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ABSTRACT
Current label fusion methods enhance multi-atlas segmenta-
tion by locally weighting the contribution of the atlases ac-
cording to their similarity to the target volume after regis-
tration. However, these methods cannot handle voxel inten-
sity inconsistencies between the atlases and the target image,
which limits their application across modalities or even across
MRI datasets due to differences in image contrast. Here we
present a generative model for multi-atlas image segmenta-
tion, which does not rely on the intensity of the training im-
ages. Instead, we exploit the consistency of voxel intensities
within regions in the target volume and their relation to the
propagated labels. This is formulated in a probabilistic frame-
work, where the most likely segmentation is obtained with
variational expectation maximization (EM). The approach is
demonstrated in an experiment where T1-weighted MRI at-
lases are used to segment proton-density (PD) weighted brain
MRI scans, a scenario in which traditional weighting schemes
cannot be used. Our method significantly improves the results
provided by majority voting and STAPLE.

Index Terms— Label fusion, multi-atlas segmentation

1. INTRODUCTION

In traditional atlas-based segmentation[1, 2], a template vol-
ume (henceforth “atlas”) is registered (i.e. spatially aligned)
to a target scan. The resulting deformation is then used to
propagate the associated manual labels (either deterministic
or probabilistic) and obtain the final segmentation. The main
disadvantage of this technique is that a single deformation is
limited in representing the whole population of potential tar-
get cases. This issue can be addressed by registering multi-
ple atlases to the target volume. The question is then how to
combine the “opinions” of different atlases. This problem is
known as label fusion.
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Majority voting[3], in which the mode of the propagated
labels is selected as the final segmentation for each voxel,
is widely used in medical imaging because it is straightfor-
ward to implement and, thanks to the maturity of registra-
tion methods, often yields good results. However, major-
ity voting might not be able to correctly segment features
that are present but underrepresented in the training dataset.
STAPLE[4] weighs the propagated labels according to an es-
timated accuracy level, while incorporating consistency con-
straints. Neither majority voting nor STAPLE consider image
intensities after registration. Higher segmentation accuracy
can be achieved by considering the intensity of the images in
label fusion, giving higher weights to the atlases which are
more similar to the target volume, locally or globally[5, 6].

Weighted label fusion relies on the consistency of voxel
intensities across scans. This represents a limitation in MRI,
in which intensities depend heavily on the pulse sequence,
acquisition settings and hardware. Mutual information has
successfully been used for registration in such scenarios, but
its inherent non-locality limits its application for local label
fusion. Intensity normalization can ameliorate this problem,
but only if the atlases and the target image are not acquired
with different MRI contrast (e.g. T1- vs. T2-weighted).

Here we present a generative model for multi-atlas seg-
mentation, which exploits the intensities of the target volumes
by modeling their consistency within the regions to be seg-
mented and their relation to the propagated labels. The inten-
sities of the deformed templates are not considered in label
fusion, so the set of atlases can include different modalities.
As in [6], the registrations are assumed to be known (i.e. re-
garded as preprocessing), and we define a latent field that as-
signs each target voxel to a training volume. We assume that
the image intensities for each label are samples from a Gaus-
sian mixture model (GMM), modulated by a low-frequency
bias field. Segmentation is formulated as finding the most
likely labels in this framework. The algorithm is related to
classical single atlas models[7], with two major differences:
1. we use a subject-specific prior probability for the labels
computed in target space (as opposed to atlas space); and 2.
the probabilistic model for the labels has a different structure.



Table 1. Equations corresponding to the model in Figure 1.
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2. METHODS

2.1. Generative Model

The generative model is depicted in Figure 1, and the cor-
responding equations are listed in Table 1. {Ln}, n =
1, . . . , N , represents the propagated labels from N available
registered atlases. For a given voxel x ∈ Ω (where Ω is the
image domain), L(x) is the underlying segmentation label we
are trying to estimate, which takes discrete values between
1 and L. L(x) is generated by the M(x)th atlas through a
logOdds model[8] (Equation 2 in Table 1). The slope ρ of the
model is assumed to be fixed and known. Dl

n(x) represents
the signed distance transform for atlas n and label l.

Fig. 1. Proposed graphical model. Plates indicate replication,
shaded variables are observed.

