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Abstract. We propose a technique to accurately correct the spherical
topology of cortical surfaces. We construct a mapping from the original
surface onto the sphere to detect topological defects as minimal non-
homeomorphic regions. A genetic algorithm corrects each defect by find-
ing the maximum-a-posteriori retessellation in a Bayesian framework.
During the genetic search, incorrect vertices are iteratively identified
and eliminated, while the optimal retessellation is constructed. Applied
to synthetic and real data, our method generates optimal topological
corrections with only a few iterations.

1 Introduction

The human cerebral cortex is a highly folded ribbon of gray matter that lies
inside the cerebrospinal fluid and outside the white matter of the brain. Locally,
its intrinsic “unfolded” structure is that of a two-dimensional (2-D) sheet, which
is several millimeter thick. The analysis of cortical data is greatly facilitated by
the use of accurate 2-D models of the cortical sheet [1, 5], which alleviates most
drawbacks of the three-dimensional embedding space (such as the underestima-
tion of true cortical distances or the overestimation of cortical thicknesses). In
the absence of pathology, each cortical hemisphere is a simply-connected 2-D
sheet of neurons that carries the simple topology of a sphere. There has been ex-
tensive research dedicated to the extraction of accurate and topologically-correct
models of the brain surface that allows for the establishment of a global 2-D co-
ordinate system onto the cortical brain surface. However, because of its highly
convoluted nature that results in most of its surface being buried within folds,
noise, imaging artifacts, partial voluming effects and intensity inhomogeneities,
the automatic extraction of accurate and topologically correct cortical surfaces
is still a challenging problem.

Methods for producing topologically correct cortical models can be divided
into two categories. Several approaches directly incorporate topological con-
straints into the segmentation process. A model, carrying the desired topology,
is iteratively deformed onto the cortical surface while preserving its topology. To
this end, active contours [3, 4, 2, 9, 19] and digital models [12, 15] have shown to
be extremely useful. Unfortunately, the energy functionals driving the deforma-
tion are highly non-convex and the achievement of the desired final surface most
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often requires an initialization of the model that is close to its final configura-
tion. In addition, local topological constraints can easily lead to large geometric
inaccuracies in the final cortical representation, which are difficult to correct.

Recently, new approaches have been developed to retrospectively correct the
topology of an already segmented image. These techniques, which do not enforce
any topological constraints into the segmentation process, can focus on more ac-
curate models. Many segmentation techniques, using local intensity, prior prob-
abilities, and/or geometric information without regard to topology, will be able
to generate accurate cortical surfaces, with few topological inconsistencies.

Most methods assume that the topological defects in the segmentation are
located at the thinnest parts of the volume and aim at correcting the topol-
ogy by minimally modifying the volume or tessellation [17, 8, 18]. While these
methods can be effective, most of them do not use any geometric or statisti-
cal information. Although they will often lead to accurate results, due to the
accuracy of initial segmentations, topological corrections may not be optimal:
additional information, such as the expected local curvature or the local inten-
sity distribution, may lead to different corrections, i.e. hopefully comparable to
the ones a trained operator would make.

Only a few techniques have been proposed to integrate additional information
into the topology correction process. Using a digital framework, Kriegeskorte and
Goeble [11] developed a technique that corrects each topological defect, located
at the thinnest parts of the volume, by maximizing an empirical fitness function.
More recently, another method to correct the topology of sub-cortical structures
has been proposed but has not yet been applied to the reconstruction of cor-
tical surfaces [16]. Unfortunately, digital approaches fail to integrate geometric
information into the topology correction process.

In previous work, Fischl et al. [7] proposed an automated procedure to locate
topological defects by homeomorphically mapping the initial triangulation onto
a sphere. Topological defects are identified as regions in which the homeomor-
phic mapping is broken and a greedy algorithm is used to retessellate incorrect
patches, constraining the topology on the sphere S while preserving geometric
accuracy by a maximum likelihood optimization. In this approach, all possible
edges in a defective region are ordered using some measure, then each edge is
sequentially added to the existing tessellation if and only if it does not intersect
any of the existing or previously added edges.

