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Abstract. Accurate estimation of intracranial volume (ICV) is key in
neuro-imaging-based volumetric studies, since estimation errors directly
propagate to the ICV-corrected volumes used in subsequent analyses.
ICV estimation through registration to a reference atlas has the advan-
tage of not requiring manually delineated data, and can thus be applied
to populations for which labeled data might be inexistent or scarce, e.g.,
preterm born animal models. However, such method is not robust, since
the estimation depends on a single registration. Here we present a group-
wise, template-free ICV estimation method that overcomes this limita-
tion. The method quickly aligns pairs of images using linear registration
at low resolution, and then computes the most likely ICV values using a
Bayesian framework. The algorithm is robust against single registration
errors, which are corrected by registrations to other subjects. The algo-
rithm was evaluated on a pilot dataset of rabbit brain MRI (N = 7), in
which the estimated ICV was highly correlated (ρ = 0.99) with ground
truth values derived from manual delineations. Additional regression and
discrimination experiments with human hippocampal volume on a subset
of ADNI (N = 150) yielded reduced sample sizes and increased classifi-
cation accuracy, compared with using a reference atlas.

1 Introduction

Background. Intracranial volume (ICV) is a crucial covariate in MRI-based
neuroimaging studies. Correcting for ICV, by division or regression [1], is neces-
sary for comparing volume estimates of brain structures from cases with different
head sizes. While the automated segmentation of brain structures has received a
considerable amount of attention in the literature, ICV estimation is often over-
looked, despite the fact that a poor ICV estimate can have a very detrimental
impact on the corrected volume of an otherwise very well segmented structure.
Compared with skull stripping, ICV estimation needs to account for all the tis-
sue and fluid inside the skull, not only the brain. Otherwise, atrophy or growth
of brain structures would be partially explained by changes of the whole brain.

The literature of ICV estimation is dominated by methods designed for adult
human brain MRI. Earlier approaches relied on simple thresholding and mor-
phological operations [2]. In the 2000s, methods based on linear registration [3,
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4] gained popularity: scaling factors are derived from an affine registration to a
reference atlas, and multiplied by the ground truth ICV of the atlas to yield the
estimates. These methods are implemented in widespread neuroimaging packages
(e.g., FreeSurfer [5], FSL [6]). Other approaches rely on explicit segmentation of
the intracranial cavity, typically with supervised methods based on parametric
or non-parametric models. Representative examples of the former are the Bayes-
ian segmentation [7] implemented in the SPM package [8], or variants thereof [9].
Examples of the latter include multi-atlas methods [10] and patch matching [11].

Although supervised methods can potentially yield better results, registration-
based algorithms for ICV estimation are still widely used in adult human brain
MRI, e.g., in FreeSurfer and FSL. The reason is threefold: they are fast; they do
not require multimodal MRI pulse sequences; and they do not require labeled
training data. Even if no ground truth ICV is available for the reference atlas, the
ICV can still be estimated up to a constant scaling factor, which has no impact
on the subsequent ICV correction. The main drawback of registration-based ICV
estimation is that it is very sensitive to registration errors, which reflect directly
on the ICV estimates through the determinant of the transformation matrix.

Motivation: limitations in ICV computation for developing brain and
animal models. The literature on ICV estimation in the developing human
brain is very sparse, but it is possible to use registration-based methods based
on existing atlases, such as those described in [12, 13]. In animals, however, the
availability of atlases – particularly for species other than mouse, rat and monkey
– is very limited, especially for the developing brain. A particularly interesting
case is rabbit models, which are increasingly important in neuroscience. One of
the main application of rabbit models is the study of preterm birth, a problem
with large economic and social impact [14, 15], and which is difficult to study in
humans [16]. The only available rabbit atlas [17] is for the adult brain, and has
no ICV information, as it was created from ex vivo brains without the skull.

Contribution. In this paper, we address the problem of ICV estimation by
computing the ICV of all subjects/cases in a study simultaneously. The method
has two major advantages: it does not require any labeled data, which is costly to
collect (which is why many methods rely on semiautomatically generated silver
standards, e.g., [4, 11, 10]); and is agnostic to species. Therefore, the proposed
method readily enables application to developing brain and animal studies.

