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Abstract

In this paper we present a method to segment four brainstem structures (midbrain, pons, medulla oblongata and
superior cerebellar peduncle) from 3D brain MRI scans. The segmentation method relies on a probabilistic atlas of the
brainstem and its neighboring brain structures. To build the atlas, we combined a dataset of 39 scans with already
existing manual delineations of the whole brainstem and a dataset of 10 scans in which the brainstem structures were
manually labeled with a protocol that was specifically designed for this study. The resulting atlas can be used in a
Bayesian framework to segment the brainstem structures in novel scans. Thanks to the generative nature of the scheme,
the segmentation method is robust to changes in MRI contrast or acquisition hardware. Using cross validation, we show
that the algorithm can segment the structures in previously unseen T1 and FLAIR scans with great accuracy (mean
error under 1 mm) and robustness (no failures in 383 scans including 168 AD cases). We also indirectly evaluate the
algorithm with a experiment in which we study the atrophy of the brainstem in aging. The results show that, when used
simultaneously, the volumes of the midbrain, pons and medulla are significantly more predictive of age than the volume
of the entire brainstem, estimated as their sum. The results also demonstrate that that the method can detect atrophy
patterns in the brainstem structures that have been previously described in the literature. Finally, we demonstrate that
the proposed algorithm is able to detect differential effects of AD on the brainstem structures. The method will be
implemented as part of the popular neuroimaging package FreeSurfer.
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1. Introduction

The human brainstem is a complex brain structure con-
sisting of long axons and scattered nuclei. At a high level,
the brainstem is divided in three structures; from superior
to inferior: midbrain, pons and medulla oblongata. These
structures support different functions: while the midbrain
is associated with vision, hearing, sleep and motor con-
trol, the pons mostly consists of white matter tracts that
connect the cerebrum with the medulla. The pons is also
connected with the cerebellum through nerve tracts knows
as the cerebellar peduncles, and contains nuclei associated
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with functions such as respiration and facial expression.
The medulla oblongata connects the rest of the brain to the
spinal chord, and regulates cardiac and respiratory func-
tions, as well as reflexes such as swallowing.

Automated segmentation of the brainstem structures
can potentially improve our understanding of the role that
they play in different functions and how they are affected
by neurodegenerative pathologies, by circumscribing neu-
roimaging analyses (e.g., volumetry, functional MRI, trac-
tography) to these specific regions. The brainstem is espe-
cially relevant to diseases with pure underlying tau pathol-
ogy such as progressive supranuclear palsy and corticobasal
degeneration, also called primary tauopathies. In pro-
gressive supranuclear palsy, brain atrophy occurs in the
midbrain, pons and superior cerebellar peduncle, due to
neuronal loss associated with accumulation of insoluble
deposits of abnormal tau protein [1]. New therapies de-
signed to prevent or decrease tau accumulation are rapidly
entering human clinical trials, and longitudinal brainstem
atrophy measurements with MRI – in which automated
methods yield reproducible results and allow for much
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larger sample sizes – have been demonstrated to be use-
ful outcome measures in these studies [2]. Other neu-
rodegenerative diseases in which the brainstem structures
are also differentially affected include Parkinson’s [3] and
Alzheimer’s [4].

In addition to studies of neurodegenerative diseases,
automated segmentation algorithms for the brainstem struc-
tures would also find application in other areas. For in-
stance, the pedunculopontine nucleus is a target for the
implantation of deep brain stimulators in Parkinson’s dis-
ease [5]. The pons is often used as a reference region in
positron emission tomography (PET) data, since there is
no effect of interest in it [6]. Neuroimaging studies of
pain [7, 8] have also relied on segmenting brainstem struc-
tures.

Despite all its possible applications, the segmentation
of the brainstem structures remains largely unexplored in
the medical image analysis literature, and none of the
widely-distributed neuroimaging analysis package performs
it so far. Instead, most works have aimed at segmenting
the brainstem as a whole. Bondiau et al. [9] used a single
labeled template that was deformed towards the novel scan
to produce the automated segmentation. Lee et al. [10]
proposed a semi-automatic algorithm in which fuzzy con-
nectedness and morphological operations are used to gen-
erate a preliminary segmentation, which is subsequently
refined with active contours. The same authors [11] later
proposed a similar, though fully automated method in
which AdaBoost [12] was used to generate the initial coarse
region containing the brainstem.