Although this approach can result in reasonable surfaces in many cases, it is
worth noting that the information necessary to evaluate the “goodness” of an
edge does not exist in isolation, but only as a function of the tessellation of which
the edge is a part. This is a critical point, as it implies that a greedy algorithm
cannot in general achieve geometrically accurate surfaces, as the necessary infor-
mation does not exist at the time that the edge ordering is constructed. Another
subtle point to be noted is that every vertex in the original defect, even those
present due to segmentation inaccuracies, will be present in the final retessella-
tion, resulting in extremely jagged patches that only a strong smoothing could
correct. As a consequence, the final configuration will approximately correspond
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to an average of all vertex positions in the original configuration. Finally, we note
that, even though the final intrinsic topology will be the correct one (the one
of a sphere, corresponding to an Euler number X = 2 1), the proposed method
does not guarantee that the final surface will not self-intersect.

In this paper, we propose a technique that directly extends the approach
taken by Fischl et al. in [7], addressing most of its limitations. We focus on the
retessellation problem and introduce a genetic algorithm to explore the space
of possible surface retessellations and to select an optimal configuration. During
the search, incorrect vertices are iteratively identified and eliminated from the
tessellation.

2 Methods

In order to extend the greedy retessellation developed in [7], we propose to take
a somewhat different approach, and evaluate the goodness of fit of the entire
retessellation, not of individual edges.

Our method proceeds as follow:

1) Generate a mapping from the original cortical surface onto the sphere that
is maximally homeomorphic. Each topological defect is identified as a set of
overlapping triangles.

2) Discard the tessellation in each defect and generate an optimal retessellation
using a genetic algorithm to search the space of potential retessellations.

2.1 Identification of Topological Defects

The first step is identical to the approach developed by Fischl et al. in [7]. Briefly,
the identification of topological defects begins with the inflation and projection
of the cortical surface C onto a sphere S. Next, we generate a maximally home-
omorphic mapping M : C → S by minimizing an energy functional that directly
penalizes regions in which the determinant of the Jacobian matrix of M becomes
zero or negative (non-homeomorphic regions). More specifically, noting that the
Jacobian yields a measure of the deformation of an oriented area element under
M, the energy functional EM limits the penalization of compression primarily
to negative semi-definite regions. If the initial area on the folded surface of the
ith face is A0

i , and the area on the spherical surface S at time t of the numerical
integration is At

i, then the energy functional is given by:

EM =

F∑

i=0

log(
1 + ekRi

k
) − Ri , Ri =

At
i

A0
i

.

1 The Euler number of a surface is a topological invariant. For a tessellation, it can
be easily computed as: X = #vertices − #edges + #faces. The Euler number
of a sphere is X = 2.
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The resulting mapping - from the initial tessellation to the sphere - is maximally
homeomorphic. Multivalued regions, containing overlapping triangles, constitute
topological defects where the homeomorphic mapping is broken. M associates at
each vertex v of the initial cortical surface C a vertex vS = M(v) on the sphere S.
Vertices with spherical coordinates that intersect a set of overlapping triangles
are marked as defective and topological defects are identified as connected sets
of defective vertices (we refer to [7] for more details).

2.2 Definition of the Retessellation Problem

Once a topological defect has been identified, its tessellation is discarded. The
retessellation problem can then be stated as follows.

Given a set of defective vertices, each of which has been assigned a spher-

ical location by the quasi-homeomorphic mapping M, find the vertices

that should be kept in the defect and the set of edges connecting them, so

that an energy functional, measuring the goodness of the retessellation,

is maximized.

Topological inconsistencies, which are resulting from mislabeled voxels in the seg-
mentation process, generate tessellations that include incorrect vertices. These
vertices should be identified and discarded from the final solution. A potential
topological correction of the defect corresponds to the generation of a new tes-
sellation such that no edge intersection occurs in the spherical surface. Many
such tessellations exist 2, and one would like to select an optimal solution that
maximizes the goodness of fit of the retessellation.

We evaluate the fitness of a corrected region with the maximum-a-posteriori
estimate of the retessellation, given geometric information about the observed
surface, and the underlying MRI values. The numerical technique we propose to
explore in the maximization of the fitness function is a genetic algorithm or GA
(for a good introduction see [14]). The GA is an appropriate choice for this type
of problem as the space to be searched is potentially quite large (the defects
can contain upwards of 300,000 candidate edges), and there is no easy way
to compute gradient information. More importantly, we define a set of genetic
operations used to propagate information from one generation to the next that
correspond to ’relevant’ surface operations.