More specifically, we propose a probabilistic framework, in which the true,
underlying ICVs are assumed to be independent samples of a Gaussian distribu-
tion with unknown parameters, and in which pairwise registrations yield noisy
measurements of the ratios between these ICVs. Within this framework, we use
Bayesian inference to compute the most likely ICVs. The information in the reg-
istrations enables estimation up to a scaling factor, which is disambiguated by
the model hyperparameters. The proposed method preserves the advantages of
registration-based algorithms described above, while being more robust to reg-
istration errors. Such robustness translates into increased statistical power and
reduced sample sizes in subsequent analyses, as shown in our experiments below.
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Fig. 1. Graphical model (a) and corresponding equations (b). Circles represent random
variables, boxes represent hyperparameters, shaded elements are observed, and plates
indicate replication. N is the Gaussian distribution, and L is the Laplace distribution.

2 Methods

2.1 Probabilistic framework

The graphical model of our probabilistic framework is shown in Figure 1. Let v =
[v1, . . . , vN ]t be a vector of log-transformed ICVs from N subjects; since we work
with ratios, the logarithmic domain is more appropriate. These ICVs are assumed
to be independent samples of a Gaussian distribution with unknown mean and
variance (µ, σ2). Prior knowledge on these two parameters is encoded in the
hyperparameters of their prior distribution, which we choose to be a Normal
Inverse Gamma (NIG), parameterized by [m,n, a, b]t. This is the conjugate prior
of a Gaussian with unknown mean and variance, and can be decomposed into an
Inverse Gamma (IG) distribution on σ2 (parameterized by [a, b]t) and a Gaussian
distribution on µ, with mean m and variance σ2/n.

Now, we assume that we have a set S of subject pairs (i, j) for which pair-
wise scaling factors Sij have been computed. Factor Sij corresponds to a noisy
estimate of the difference in log-ICVs between subjects i and j, i.e., vi − vj .
The set of measurements does not need to exhaustively cover every (i, j), but
must ensure that the adjacency matrix Aij = δ(Sij 6= 0) corresponds to a fully
connected graph, such that there is always a path of scaling factors available
between any two subjects. We use the matrix S to represent the measured scal-
ing factors, with diagonal Sii = 0,∀i, and Sij = NaN if the scaling factor is not
available, i.e., (i, j) 6∈ S. These measurements, which are computed with a linear
registration algorithm, correspond to the logarithm of the determinant of the
estimated transform matrices. Here we assume that the registration method is
symmetric, which yields an antisymmetric S, i.e., Sij = −Sji. In order to make
the algorithm robust against outliers, we further assume that the measurement
errors are independent samples of a Laplace distribution (based on the robust `1
norm, rather than `2 that the Gaussian distribution relies on) with zero location
and scale parameter c. Assuming zero location is appropriate, since the registra-
tion is symmetric. The scale parameter is unknown, but we place a conjugate
prior distribution on it – the IG distribution, with hyperparameters α and β.
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2.2 Bayesian inference

Our goal is to find the value v̂ that maximizes the posterior probability of the
ICVs v, given the pairwise scaling measurements and the hyperparameters:

v̂ = argmax
v

p(v|S,m, n, a, b, α, β) = argmax
v

p(S|v, α, β)p(v|m,n, a, b)

= argmax
v

∫
c

p(S|c,v)p(c|α, β)dc

∫
µ

∫
σ2

p(v|µ, σ2)p(µ, σ2|m,n, a, b)dµdσ2. (1)

Thanks to the conjugate priors, the two integrals in Equation 1 have closed-form
solutions, so we can easily consider all possible values of the model parameters
– weighted by their probabilities – in the estimation. The negated logarithm of
this expression is the cost function to minimize (C). In the appendix, we show
that C is equal to:

C(v;S,m, n, a, b, α, β) = (α+ |S|) log

β +
∑

(i,j)∈S

|Sij − vi + vj |

+ . . .

2a+N

2
log

[
b+

N∑
i=1

(vi − v̄)2

2
+
Nn(v̄ −m)2

2(N + n)

]
+ Z(α, β, |S|, n, a, b,N), (2)

where Z is a term independent of v, and v̄ = (1/N)
∑N
i=1 vi is the sample mean

of v. The final optimization problem is hence: argminv C(v;S,m, n, a, b, α, β).
This is an unconstrained problem, which can be efficiently solved with standard
algorithms; we used conjugate gradient [18] initialized with vi = m, ∀i. The final
solution is obtained by exponentiating v̂ to bring it back to the natural domain.