There are also brain parcellation methods that include
the whole brainstem. The popular package FreeSurfer [13,
14] has it as a label in the atlas that it uses to segment T1
MRI data. The segmentation algorithm [15] in FSL [16]
also includes the brainstem in its parcellation, which is
based on active shape and appearance models. Multi-atlas
methods that segment a large number of structures have
also included the whole brainstem; see for instance [17],
which uses majority voting to fuse the deformed segmen-
tations propagated from 30 manually labeled scans.

To our best knowledge, only two works have addressed
the issue of parcellating the brainstem in MRI data. Ni-
gro et al. [18] proposed a method to automatically segment
the pons and the midbrain using thresholds and geomet-
ric criteria defined upon heuristic rules, which makes their
method sensitive to variations in MRI acquisition proto-
col or scanning platform. Lambert et al. [19] used multi-
modal MRI data to produce probability maps for four tis-
sue classes using an unsupervised segmentation algorithm.
While these maps can be used to segment novel scans, they
do not necessarily correspond to the underlying brainstem
structures, due to the lack of expert manual delineations.

In this paper, we present a supervised segmentation
method for the midbrain, pons, medulla and superior cere-
bellar peduncle (SCP). The method is based on a proba-
bilistic atlas and Bayesian inference. To build the atlas,
we used the training data that was used to build the atlas

in FreeSurfer (which has labels for the whole brainstem)
and enhance it with an additional dataset of 10 scans in
which the four brainstem structures were manually labeled
with a delineation protocol that was specifically designed
for this study. Using Bayesian inference, the probabilistic
atlas can be used to efficiently segment a novel scan, and
due to the generative nature of the framework, the seg-
mentation is robust to changes in MRI scanning platform
and/or MRI pulse sequence. An implementation of the
segmentation algorithm will be made publicly available as
part of FreeSurfer.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the MRI data used in this study and
the manual delineation protocol for the brainstem struc-
tures of interest; and we briefly revise the methods to build
the atlas with heterogeneously labeled data (i.e., the Free-
Surfer dataset and our newly labeled dataset) and to seg-
ment a novel scan with a probabilistic atlas and Bayesian
inference. In Section 3, we evaluate the performance of the
segmentation algorithm with experiments on three differ-
ent datasets. Finally, Section 4 concludes the paper.

2. Materials and Methods

2.1. MRI data
Three datasets of MRI scans were used in this study.

The first dataset, which we will refer to as the “brainstem
dataset”, consists of T1-weighted and FLAIR brain scans
of 10 clinically normal subjects (age range 58-77, mean
age 67.8 years, four males, six females). The data were
acquired with a 3 Tesla Siemens TIM Trio scanner at the
UCSF Neuroscience Imaging Center. The T1 scans were
acquired with a MP-RAGE sequence with the following
parameters: TR = 2300 ms, TE = 2.98 ms, TI = 900 ms,
flip angle = 9◦, 1 mm isotropic resolution. The FLAIR
sequence used the following parameters: TR = 6000 ms,
TE = 388 ms, TI = 2100 ms, 1 mm isotropic resolution.
The midbrain, pons and SCP were independently delin-
eated by PB and CC on the 10 scans using the protocol
detailed in Section 2.2 below. This dataset will be used
with two purposes: first, to build the probabilistic atlas of
the brainstem (in combination with the FreeSurfer dataset,
described below); and second, to directly evaluate the seg-
mentation method, by comparing the labels automatically
derived from the T1 and FLAIR scans with one another
(to evaluate robustness against changes in MRI sequence)
and with the gold standard (to evaluate accuracy) using
metrics such as Dice overlap and Hausdorff distance. In
addition, the independent annotations from two different
labelers allow us to compute a more reliable gold standard
for the segmentation than using a single delineation, and
also allow us to estimate the inter-observer variability of
the manual tracings.