2.3 A Genetic Algorithm for the Surface Retessellation

Genetic Algorithms were developed by John Holland in the 1960s as a means
of importing the mechanisms of natural adaptation into computer algorithms
and numerical optimization [10]. In genetic algorithms, a candidate solution to
a problem is typically called a chromosome, and the evolutionary viability of
each chromosome is given by a fitness function. Typically, genetic algorithms
are defined by different operators: Selection, Crossover and Mutation.

2 For a defect composed of n vertices, the number of potential edges is N = n(n−1)/2,
leading to a space of size O(2N ).
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In the next paragraphs, we explain the role of these operators in detail and
specify how their definition is meaningfully tailored to the current problem.

A - Representation and Retessellation: perhaps the most important decision in
the construction of a GA is the choice of representation for the underlying prob-
lem. Here we have a number of constraints that must be satisfied that lead to the
representation we use. These essentially amount to the requirement that every
potential edge be represented exactly once in an ordering for the retessellation.
This guarantees that the retessellation will result in the proper topology [7].
Thus the representation we choose is an edge ordering, represented by a permu-
tation of N integers. The retessellation procedure then simply involves adding
edges in the order specified by the permutation.

Such a procedure will generate retessellated patches that include all vertices
present in the defect, resulting in irregular jagged surfaces. In order to alleviate
this problem, we directly encode the vertex selection into the representation.
Given an edge ordering, we construct the corresponding tessellation and assign to
each vertex an arrival number based on the order in which they were added. Next,
we discard all the vertices that were added after all of its neighbors, i.e. vertices
with lower arrival numbers. This way, edges added first in the retessellation will
force their bordering vertices to be included in the final retessellation. The edges
added last, which most often generate the surface irregularities, will consequently
be discarded.

B - Selection of the Initial Population: the selection of the initial population is
particularly significant for the considered problem. The space to be searched is
potentially quite large and the selection of a “good” initial population can drasti-
cally improve convergence of the algorithm. Topological defects are constituted
of sets of overlapping triangles. The intersecting edges on the sphere S corre-
spond to different topological paths in the original cortical surface C. In order to
generate an initial population with a large variance, i.e. composed of individuals
with large shape differences, we first group the non-overlapping edges into differ-
ent clusters. Using the spherical quasi-homeomorphic mapping M , intersecting
edges are iteratively segmented into different clusters. Next, these clusters are
used to select the initial population of chromosomes. We say that a chromosome
is generated from a cluster Ci, if the first edges (in the ordering) constituting
this chromosome comes from Ci. Consequently, chromosomes generated from
different clusters will have different shapes, hopefully leading to an initial popu-
lation with a large variance. Figure 1 provides a few examples of initially selected
chromosomes in the case of a simple topological defect.

C - Mutation and Crossover: the two most important operations used in GAs
are mutation and crossover. Mutation involves the random modification of a part
of the code of an “individual” in the population and crossover the exchange of a
part of the code of an “individual” with another one in the population. We define
these operations in order to accommodate the nature of the current problem.
Intersecting edges represent choice between different surface configurations. In
the following section, we note Ii the set of edges intersecting the edge ei: Ii =
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Fig. 1. a) Example of a topological defect containing 2 handles and constituted of
183 defective vertices. b) Result of the clustering of the non-intersecting edges into
5 segments. c-e) These candidate retessellations represent different configurations of
the initial population generated using the edge clustering. f) The optimal solution
generated by our genetic approach in 15 generations after 4 mutations and 8 crossovers

{ej |int(ei, ej) = 1}, where int(ei, ej) is the intersection operator, and returns 1
if edge ei intersects edge ej , and 0 otherwise.

For mutation, we perform the following operation for each possible edge in
the tessellation:

1) Draw a random number r from UR(0, 1), the uniform distribution on the real
numbers between 0 and 1.

2) If r > pmut then continue with the next edge.
3) Draw a random number k from UN(1,#Ii), the uniform distribution on the

natural numbers between 1 and #Ii.
4) Exchange the positions of ei and ej , where ej is the kth entry in the set Ii.

