected to run an order
of magnitude or two faster in the log domain as com-

pared to the Cartesian one, using contemporary sensor

chips.
3. Diffusion in the Log Domain

In this section we derive an algorithm for numerically
integrating the anisotropic diffusion Eq. (1.2) directly
in the log domain. This requires the derivation of the
space-variant form of the gradient and divergence op-
erators, the details which are given in Appendix A. For
a more comprehensive examination of the form of ava-
riety of differential operators in the complex log plane
see (Fischl et al., 1997).

Using the space variant forms of the gradient and
the divergence given by Egs. (A.8) and (A.12), respec-
tively, we can write the anisotropic diffusion Eq. (1.2)
in log coordinates as

ly = €722((cl,), + (Clp)y), (3.1)

where thep, ¢ andt subscripts denote partial differ-
entiation with respect to the subscripted variable, and

of the central pixel:

1V (to) = 1°(to) — 1" (to). 1 (to) = 1 F(to) — 1°(to),

15 (t) = 1°(to) — 1N (to), 1 5(t) = 1 3(to) — 1°(to),
(3.5)

Substituting (3.3), (3.4) and (3.5) into (3.2) we arrive

>¢ (to>>)
i#0
> ctol (to)> :

i#£0
(3.6)

1%(to + At) ~ 1%(tg) (1 — O.5e‘2”At<

+0.5e" % At (

Equation (3.6) can equivalently be written as the cor-
relation of the image with a set of space and time vary-
ing masks:

l(p, ¢, to+ AD~ Y

/

D KEL (0 )
PP

x1(p+p,¢+¢, t0), (3.7)
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where the mask weights are given by regions of the log plane to move through scale space
o2 AL _at different rates_—faster in the periphery and slower
K;04> = in the foveal region. Furthermore, if we replage
’ 2 in Eq. (3.8) with 0.28%" the numerical implementa-
0 cN(to) 0 tion becomes identical to the implementation of the
oe20 _ anisotropic diffusion equation in Cartesian space. That
x | V() — — < Z c (to)> cB(tp) is, if we treat the log-domain image as a Cartesian one,
At i#0 then we are effectively allowing the integration to occur
0 cS(to) 0 at different rates across the image.
(3.8)

In two dimensions the two components of the spatial 4. Space-Variant Termination Conditions
gradient used in the computation of the conductance
function are calculated using a Sobel operator with a Given the variable-rate movement of the image through
negative exponential weight as specified by Eq. (A.8). nonlinear scale space, a natural question to consider
At first sight Eq. (3.8) seems problematic. It indicates is how one determines a proper ending time for the
that diffusion falls off exponentially with eccentricity. ~numerical integration. If all points in the image are
However, with the increased pixel spacing in the pe- integrated for the same number of iterations, then dif-
riphery comes increased numerical stability. An upper ferent regions of the log image will represent differ-
bound on the allowable stable time stepcan be com-  ent scales or times. If we wish to produce an image
puted using Fourier-von Neumann stability analysis. In Which is entirely at the same point in scale space, then
Cartesian space the numerical implementation will be the integration must be terminated in a space-variant

stable if (Haberman, 1987) manner. That is, we specify an ending time, then use
Eq. (3.10) to determine whether a given ring of pixels
At < (AX)? 3.9) (i.e., pixels of constant eccentricity) has reached the

~ 4c ' desired termination point, and if so, omit it from the

domain of integration. In this way, the region of the
image being integrated shrinks after each time step.
This approach also compensates for the inadequacies
of the approximation used in the numerical integration
for large integration times (i.e., thatis constant for

a pixel and its four-connected neighbors). Integration
is halted when the time differential between any point
and its neighbors is at most a fixed ratio, preventing it
from growing without bound.