The second dataset, which we will refer to as the “Free-
Surfer dataset”, consists of T1-weighted brain MRI scans
from 39 subjects (age range 18-87, mean age 56.3 years).
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These scans were acquired on a Siemens 1.5T platform
with a MP-RAGE sequence with the following parameters:
TR = 9.7 ms, TE = 4 ms, flip angle = 10◦, TI = 20 ms, in-
plane resolution 1 mm (sagittal), slice thickness 1.25 mm.
These scans were resampled to 1 mm isotropic resolution
with trilinear interpolation. Thirty-six brain structures,
including the whole brainstem, were labeled by an expert
neuroanatomist using the delineation protocol in [20]. We
note that these are the subjects that were used to train
the probabilistic atlas in FreeSurfer[13]. This dataset was
used for two purposes: building the atlas (in conjunction
with the brainstem dataset) and indirectly evaluating the
segmentation algorithm with an aging experiment.

The third dataset, which we will refer to as the “ADNI
dataset”, consists of 383 baseline T1 scans from elderly
controls (n = 215) and Alzheimer’s disease (AD) sub-
jects (n = 168) from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI). The list of subjects, along with the
corresponding demographics, can be found in the supple-
mentary material (Tables E.2-E.7). The mean age of the
subjects was 75.8 years (range: 56-91 years). The im-
ages were acquired with MP-RAGE sequences at 1 mm
isotropic resolution. Since ADNI is a multi-site effort, dif-
ferent scanning platforms were used for acquiring the im-
ages; for further detail on the acquisition parameters and
up-to-date information, we refer the reader to the website
http://www.adni-info.org.

The ADNI was launched in 2003 by the National Insti-
tute on Aging, the National Institute of Biomedical Imag-
ing and Bioengineering, the Food and Drug Administra-
tion, private pharmaceutical companies and non-profit or-
ganizations, as a $60 million, 5-year public-private part-
nership. The main goal of ADNI is to test whether MRI,
positron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can be
combined to analyze the progression of MCI and early AD.
Markers of early AD progression can aid researchers and
clinicians to develop new treatments and monitor their
effectiveness, as well as decrease the time and cost of clin-
ical trials. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California - San Francisco. ADNI is a joint ef-
fort by co-investigators from industry and academia. Sub-
jects have been recruited from over 50 sites across the U.S.
and Canada. The initial goal of ADNI was to recruit 800
subjects but ADNI has been followed by ADNI-GO and
ADNI-2. These three protocols have recruited over 1,500
adults (ages 55-90) to participate in the study, consisting
of cognitively normal older individuals, people with early
or late MCI, and people with early AD. The follow up
duration of each group is specified in the corresponding
protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects
originally recruited for ADNI-1 and ADNI-GO had the
option to be followed in ADNI-2.

2.2. Delineation protocol for brainstem dataset
Rather than delineating the brainstem structures in

the native space of the scans directly, these scans were
first rigidly registered to the FreeSurfer reference space
(“fsaverage”). The manual annotations were made on the
registered scans, which helps reduce the variability in the
annotations, and then warped back to the original space
using the inverse transform and nearest neighbor interpo-
lation. The order in which the brainstem structures were
delineated was: pons, midbrain and SCP; the correspond-
ing delineation protocols are detailed in Appendix A, Ap-
pendix B and Appendix C, respectively. All the annota-
tions were made on the T1 scans; the FLAIR images were
not used in the delineation process. The labeling protocol
is illustrated in Figure 1, which displays slices of a sam-
ple scan of the brainstem dataset with its corresponding
annotations.

Note than the delineation protocol does not include
the medulla. Instead, this structure is implicitly defined
through the combination of the labeling protocols of the
brainstem and FreeSurfer datasets. Specifically, the medulla
is defined as the portion of the whole brainstem (as defined
in the FreeSurfer dataset) that is not labeled as midbrain,
pons or SCP in the brainstem dataset.

2.3. Atlas construction
The manually labeled training data (i.e., the brainstem

and FreeSurfer datasets) are used to build a probabilis-
tic atlas of the brainstem and its surrounding structures.
This atlas, which encodes the frequency with which the
labels occur at each spatial location, will be used as a
prior distribution in a Bayesian framework to produce au-
tomated segmentation of novel scans in Section 2.4 below.
The prior is based on a generalization of probabilistic at-
lases [21, 22, 23] that was presented in [24]. For the sake
of completeness, we summarize the framework here.