This procedure will allow the selective exploration of the different retessellations
represented by different members of Ii, thus reducing the size of the effective
search space.

The crossover operator we define is the random combination of permutations.
Some care must be taken here to insure that every edge is represented exactly
one time. Towards that end, the crossover operator will add a random number of
edges from each parent retessellation, only if that edge has not been added. The
crossover operator will randomly select one of the permutations to draw from
first, then copy a random number of edges from it to the ”offspring” retessella-
tion. For each edge, we draw a random number r from UR(0, 1), and stop copying
edges if r < 1/2. Next, a random number of edges will be copied from the second
parent, if they are not already represented in the offspring. This procedure will
continue until every edge is represented.

It is important to note that the previously defined genetic operations carry
meaningful geometric operations. Mutation, which randomly swaps the order-
ing of intersecting edges, corresponds to local jumps from one configuration to
another one. The crossover operation naturally combines different parts of the
code from the two candidate tessellations, generating a configuration that often
expresses distinct local surface properties of both parents. In addition, since the
edge ordering naturally encodes which vertices are discarded (the vertices in-
cluded last being discarded), the crossover operation, which iteratively combines
two edge orderings, most often generates offspring chromosomes that preserve
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the best geometric characteristics of the parents (most likely, the same vertices
will be discarded).

D - Fitness and Likelihood Functions: we use some prior knowledge about the
cortex to define the fitness function. A cortical surface is a smooth manifold
C that partitions the embedding space into an inside part, composed of white
matter, and an outside part, composed of gray matter. We characterize the
goodness of a retessellation by measuring two of its properties:

(1) The smoothness of the resulting surface,
(2) the MRI values I inside and outside the surface.

Formally, the posterior probability of the ith retessellation Ti is given by:

p(Ti|C, I) ∝ p(I|C, Ti)p(Ti|C).

The likelihood term p(I|C, Ti) encodes information about the MRI intensities
inside and outside the surface. Each retessellated patch, being topologically cor-
rect, separates the underlying MRI volume into two distinct components 3, an
inside part C− and an outside part C+. An acceptable candidate solution should
generates a space partition with most of its inside and outside voxels corre-
sponding to white and gray matter voxels respectively. In order to estimate the
likelihood p(I|C, Ti), we assume that the noise is spatially independent. This
probability can be rewritten:

p(I|C, Ti) =
∏

x∈C−

pw(I(x)|C, Ti)
∏

x∈C+

pg(I(x)|C, Ti)

︸ ︷︷ ︸

volume-based information

Vi∏

v=1

p(gi(v), wi(v)|C, Ti)

︸ ︷︷ ︸

surface-based information

,

pw(I(x)|C, Ti) and pg(I(x)|C, Ti) are the likelihood of intensity values at location
x in the volume inside and outside the tessellation respectively, p(gi(v), wi(v)|C, Ti)
is the joint likelihood of intensity values inside and outside the tessellation at
vertex v in tessellation Ti.

Geometric information can be incorporated via p(Ti|C), which represents pri-
ors on the possible retessellation. For example, p(Ti|C) could have the form:

p(Ti|C) =

Vi∏

v=1

p(κ1(v), κ2(v)|C),

where κ1 and κ2 are the two principal curvatures of the surface, computed at
vertex v.

Given that the vast majority of the surface is in general not defective, we for-
tunately have ample amounts of data with which to estimate the correct forms

3 We use the angle weighted pseudo-normal algorithm to compute the signed distance
of the tessellation. The voxel grid is partitioned into inside negative values and
outside positive values
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Fig. 2. a) Example of the gray and white matter distributions estimated locally from
a given a topological defect. b) Joint distribution of gray and white matter given the
surface computed using the non-defective portion of the gray/white boundary repre-
sentation of a single subject. The gray and white matter intensity are two correlated
variables, as indicated by the diagonal structure of the joint distribution. c) Joint dis-
tribution of two principal curvatures of the surface