If we choosec to be in the range (0,1] and l&tx =1,

we then haveAt < 0.25 (the lower bound on is nec-
essary given the ill-posed nature of the backwards heat
equation (Haberman, 1987, p. 74)). In the complex log
plane the spatial grid of Eq. (3.9) is nonuniform. The
interpixel distance is an exponential function of the
radial coordinate, which implies that the stability con-
straint for an allowable time step in the log domain

becomes The number of iterations required for each ring of
e2r pixels can be computed from Eg. (3.10) by fixing the
At < - (3.10) desired number of iterations at some point in the log

plane. Typically, we fix the number of foveal iterations
Equation (3.10) has importantimplications. Itsuggests as this corresponds to the region of the log image with
that the nonlinear diffusion Eq. (1.2) can be integrated the highest resolution and hence requires the maximum
using exponentially large time steps in the periphery, number of time steps. Denoting the number of foveal
resulting in large scale structure enhancement in rel- time steps to bé\s,,, we calculate the number of iter-

atively few iterations. That is, we assume that ations as a function of the radial coordinate to be
approximately constant for a pixel and its four nearest

neighbors, and allow the integration to proceed at dif- Nioy €2109@

ferent rates across the log domain image. Of course, N(p) = T e (4.1)

this is at the cost of fine scale peripheral image struc-

ture, but since such details are not preserved in the An example of this procedure is given in Figs. 2 and 3.
periphery by the log mapping this is not a concern. Ef- Figure 2 depicts the number of iterations required
fectively, the space-variant time step allows different as a function of log coordinate, witN¢, = 100. As
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Number of Iterations can be seen, the majority of the image reaches the
specified termination point in less than 5 iterations,
leaving only a small, shrinking foveal region to be in-
tegrated for the full 100 time steps. The original Carte-
sian image shown at the top-left of Fig. 3 contains
580x 720=417,600 pixels. The log image, shown
inthe top-middle, is constructed by specifying the num-
ber of angular pixels (spokes) to be 64. Following
(Rojer and Schwartz, 1990), this fixes the map para-
metera = 20.37 as well as the number of radial pixels
(rings) to be 111. The total pixel count of the log im-
Figure 2 Number of iterations required as a function of log coor- age is therefore 7,104, a compression of more than
dinate. Most of the periphery reaches the specified ending time after 50 to 1. Givena and the size of the original im-
only a few iterations. While the fovea requires the full 100. age, the radial coordinate is constrained to be in the
range 3014< p <5.657 which bounds the allowable

original log image variable diffusion

uniform diffusion - 1 step uniform diffusion - 3 steps

Figure 3 Types of integration termination schemes Top-left: original noisy image. Top-middle: log mapping of original image. Top-right:
variable end-time diffusion. The far periphery terminates after only a single iteration, while the fovea integrates for the specified 100 steps.
Second row from left to right: uniform end-time integration for 1, 5, and 10 time steps. Bottom row: inverse log mapping of uniform (left) and
variable (right) end-time diffusion. Note that the fixation point for the log transformation is the center of the image for all images shown in this
paper.
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Figure 4 Number of pixels which require integration versus time. As time evolves, peripheral pixels arrive at the ending integration time
and no longer require integration, thus reducing the effective pixel count of the image. The left-hand plot shows the number of pixels being
integrated at each time step. After 4 iterations approximately 1/2 of the log pixels still require integration. The right-hand plot is the integral
of the plot at the left, and illustrates the cumulative number of pixels which have been integrated at a given time as a fraction of the total pixel
count of the Cartesian image. Integrating the log image for 100 foveal iterations corresponds to 1/5 of an iteration of the diffusion on the full
Cartesian image.

time step through Eq. (3.10). Next, we fix the foveal We can quantify the computational savings provided
integration time to bé\Ny, = 100. In this case, the far by this scheme by examining the rate at which the do-

periphery requires main of integration shrinks, as illustrated in Fig. 4. The
left-hand plot shows the number of pixels in the domain

NG| _ 100g2109(2037) N 1 iteration  (4.2) of integration over time for the image shown in Fig. 3.
PIlp=56517 e2(5.657) 2 ' The right-hand plot is the integral of the plot at the left,