3 Experiments and results

3.1 Data

We used two brain MRI datasets in this study: one of rabbits, and one of humans.
The rabbit dataset was acquired as part of a study seeking to understand the
effects of steroids on fetuses. Scans from 7 rabbits (5 preterm born, 2 term) were
acquired in vivo on a Bruker 9.4T animal scanner using a RARE T2 sequence
(TR=42ms, TE=1000ms, 0.15mm resolution isotropic). The intracranial cavity
was manually delineated by S.F. on the images, providing a ground truth for the
ICVs. Since the size of the rabbit dataset is limited, we also performed exper-
iments on a larger, more conventional human dataset consisting of T1 scans of
150 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI): 77
Alzheimer’s disease (AD) patients and 73 age-matched controls (EC). No ground
truth ICVs was available for this dataset, so we used indirect validation tech-
niques. While direct validation is generally preferable, indirect methods make
the evaluation independent of segmentation errors, and do not require manual
delineation, which is prohibitive for large datasets.
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Fig. 2. (a) Sample axial and (b) sagittal slices from rabbit scans in our dataset; letters
indicate orientation. (c) Scatter plot of ICVs: ground truth vs. estimated with our
method, along with regression line (solid) and its 95% confidence interval (dashed).

3.2 Experiments on rabbit dataset

This experiment assesses the performance of the method in pediatric animal
brain MRI, in which the availability of labeled data is extremely limited. We used
correlation with ground truth volumes rather than absolute errors because the
errors depend onm, whereas correlations do not, and also because ICV correction
is based on correlation. We set the hyperparameters to n = a = α = 0.001, b =
β = 0.1, which represents very weak priors, such that the posterior distribution
of the model parameters is mostly driven by the data. We set m to the mean
value of the ground truth volumes, which has no effect on the correlation or ICV
correction. For registration, we used a symmetric linear method based on block
matching (NiftyReg [19]), applied to images downsampled by a factor of 4 in
each dimension (for efficiency). Figure 2 shows sample MRI slices and the scatter
plot for the ground truth and estimated ICVs, along with their linear regression.
The correlation is very strong: ρ = 0.996, with p ≈ 10−6. These results are
encouraging, but further validation is needed, given the small dataset.

3.3 Experiments on human dataset

We further evaluated our method indirectly with three experiments on the hu-
man dataset: we tested the strength of the correlation of hippocampal volume
with age and ICV; we evaluated the ability of the ICV-corrected hippocampal
volumes to discriminate EC from AD; and we tested the dependence of the
performance on the set size |S|.

We compared our proposed approach (“PROP”) against performing no cor-
rection (“NOCORR”) and four different methods: 1. FreeSurfer v5.3 [4] (“FS”):
based on registration to a single template (MNI305) using cross-correlation;
2. Single atlas (“SINGAT”): a reimplementation of FS with NiftyReg at full
resolution; 3. SPM [7]: we compute the ICV by summing the volumes of the
gray matter, white matter and CSF, computed with SPM12 (default parame-
ters); and 4. Non-linear (“PROPNL”): PROP with nonlinear registration [20]
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Table 1. Correlation coefficients (ρ) between hippocampal volume and age/ICV, with
95% confidence intervals and p-values (null hypothesis: ρ = 0). For age, we have in-
cluded the required sample size to detect the effect of age on hippocampal volume, with
significance level 0.01 and power 0.99. Bold font indicates the top performing method.

Method ρage (95% C.I.) p-value Sample Size

NOCORR -0.23 ([-0.44,-0.01]) 0.0453 13
FS -0.32 ([-0.51,-0.10]) 0.0076 10

SINGAT -0.38 ([-0.56,-0.16]) 0.0014 9
SPM -0.37 ([-0.55,-0.15]) 0.0021 9

PROPNL -0.32 ([-0.51,-0.10]) 0.0067 10
PROP -0.40 ([-0.58,-0.18]) 0.0008 8

ρicv (95% C.I.) p-value

N/A N/A
0.31 ([0.09,0.51]) 0.009312
0.47 ([0.27,0.63]) 0.000042
0.45 ([0.24,0.61]) 0.000109
0.40 ([0.19,0.58]) 0.000615

0.51 ([0.32,0.67]) 0.000007

																			(a)																																																																													(b)																																																																														(c)	