of the distributions p(Ti|C), pg(I(x)|C, Ti), pw(I(x)|C, Ti) and p(gi, wi|C, Ti). In
particular, the single tissue distributions pg(I(x)|C, Ti) and pw(I(x)|C, Ti) are
locally estimated around each topological defect in a region that excludes the
defect itself (we exclude all voxels that intersect one of the N potential edges).
This makes the resulting procedure completely adaptive and self-contained, in
the sense that no assumptions need to be made about the contrast of the un-
derlying MRI image(s), and no training or parametric forms are required for
p(Ti|C). An example of the estimation of p(gi, wi|C, Ti) and p(Ti|C) is given in
Fig. 2. Image b) shows the joint distribution of gray and white matter given the
surface computed using the non-defective portion of the gray/white boundary
representation of a single subject. Note the diagonal character of the distribution,
indicating that the intensities are mutually dependent - brighter white matter
typically means brighter gray matter due to factors such as bias fields induced
by RF inhomogeneities and coil sensitivity profiles, as well as intrinsic tissue
variability. One possible form of the priors on the tessellation is given in Fig. 2c,
which shows the joint distribution of the two principal curvatures κ1 (green) and
κ2 (red) computed over the non defective portion of a single surface. It is impor-
tant to note in this context that all these distributions can only be applied after
a candidate retessellation has been completed, as the gray/white joint density
requires surface normals, gray and white intensity distributions necessitate the
underlying MRI volume to be partitioned in two separate components and the
principal curvatures require the calculation of the second fundamental form, all
of which are properties of the surface, not of individual edges.

E - Iterative Elimination of Vertices: During the genetic search, some vertices
will be consistently discarded from the best patches. These vertices, which are
the ones that were erroneously kept in the initial cortical tessellation, should be
identified and eliminated from the final tessellation. To this end, we introduce
in our genetic search, an elimination operator, which selectively eliminates the
worst vertices from the defect. The elimination step operates as follow: after



A Genetic Algorithm for the Topology Correction of Cortical Surfaces 401

every few iterations, we eliminate the vertices that were consistently discarded
from the best candidate patches.

The proposed approach is implemented with the following parameters. The
initial population size is chosen depending on the number of defective vertices.
The retessellation process is quadratic in the number of vertices contained within
the convex hull of each defect. Typical defect contains on the order of 100 vertices
for a population size of 20 candidate retessellations. At each step of the genetic
search, a new population is generated from selected chromosomes based on their
fitness. Given a population of individuals, the top one third is selected to form
the elite group. These chromosomes are kept for the next generations. The worst
individuals, corresponding to the bottom one third, are replaced with mutated
copies of the best. Finally, the remaining ones are generated from crossover op-
erations from parents iteratively chosen from the elite population. The mutation
rate pmut is experimentally chosen to be 10%. The algorithm stops when no new
best candidate has been found for the past 10 generations. For a typical topo-
logical defect of size 100 vertices, the algorithm usually converges in less than
50 generations, which corresponds to a computational time of approximately 10
minutes on a 1-G-Hz Pentium IV. An optimal configuration is usually the result
of approximately 30 genetic operations, 80% of which are crossovers and 20%
mutations. The elimination operator is applied every 5 generations. The number
of discarded vertices depends on the topological defect. In some cases, more than
40% will be eliminated.

3 Results and Discussion

Before reporting results of the proposed approach on synthetic and real datasets,
we measure the goodness of our method relatively to a random search algorithm.
This is to verify that our approach actually improves the speed of convergence
and that the genetic operations allow the generation of superior candidate retes-
sellations.

Genetic versus Random Search: we compared our approach with a random
search algorithm, in which random permutations of the edge ordering were iter-
atively generated. The graphs in Fig. 3 illustrate the strength of our approach on
a real data example. The topological defect is shown in Fig. 1a. For each method,
the first candidate tessellation corresponded to the solution generated by the
greedy approach proposed in [7] with its vertices added last being discarded
(see sect 2.3.A). Compared to a random search, the genetic search converges
much faster (at least, second order magnitude). The genetic algorithm boosts
the overall fitness of the population by keeping the best representations at each
generation and producing new candidates using the elite population. In a few
generations composed of a small number of chromosomes (20 chromosomes per
generation in this example), the genetic search is able to produce new optimal
retessellations (see Fig. 1f).
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Fig. 3. a) Evolution of the log of the fitness function during the genetic search. b)
Evolution of the log fitness function during a random search. Note how the genetic
search iteratively improves the average fitness of each generated chromosome, which, as
a consequence, will be able to generate new optimal chromosomes. On the other hand,
random retessellation rarely generates new optimal patches. In this defect, which was
constituted of 183 vertices, even after 50000 random draw, the fitness function of the
best randomly generated chromosome was still 5 order of magnitude below the best
GA chromosome (generated as the 300th offspring during the 15th generation)