) i displaying the cumulative number of pixels integrated
Rounding up for numerical reasons, we can see that,, 4 3 given point in time as a fraction of the number
the far periphery arrives at the termination time in ¢ ivais in the full Cartesian image. Examining the
scale space in a single iteration! The efficacy of this |a¢_hang plot, we can see that after only 4 iterations

scheme is illustrated in Fig. 3. From left to right, the - ,qr6 than half of the image has reached the specified
top row shows the original image, the log mapping of o mination point, while by the 10th iteration the do-

the image, and the variable end-time diffusion outlined 54 of integration has shrunk to less than a quarter

in this section. The second row depicts the results of ¢ o image. The total number of pixels integrated
integrating the entire image (i.e., uniform end-time) for e the full time span is approximately 79,000, or less
1,5, and 10 time steps from left to right, with & con- 1ha 1/5th of the number of pixels integrated in a single
ductance function given by (Perona and Malik, 1987)  {ime step in the Cartesian domain, a computational cost
L decrease by a factor of 500. Another way to see the
< (4.3) speed enhancement provided by the variable size time
step is that integrating the image in this way requires

wherek is a real constant which controls the relation- the same amount of time as integrating the full log im-
ship between gradient magnitude and amount of dif- age for only 11 time steps. On a 180 MHz Pentium Pro,

fusion. The bottom row shows the results of the 10 e fy|| Cartesian diffusion takes approximately 820s,
time-step uniform end-time (left) and variable end-time \yile the log diffusion requires a mere 2.15s, almost
(right) diffusion mapped back onto a Cartesian mésh. 400 times faster.

Examining these images, we can see that peripheral
details are quickly blurred beyond recognition, while
the fovea has yet to be enhanced by the uniform end-5. Noise Tolerance
time diffusion. In contrast, the figures at the top and
bottom right represent the variable end-time diffusion An additional advantage provided by diffusion in the
we have outlined in this section. Intheseimages, foveal log domain is enhanced noise tolerance. Noise sensi-
noise has been smoothed while peripheral features aretivity has been shown to be problematic for the Perona
retained. and Malik diffusion using conductance functions such

(V1) = e ¢
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Figure 5 Noise tolerance of diffusion in the Cartesian and log domains. From left to right: original image, diffusion in Cartesian domain (100
iterations,k = 0.05), complex log transform of the image, and anisotropic diffusigg,(= 100 iterationsk = 0.0001) directly in the log

plane. Far right: inverse mapping of log plane diffusion.

as Eq. (4.3) (Whitaker and Pizer, 1991; El-Fallah and
Ford, 1994). This is due to the large gradient magni-
tudes arising in noisy image regions which inhibit dif-

undesirable alternatives. Using this valuekofmuch
of the license plate is enhanced at the cost of retaining
shot noise in the left-hand side of the image, as well

fusion, and are therefore preserved over time. Noise as the blurring of image detail such as the right-hand

tolerance is achieved naturally in the log plane dif-
fusion due to the filtering which is necessary in the
construction of the log image. Each log pixel has vary-
ing support in the Cartesian image, with the region of
support growing with increasing eccentricity. In the
initial construction of the log image, each log pixel

portion of the license plate. Settikghigher results in
greater noise suppression at the cost of the destruction
of more image structure; while a smaller valuekof
preserves more of the image, but also preserves more
of the noise. In contrast, the log diffusion at the far
right eliminates almost all of the noise while preserv-

is assigned the average value of all Cartesian pixels ing most of the image detail contained in the original

which map to i? In this way, movingout (i.e., in-
creasing radial coordinate) in the log domain is equiv-
alent to movingup (i.e., towards coarser scale images)

in scale space. This process lowpass filters the image,

effectively providing noise tolerance for the diffusion
in a manner similar to the multi-scale approach sug-
gested by Whitaker and Pizer (1991).

The enhanced noise tolerance is illustrated in Fig. 5.