FS:	 1.81	

SINGAT:	 1.88	

SPM:	 2.67	

PROPNL:	 1.77	

PROP:	 1.89	

FS:	 1.56	

SINGAT:	 1.61	

SPM:	 1.64	

PROPNL:	 1.50	

PROP:	 1.63	

FS:	 1.67	

SINGAT:	 1.68	

SPM:	 1.59	

PROPNL:	 1.64	

PROP:	 1.60	

Fig. 3. Coronal slices of three subjects, and estimated ICVs (in liters). The intracranial
cavity mask from SPM is contoured in red, and the one propagated from the reference
atlas in blue. (a) Oversegmentation by SPM. (b) Good SPM segmentation, poor mask
from reference (see areas pointed by arrows). (c) Good SPM segmentation; poor regis-
tration to the atlas negatively impacts the performance of all methods, except ours.

– we manually segmented the intracranial cavity in the atlas; nonlinearly prop-
agated this mask to all subjects to create a silver standard; computed pairwise
nonlinear registrations between subjects; propagated the silver standard masks;
and computed Sij as the difference in mask volume before and after registration.

By matching registration algorithms, SINGAT isolates the contribution of
our framework to the improvement achieved over FS. SPM represents a much
more complex, segmentation-based algorithm. PROPNL enables us to assess the
potential improvement yielded by a more precise registration, which in principle
could avoid bias from brain atrophy and disregard the contribution of extracra-
nial regions. We used the same values of n, a, α, β as in the rabbit dataset, and
set m to the mean ICV computed by FreeSurfer.

Effect of aging on hippocampal volume: Using only the healthy subjects,
we first inspect the partial correlation between hippocampal volumes (computed
with FreeSurfer, left-right averaged) and age/ICV, i.e., correcting for each other.
For our method, we used all pairwise registrations. The results are shown in
Table 1, and sample outputs in Figure 3. All methods increase the correlations
between hippocampal volume and age. SINGAT outperforms FreeSurfer, thanks
to the more robust registration. Despite being a more complex method, the
performance of SPM is on par with that of SINGAT, because SPM sometimes
includes large portions of bone in the segmentation due to poor contrast in T1
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Table 2. AD/EC classification: AUROC, accuracy at elbow and Delong’s p for com-
parison of the AUROC with that of the method in the corresponding column.

Method AUROC Acc. Elbow

NOCORR 0.905 0.847
FS 0.911 0.840

SINGAT 0.915 0.847
SPM 0.921 0.873

PROPNL 0.921 0.880
PROP 0.927 0.873

Vs. FS SINGAT SPM PROPNL PROP

D
eL

o
n
g

p

0.0311 0.0077 0.0052 0.0031 0.0008
* 0.0193 0.0148 0.0045 0.0005
* * 0.0716 0.0461 0.0004
* * * 0.9962 0.1052
* * * * 0.0468
* * * * *
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Fig. 4. Performance vs. % of maximum set size; error bars span two standard deviations

MR (see Figure 3a). We observed a similar effect in PROPNL, exacerbated by the
fact that errors propagate along two registrations (see Figure 3b). Our method
produces the highest correlation, with a mild, borderline significant (Steiger’s
test [21]: p = 0.05) improvement over the second-to-best method (SINGAT).
Compared with the widely used FreeSurfer, the improvement is noticeable: ∆ρ =
0.08 (Steiger’s p = 0.01), and sample size reduced from 10 to 8. A similar trend
can be observed for the correlation between ICV and hippocampal volume.

Alzheimer’s disease classification: We computed the area under the ROC
curve (AUROC) and the accuracy at its elbow for classifiers based on thresh-
olding ICV/age corrected hippocampal volumes. We used DeLong’s test [22] to
compare AUROCs. The results are shown in Table 2. Our method provides the
highest AUROC, with significant improvement with respect to all others, except
SPM. It also provides the second-to-best accuracy at elbow, after PROPNL.

Performance as a function of the number of available registrations:
Since the number of registrations increases quickly with N , it is useful to test how
robust our algorithm is against missing scaling factors, to see if computational
cost can be reduced by computing only a subset of the registrations, without
significant loss of accuracy. For a number of set sizes, we drew 100 random
samples (with rejection to ensure fully connected graphs); computed the partial
correlations, AUROCs and accuracies; and calculated their averages across the
samples. The results are shown in Figure 4. The correlations increase quickly
in the beginning, and plateau at around 40-50% of the maximum set size. The
AUROC and accuracy improve slowly until 100%, as they are more sensitive to
volume estimate changes in samples closer to the decision boundary.
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4 Discussion and conclusion

We propose an ICV estimation method that does not require labeled data and is
agnostic to the imaged species, and which inherits the advantages of registration-
based ICV estimation – while being more robust against registration errors. This
is despite using linear registration, which could be biased by extracranial and
intracranial changes (e.g., neck size, atrophy); such bias was not observed in our
experiments. Our approach can be combined with any registration method; we
used a symmetric algorithm to save half of the registrations when building S.