Application to Synthetic Data and Real Data: in order to validate the proposed
method, we first generated surfaces containing simple topological defects (han-
dles, holes). These data were used to explore the performance of the algorithm
relatively to typical topological defects. The underlying MRI volumes were gen-
erated by adding white noise to the expected tissue intensities : gray and white
intensity values were drawn from Gaussian distributions G(µg = 90, σg = 5.0)
and G(µw = 110, σw = 5.0) respectively. Figure 4, top row, illustrates the be-
havior of the algorithm relatively to different MRI volumes, when the same
topological defect has to be corrected (left: a simple handle). We note that tra-
ditional active contour models could not have generated the same results due to
the amount of noise in the images and the presence of large local minima in the
energy functional.

We have applied our proposed approach on 35 real images. The dataset was
composed of MRI volumes of different qualities, from different populations. Re-
sults were evaluated by an expert to assess the correctness of the final cor-
rections. The algorithm was able to generate correct solutions that the initial
greedy approach [7] failed to produce. Methods that do not integrate statistical
and geometric information will often fail to produce solutions comparable to the
ones a trained operator would make. This is illustrated in Fig. 4, bottom, where
valid solutions do not always correspond to minimal corrections (i.e. cutting the
handle in the two examples of Fig. 4). Only general approaches that integrate
additional information can lead to correct solutions. An average cortical surface
contains on the order of 50 topological defects, most of which are relatively small.
A full brain is corrected in approximately 2 hours on a 1GHz PII machine. The
average Hausdorff distance computed for each defect in between automatically
and manually corrected surfaces is less than 0.2mm.
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Fig. 4. Top row) Results of our proposed approach on different phantom examples.
The same topological defect (left: a small handle constituted of about 100 vertices)
is corrected using different underlying MRI volumes. In each case, our approach gen-
erated an optimal configuration corresponding to the expected solution. Bottom row)
Topology correction of a cortical representation. The initial surface was constituted of
30 defects (Euler number X = −58). Compared to the greedy approach of Fischl et
al. [7], which failed to find the correct solutions in many defects, our approach was
able to generate valid solutions. This is illustrated on two examples, in which valid
topological solutions do not correspond to minimal corrections

We note that the proposed method does not directly prevent the final surface
from self-intersecting. Self-intersecting configurations typically have low fitness
values and are naturally discarded during the genetic search. The self-intersecting
constraint could be directly integrated into the retessellation process, but would
drastically slow down the proposed approach. In our experience, final corrected
representations rarely intersect (less than one in ten thousand faces, which cor-
responds to approximately 1 defect per brain). In order to ensure that the so-
lution generates a valid manifold, we retrospectively check that the final retes-
sellation does not self-intersect. In the case of self-intersection, we re-apply the
genetic algorithm with the additional constraint of only generating valid can-
didate patches. Self-intersecting patches are identified and discarded from the
population.

4 Conclusion and Future Work

We have proposed an automated method to accurately correct the topology of
cortical representations. Our approach integrates statistical and geometric infor-
mation to select the optimal correction for each defect. In particular, we have
developed a genetic algorithm that is specifically adapted to the retessellation
problem. Iterative genetic operations generate candidate tessellations that are
selected for reproduction based on their goodness of fit. The fitness of a retes-
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sellation is measured by the smoothness of the resulting surface and the local
MRI intensity profile inside and outside the surface. The resulting procedure is
completely adaptative and self-contained. During the search, defective vertices
are identified and discarded while the optimal retessellation is constructed.

Given a quasi-homeomorphic mapping from the initial cortical surface onto
the sphere, our method will be able to generate optimal solutions. For each defect,
the space to be searched (i.e. the edge ordering) is dependent on the spherical
location of the defective vertices. Some configurations of the quasi-homeomorphic
mapping could lead to optimal but incorrect retessellations. In future work,
we plan to address this limitation by directly integrating the generation of the
homeomorphic mapping into the correction process.
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