From left to right these images are the original Carte-
sian image corrupted with additive white noise (0.1
amplitude), the image after undergoing Cartesian dif-
fusion using the conductance function of Eqg. (4.3) (100
iterations, k=0.05), the log mapping of the noisy
image, the log image after diffusion using the same
conductance functioNs,y, = 100, k =0.0001), and fi-
nally, at the far right, the inverse mapping of the image
which has undergone diffusion directly in the log plane.

log image.
6. Results

In the prior sections we showed that the form of a sim-
ple numerical implementation of the anisotropic diffu-
sion equation inthe log plane is equivalent to a variable
grid size integration of the underlying PDE. In this sec-
tion we show some results of applying Eg. (3.7) with
the variable step size specified by (3.10) as well as the
space-variant termination condition given by Eq. (4.1),
to a variety of images. For comparison purposes, we
also include the results of diffusion on the Cartesian
mesh followed by a log mapping. These images are
shown using an inverse mapping so that they may be
viewed in the more familiar Cartesian plane. Note that
all images presented in this section have intensity val-

We show the inverse maps to facilitate the comparison ues scaled to be in the range [0, 1], and are integrated

of performing diffusion followed by a log mapping as

for the same number of effective time steps (100) using

opposed to the inverse order of operations. These twothe same parameterd & 100, k =0.0001).

processes are functionally similar, but performing the

As noted earlier, the Perona and Malik scheme

diffusion after the log mapping increases the speed of has difficulty in dealing with the types of noise
the procedure by between two and three orders of mag-present in these images. We therefore use the conduc-

nitude.
The value ofk used in the Cartesian diffusion

tance function proposed by El-Fallah and Ford (1994)
for the Cartesian diffusion, as it has been shown

in this image represents a compromise between two to have good noise reduction characteristics. Their
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original image  Cart. diff. inverse  log image log diffusion log diffusion inverse

Figure 6 Comparison of anisotropic diffusion on a Cartesian mesh, followed by a log mapping (second column) with diffusion directly in the
log plane (last two columns). First column: original image. Second column: diffusion in Cartesian domain (100 itefatiob@0) followed

by mapping into and out of the log plane. Third column: complex log transform of the image in the first column. Fourth column: anisotropic
diffusion (Nsoy = 100 iterationsk = 0.0001) directly in the log plane. Fifth column: inverse map of log plane diffusion. The images in the
second column are mapped into and out of the log domain to facilitate comparison with the inverse mapping of the images which have undergone
diffusion directly in the log domain (fifth column).

conductance function is of the form with Nj,y =100, and finally, the inverse mapping of
the image in column 4. Examining the log domain im-
1 6.1) ages, we can see that although much of the peripheral
/1+ A2V I |2’ ' diffusion is accomplished in as few as 2—4 time steps
(each of which requires less than 20 ms on a 180 MHz
where the real constart in this function plays a role ~ Pentium Pro), large-scale structures such as the edge of
similar tok in Eq. (4.3). the license plate and the boy’s cheek are significantly
Figure 6 presents the results of Cartesian diffusion enhancedinthattime. Toachieve comparable enhance-
followed by a log mapping, as well as the inverse or- mentin the Cartesian domain requires between 50 and
der of operations. From left to right the five columns 100 iterations.
in this figure are the original image, the Cartesian im-
age after 100 time-steps of anisotropic diffusion us- 7. Conclusion
ing the conductance function of Eq. (6.1), mapped into
and out of the log plane as noted above, the complex Diffusion is a powerful tool of great potential utility in
log transformation of the image in column one, the machine vision. In addition, diffusion processes have
result of applying diffusion directly in the log plane a long history of use in psychophysical and neural

c2(Vl) =
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models of biological vision (Gerrits and Vendrik, 1970; log map architecture outlined in this paper, which is
Cohen and Grossberg, 1984; Grossberg and Mingolla, closely related to the biological architecture of vision,
1985; Grossberg and Todorovic, 1988; Lee, 1995). In yields a smooth space-varying representation which
both contexts, diffusion unifies multi-scale image en- appears to provide the most natural “pyramid” architec-
hancement and analysis into a simple procedure in- ture for the application of nonlinear diffusion to space-
tendedtoyield a single image containing information at variant vision.