The indices M(x) are not independent across voxels,
but distributed according to a Markov Random Field (MRF)
with smoothness parameter β (see Equation 1 in Table 1,
where δ represents Kronecker’s delta and Nx is the 6-
neighborhood of voxel x). Now, given the labels L(x),
the “true”, underlying intensities I∗(x) are assumed to be
samples of a GMM with CL(x) components and parameters
ΓL(x) = {{wL(x),k}, {µL(x),k}, {σ2

L(x),k}} (Equation 3 in
Table 1). These underlying intensities are corrupted by a
multiplicative bias field to yield the observed intensities I(x)
(Equation 4 in the table, where {ψp(x)} is a set of spatially
smooth basis functions). We use Θ to summarize all these
image intensity parameters i.e., Θ = {{Γl}, {cp}}. The
bias field basis functions {ψp(x)}, as well as the parameters
β and {Cl} are assumed to be fixed and known. Note that
the bias field is explicitly modeled as an exponential, which
guarantees that it is greater than zero.

Some popular segmentation frameworks are particular
cases of the proposed method. If β = 0, the model becomes

very similar to a classical atlas-based segmentation method,
e.g. [7], with the difference that here the label priors are built
in subject space. Also, if β = ∞, the labels are generated
only by the atlas that is closest to the target volume, which
is close to best template selection. Another particular case of
interest would be β = 0, σ2

l,k = ∞,∀l, k, in which case the
algorithm simplifies to majority voting.

2.2. Segmentation

We formulate the segmentation as an optimization problem:

{L̂, Θ̂} = arg max
L,Θ

p(L,Θ|I, {Ln})

= arg max
L,Θ

log [p(I|L,Θ)p(L|{Ln})]

where we assume p(Θ) ∝ 1. We solve this problem using co-
ordinate ascent, iteratively optimizing for L and Θ until con-
vergence (often after 5-10 iterations).

2.2.1. Optimizing Θ for fixed L

The problem simplifies to Θ̂ = arg maxΘ log p(I|L,Θ).
Again, we use coordinate ascent within this step, alternatively
optimizing for the parameters of the GMMs {Γl} and the bias
field {cp}. Updating {Γl} is closed-form and amounts to
computing sample means and variances (if Cl = 1) or a sim-
ple 1-D EM algorithm if Cl > 1 (we use Cl = 1 for all labels
except the background). To update {cp}, setting the deriva-
tives equal to zero leads to a nonlinear system of equations
that has no closed-form solution. Instead we use a numerical
gradient ascent scheme with line search.

2.2.2. Optimizing L for fixed Θ

Here the problem is:

L̂ = arg max
L

log [p(I|L,Θ)p(L|{Ln})]

= arg max
L

log
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which is intractable because M(x) includes interdependen-
cies between neighboring voxels. Instead, we use variational
EM to maximize a lower bound. Given that the Kullback-
Leibler divergence KL(A,B) ≥ 0, we define:

J = log [p(I|L, Θ)p(L|{Ln})] − KL(q(M), p(M |I, Θ, {Ln}, L))

= H(q) +
X
M

q(M) log p(M, L, I|Θ, {Ln})

where H(A) represents the entropy and q(M) is an arbi-
trary distribution on M . To maximize J , we use the standard
computational trick that q is constrained to have the structure:
q(M) =

∏
x∈Ω qx(M(x)). Then, variational EM maximizes

J by iterating between an expectation (E) step which updates
q(M) and a maximization (M) step which optimizes L.



E step: in the E step, we look for the q(M) which max-
imizes J , which happens when the KL divergence between
q(M) and the posterior p(M |I,Θ, {Ln}, L) is minimized:

q̂ = arg min
q

∑
M

q(M) log
q(M)

p(I, L|M,Θ, {Ln})p(M)

where p(L, I|Θ, {Ln}) is omitted because it does not depend
on M or q. Now, given the structure of q(M) and also:
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Y
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it can be shown that the problem becomes:
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with the constraint that qx(m) lies on the probability simplex.
Writing the Lagrangian, taking derivatives with respect to qx
and setting them to zero yields:

qx(M(x)) = eλ(x)p(L(x)|LM(x)(x))e
P

y∈Nx
qy(M(x))

where λ(x) is the multiplier that ensures
∑

m qx(m) = 1.
The equation can be solved with fixed point iterations.

M step: the goal of the M step is to maximize J with re-
spect to L assuming q(M) constant. Since we can discard the
term H(q), and because of the structure of q(M), the maxi-
mization can be carried out voxel by voxel using exhaustive
search over labels:

L̂(x) = arg max
l

NX
m=1

qx(m) log [p(I(x)|Γl, {cp})p(l|Lm(x))]

As in most label fusion methods, the resulting label map is
not guaranteed to preserve the topology of the different struc-
tures. However, this seldom happens in practice and can al-
ways be corrected with post-processing.