Despite the high number of required registrations, our method is not too
computationally expensive, as low-resolution registrations run in 3-4 seconds on
a single core. Moreover, S can be precomputed such that, when a new scan ar-
rives, only N new registrations are required. We also tested a non-linear version,
but the increased flexibility did not compensate for the introduced registration
errors and increased computational cost. The inference algorithm takes just a few
seconds, which is negligible compared with the running time of the registrations.

The experiments in this paper have shown that our method outperforms
single atlas ICV estimation in analyses like effect of age and AD classification.
Moreover, it also outperforms the much more complex SPM, in spite of using lin-
ear registrations. Even though the contribution of the raw hippocampal volume
is larger that that of the ICV to such analyses, our method can still provide a
moderate, statistically significant improvement. Future work will consider more
complex distributions for the ICVs, e.g., conditioned on sex and gestational age.

Acknowledgement. Supported by ERC (677697), EPSRC (EP/L016478/1,
EP/M506448/1), Wellcome/EPSRC (203145Z/16/Z, WT101957, NS/A000027/1).

Appendix: Details of the inference algorithm

Replacing p(S|c,v) and p(c|α, β) (Figure 1b) in the first integral of Equation 1:∫
c

(2c)−|S| exp

−1

c

∑
(i,j)∈S

|Sij − vi + vj |

 βα

Γ (α)
c−α−1 exp(−β/c)dc. (3)

Defining α′ = α+ |S| and β′ = β+
∑

(i,j)∈S |Sij − vi + vj |, Equation 3 becomes:

1

2|S|
Γ (α′)

Γ (α)

βα

β′α′

∫
c

β′α
′

Γ (α′)
c−α

′−1 exp(−β′/c)dc =
1

2|S|
Γ (α′)

Γ (α)

βα

β′α′ , (4)

as the integral is over the probability density of IG(α′, β′) and thus equal to 1.
For the second integral in Equation 1 (over µ and σ2), substitution of the

expressions for the probabilities (again, see Figure 1b in the paper) yields:∫
µ

∫
σ2

1

(2πσ2)N/2
exp

(
− 1

2σ2

N∑
i=1

(vi − µ)2

)
. . .

× ba

Γ (a)

(
σ2
)−a−1

exp
(
−b/σ2

) √
n√

2πσ2
exp

[
− n

2σ2
(µ−m)

2
]
dµdσ2. (5)
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We now define m′ = (nm+Nv̄)/(n+N), n′ = n+N , a′ = a+ N
2 , and:

b′ = b+
1

2

N∑
i=1

(vi − v̄)2 +
nN

n+N

(v̄ −m)2

2
,

where v̄ is the average of v. Then, Equation 5 becomes:∫
µ

∫
σ2

b′a
′

Γ (a′)

(
σ2
)−a′−1

exp
(
−b′/σ2

) √n′√
2πσ2

exp

[
− n′

2σ2
(µ−m′)2

]
dµdσ2 . . .

× 1

(2π)N/2

√
n

n′
ba

b′a′
Γ (a′)

Γ (a)
=

1

(2π)N/2

√
n

n′
ba

b′a′
Γ (a′)

Γ (a)
, (6)

since the integral is over the probability density function of NIG(m′, n′, a′, b′)
and hence equal to 1.

Combining Equations 4 and 6, the problem in Equation 1 becomes:

v̂ = argmax
v

1

2|S|
Γ (α′)

Γ (α)

βα

β′α′

1

(2π)N/2

√
n

n′
ba

b′a′
Γ (a′)

Γ (a)

= argmax
v

(
β′α

′
b′a

′
z(α, β, |S|, n, a, b,N)

)−1
,

where z groups the terms independent of v. Taking the negated logarithm:

C = α′ log β′ + a′ log b′ + log z.

Substituting a′, b′, α′ and β′ into this equation, and defining Z = log z, we finally
obtain the cost function in Equation 2.
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