all scales of interest. However, both the machine vision

and biological uses of nonlinear diffusion encounters a Appendices A: Differential Operators

serious implementation problem. Anisotropic nonlin-

ear diffusion is several orders of magnitude too slow for In this section we compute the form of tReoperator,
real-time application with current computer architec- which yields the space-variant form of the gradient and
tures, and also appears to require too many serial stepshe divergence, As noted in Section 2, the complex log
to be in agreement with observed response latencies incoordinate transform considered in this work is of the

the primate visual system. form
In the present paper, we have shown that for ap- ’
plications in which a space-variant or foveating archi- w =109(z+a), aed, zweC, Re2) = 0.

tecture is appropriate, the use of nonlinear diffusion
yields a surprisingly synergistic benefit. Specifically, o ) _ )
the nonuniform mesh spacing of the log domain al- More explicitly, the log coordinateg( ¢) are given in
lows the use of integration rates which are exponen- terms of their Cartesian counterparts y) by
tial functions of eccentricity, yielding large scale en- y
hancement in few time steps. Thus, in addition to the o = log(v/ (X +a)2+Yy?), ¢ = tan1< " >
well known reduction in space-complexity gained from (x+a)

(A.1)

spacevariant architectures (Rojer and Schwartz, 1992) (A-2)
there is an additional multiplicative speed-up from en- 14 inverse relations are

hanced integration rates for nonlinear diffusion models.

This performance increase is due to the combination of X =¢€’cosp —a, y=¢€"sing (A.3)

the compressive effects of the log mapping combined
with the exponential integration rates possible in this ~ The log mapping of Eq. (A.2) as well as the inverse
architecture and is between two and three orders of mapping given by (A.3) are both complex and analytic
magnitude. everywhere in their respective domains, and are hence
From a biological standpoint, these results have im- conformal. This has a number of interesting and useful
portant implications. If diffusion or a related process implications. For the present purposes, the most im-
occurs at uniforntortical rates in mammalian visual ~ portant of these is that the conformal nature of the map-
cortex, then it is effectively proceeding at rates which Ping ensures that local angles are preserved (Churchill
are exponential functions eétinal eccentricity. Fur- ~ and Brown, 1984). This in turn implies that the log-
thermore, coarse, features are enhanced prior to finepolar coordinate basis is orthogonal when projected
scale detail, providing large-scale contrast enhance- into Cartesian space. This fact will be used to simplify
ment and noise reduction in as few as 2 or 3 time steps. the derivation of the |Og domain gradient inSectionA.1.
Nevertheless, foveal diffusion remains problematic due
to the severe constraints on the number of possible se-A.1. Space-Variant Form oV f
rial stepsinrapid visual processing (Thorpe and Imbert,

1989).

Finally, this paper clarifies some basic issues con-
cerning the nature of “pyramid” or “scale-space” ar-
chitectures. In the usual binary form of the pyramid
architecture, integrating a nonlinear PDE is problem-
atic at the discontinuities at each level of the pyra-
mid, and must be handled with great care to avoid
introducing instabilities into the solution. The complex

The conformal nature of the complex log mapping
yields a simple derivation of the form of the gradient
in the log domain. As noted in the introduction to this
section, the conformality of the log mapping implies
that local angles are preserved by the transformation.
This simplifies the derivation considerably. Specif-
ically, it insures that the basis vectors of the ¢)
space which are orthogonal in the log domain, are also
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Figure 7. Representation of the relationship between the basis vectors and the gradient in the two spaces. The mapping preserves the angles

between the vectors, but not their lengths.

orthogonal when projected into Cartesian space (Seea(p, ¢)2( f2e?°c? + 2€¥'s? + 21, f,esc+ 126%°c?

Fig. 7). Since the gradient is the combination of the
directional derivative imnytwo orthogonal directions,

we are assured that the gradient in the log space is of

the form

of
a¢e¢’)’
wheree, ande; are an orthonormal basis (in the in-
duced metric) for the log domain, and tA€p, ¢) term
accounts for the variation in length a vector experiences
under the log mapping. Note that Eq. (A.4) holds for
anyconformal mapping, with the specifics of the trans-
formation expressed in the coefficient functidn An-
other way to see that the gradient must be of the form
given in (A.4) is to observe that any inhomogenous
scaling of the basis vectors would result in the angle
between the gradient and the basis vectors being differ-

of
Vi = A, ¢>(% 4 (A.4)

ent in the two spaces, which cannot be the case since

the mapping is conformal. All that remains is to deter-
mine the form of the coefficient function. To do so,
we use the invariance of the magnitude of the gradient
under a change of coordinates. That is, the length of
the gradient (or its square) must be the same in both
domains. Hence