3. EXPERIMENTS AND RESULTS

3.1. Data

Two datasets (training and test) were used in this study. The
test dataset consists of FLASH PD-weighted brain scans from
eight healthy subjects (1.5T, TR=20ms, TE=min, α = 3◦, 1
mm. isotropic voxels). A total of 36 structures were manually
labeled using the protocol described in [9]. The human raters
took advantage of higher contrast, co-registered T1-weighted
data that we did not use in this study. As in [6], we only used
a representative subset of the 36 structures for evaluation in
this study: white matter (WM), cerebral cortex (CT), lateral
ventricle (LV), hippocampus (HP), thalamus (TH), caudate
(CA), putamen (PU), pallidum (PA), and amygdala (AM).

The training dataset consists of 39 T1-weighted brain MRI
scans (MP-RAGE, 1.5T, TR=9.7ms, TE=4.ms, TI=20ms,
α = 10◦, 1 mm. isotropic resolution) and corresponding

Table 2. Average Dice score across all structures for each
method. The p-values correspond to a paired t-test which as-
sesses whether the proposed method (at β = 0.75) produces
a higher Dice score than each of the other algorithms.

Method Maj.Vot. STAPLE β = 0 β = 0.75
Dice 0.766 0.762 0.796 0.802
p 2e-13 9e-22 3e-8 N/A

manual delineations of the same brain structures (same la-
beling protocol). We note that these are the same subjects
that were used to construct the probabilistic segmentation
atlas in FreeSurfer[10]. These scans were bias-field cor-
rected and skull-stripped using FreeSurfer, and then ITK
(www.itk.org) was used to register them to the PD-
weighted data with a nonrigid transform (a grid of control
points and b-splines) and mutual information as metric.

3.2. Experimental setup

We segmented the eight target volumes using majority voting,
STAPLE, and the proposed method with β = 0 (local fusion)
and β = 0.75, which represents the general case. We arbi-
trarily chose this value for β to match that from Sabuncu et
al[6]. The same motivation was used to set ρ = 1. Three
mixture components were used for the background class, and
a single Gaussian for all other classes. The basis functions
{ψp} were set to a third order polynomial, which in 3D yields
20 coefficients. We set the number of atlases to N = 15;
the presented results are an average over five runs with dif-
ferent, randomly selected atlases from the pool of 38. The
accuracy of the segmentation is evaluated using Dice scores
(Dice(A,B) = 2|A∩B|

|A|+|B| ), and statistical significance is as-
sessed with one-tailed, paired t-tests.

3.3. Results

Figure 2 shows the Dice scores for the different methods and
structures of interest, whereas Table 2 shows the averages
across all structures. STAPLE and majority voting provide
comparable results. The proposed method (for β = 0.75) sig-
nificantly outperforms STAPLE for all brain structures except
for the putamen. Compared with majority voting, the scores
when β = 0.75 are significantly higher for WM, CT, LV, HP
and CA, though not significantly different for TH, PU, PA and
AM. The hippocampus, pallidum and especially the amyg-
dala seem particularly difficult to segment in the PD-weighted
dataset, since there is very little image contrast around them.
When we compare the results from our method for β = 0 and
β = 0.75, the difference is not large in absolute terms (ap-
proximately 0.6%), but it is statistically very significant; the
higher β seems to fix some consistent mistakes that are made
when the voxels are considered independently. Finally, Fig-
ure 3 shows a sample coronal slice of a target scan, illustrating
the segmentations given by majority voting and the proposed
method, as well as the estimated bias field.



Fig. 2. Box plot of Dice scores for majority voting (black),
STAPLE (red), β = 0 (green) and β = 0.75 (blue). The box
has lines at the three quartile values. Whiskers extend to the
most extreme values within 1.5 times the interquartile range
from the ends of the box. Samples beyond those points are
marked with circles. The purple S denotes that the scores are
significantly lower than for our method at p=0.025.

4. CONCLUSION

A method to perform inter-modality label fusion has been pre-
sented in this paper. The method exploits the intensities of
the target image and, despite the low number of test subjects,
achieves statistical significance when compared with major-
ity voting and STAPLE in a challeging PD-weighted dataset.
The MRF prior has a positive effect on the peformance of the
method, significantly improving the Dice scores. We hypoth-
esize that, as the number of available atlases grows, increas-
ing β would be beneficial. As N → ∞, there would always
be a training volume (almost) identical to the target case, and
β = ∞ would provide a perfect segmentation.

The proposed inference method for the model can be im-
proved by marginalizing over the labels when optimizing for
the parameters, at the cost of introducing another level of
complexity in the model. This will be addressed in future
work, which will also include incorporating the registration
in the optimization process, sweeping the parameters to assess
their impact on segmentation accuracy, explicitly optimizing
for ρ and testing the model on T1 and multi-spectral data.
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