Alp. p)*(f2+ ) =12+ f7. (A.5)
Using the chain rule to expresd/dp andaf/d¢ in
terms of f, and f, yields

Alp, §)2((FxX, + Tyy,)? + (fxxs + fy¥p)?)
=fZ+ 12 (A.6)

Expanding (A.6) using the derivatives of Eq. (A.3) and
solving for A(p, ¢) results in

Alp, §)2((xe’c+ fye’9)? + (— fe’s+ fye’0)?)

=f2+ 17 (A.7a)

+ fle?rs® — 21, fe?’sq) = f7 + 12,
(A.7b)

= Alp,¢p)=€"", (A.7¢)

wheres= sing andc= cos¢. Thus, the gradient in
the space-variant domain is given‘by

vV f =e‘”<af )
¢

—e
ap ot
From Eqg. (A.8) it is apparent that the operator has
d

the general form
e_p ie +
ap ” a¢e¢ ’

Which allows the direct computation of quantities such
as the Laplacian, the divergence and the curl in the log
plane.

o (A.8)

(A.9)

A.2. Space-Variant Form of f

The form of the divergence of a vector field in the log
plane can be calculated in a straightforward manner
using the form of thev operator derived in the prior
section. To do so we will require the derivatives of
the log plane orthonormal basis vecteysande, with
respect to the log coordinates. Like their polar coun-
terpartsg, ande, do not change in the radial direction
and hence both derivatives with respecptare zero.

To calculate the change in the basis vector with respect
to the angular log coordinate we use the chain rule as
follows:

d . d 0 . ad
e = cos¢& + sm¢8—y, e = cos<i>8—y - sm¢&,
(A.10a)



8& — cos¢i— sin¢>i—

g oy ax_e"”

a .0 Gl

% = —sinp— — Cos¢a_y:—ep. (A.10b)

Given these relations, the divergence of an arbitrary
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Bonmassar, G. and Schwartz, E. 1996a. Fourier analysis and cor-
tical architectures: The exponential chirp transfoReal Time
Imaging in press.

Bonmassar, G. and Schwartz, E.L. 1996b. Lie groups, space-variant
fourier analysis and the exponential chirp transforniElBE Com-
puter Society Conference on Computer Vision and Pattern Recog-
nition, San Francisco, CA, USA, pp. 492-498.

vector field whose components expressed in the or- Burt, P.and Adelson, E.H. 1983. The Laplacian pyramid as a compact

thonormal log basiss,, e,) are (f”, f¢) can be calcu-

lated as
0
e’ <— e,
ap

Using Eq. (A.10b) and the orthonormality of the basis
vectors, the divergence simplifies to

2
o¢

V-f +

e¢> -(fre, + f%).
(A.11)

Vof=e?(fr+ 1)+ 17). (A.12)

Notes

1. The complex log transformation requires a branch cut which di-
vides the complex plane along the imaginary axis. This division
was originally motivated by brain anatomy: the two half-planes
in the range of the mapping correspond to the primary visual area
in each hemisphere of the brain.

2. We use a point resampling to minimize any filtering effects of the
inverse mapping.

3. Thelog planeimages shown in this paper are all constructed using
overlapping regions of support such that the image is sampled at

or above the Nyquist rate at all eccentricities (Bonmassar and
Schwartz, 1995).

4. Note that this derivation does not account for the varying support
ofeachlog pixel. As one movesinto the periphery ofthe log plane,
each log pixel is typically generated by averaging a larger region

of Cartesian space, both in the mammalian retina and in machine

vision systems. The averaging is done to avoid aliasing in the
periphery, and attenuates high frequency information, partially
offsetting the need for a negative exponential weighting to account
for varying pixel separation.
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