Let l = {li, i = 1, 2, . . . , I} be a 3D discrete label image
(i.e., a segmentation) defined at I spatial locations (vox-
els), such that each voxel has a label belonging to one of
L possible classes, i.e., li ∈ {1, . . . , L}. The prior assumes
that this segmentation was generated through the follow-
ing process:

(i) A tetrahedral mesh covering the region of interest (a
bounding box containing the brainstem with a 15 mm
margin in each direction) is defined by the reference
position xref of its N nodes and their connectivity K.
Each node n has an associated set of probabilities for
the different possible neuroanatomical labels αn =
(α1
n, . . . , α

L
n).

(ii) The mesh is deformed from its reference position by
sampling from the following prior probability distri-
bution, which was introduced in [25]:

p(x|K,xref ,K) ∝ exp

[
−K

T∑
t=1

UKt (x|xref )

]
,
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Figure 1: Manual delineations of a sample subject from the brainstem dataset. Top row: sagittal slices, from medial (left) to lateral (right).
Middle row: coronal slices, from anterior (left) to posterior (right). Bottom row: axial view, from superior (left) to inferior (right). The pons
is labeled in red, the midbrain in green, and the SCP in blue.

where T is the number of tetrahedra in the mesh, K
is its stiffness, and UKt (x|xref ) is a term that goes to
infinity if the Jacobian determinant of the deforma-
tion of the tth tetrahedron approaches zero, ensuring
that the topology of the mesh is preserved.

(iii) Using the deformed position, the label probabilities
at each voxel location in the region of interest are
computed from the values at the vertices of the tetra-
hedron using barycentric interpolation.

pi(l|α,x,K) =
N∑
n=1

αlnφn(ri),

where α = (α1, . . . ,αN ) groups the label probabil-
ities of all mesh nodes, ri represents the spatial co-
ordinates of voxel i, and φn is an interpolation basis
function linked to node n. We use linear barycentric
interpolation for simplicity, but more complex mod-
els may be useful, based for example on a softmax
function [26, 27].

(iv) At each voxel location, the corresponding label is
independently sampled from the categorical distri-

bution parametrized by the interpolated probability
vector, such that:

p(l|α,x,K) =
I∏
i=1

pi(l|α,x,K).

Given this generative model, learning an atlas from a
set of training data (manual segmentations) amounts to
estimating the mesh (reference position xref and connec-
tivity K) and associated probability vectors α that most
likely generated the label images. As shown in [24], learn-
ing the atlas is equivalent to minimizing the number of bits
needed to encode the training data, which yields sparse at-
lases with adaptive resolution, i.e., few nodes are used to
describe flat regions of the atlas, while nodes are more
dense in convoluted areas.

In this study, we wish to combine the manual annota-
tions from the FreeSurfer and brainstem datasets, which
carry complementary information: the former provides in-
formation on the whole brainstem and surrounding struc-
tures, but not on the internal brainstem parcellation, while
the latter describes the midbrain, SCP, pons and medulla,
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but carries no information on the structures surrounding
the brainstem. By combining the two datasets, we can
build a probabilistic atlas that includes both the brainstem
structures (midbrain, SCP, pons, medulla) and surround-
ing anatomy (cerebellum, cerebral white matter, etc). For
such scenarios, we previously proposed a modification [28]
of the atlas construction algorithm [24] that can cope with
heterogeneously labeled datasets.

Specifically, we assume that the probabilistic atlas gen-
eratedM segmentations lm,m = 1, . . . ,M (whereM is the
number of labeled scans in the FreeSurfer and brainstem
datasets combined), at a fine level of detail, in which pons,
midbrain, medulla and SCP coexist with all the surround-
ing structures defined in the FreeSurfer dataset. These
segmentations are not observed; instead, we have access to
a different set of coarse label volumes cm,m = 1, . . . ,M ,
which are obtained by merging all the surrounding struc-
tures into a single, generic background label (brainstem
dataset) or by merging pons, midbrain, medulla and SCP
into a single brainstem structure (FreeSurfer dataset). These
coarse label volumes correspond to the manual delineations
from which we build the atlas, and are related to the fine
labels by two protocol functions fFS and fBS , such that
fFS collapses all brainstem structures into a generic brain-
stem label, and fBS collapses all the structures surround-
ing the brainstem into a single, generic background label.
Therefore, the probability of observing a collapsed label at
a given spatial location is:

pi(ci,m|α,xm,K) =
∑

k|f(·)(k)=ci,m

pi(k|α,xm,K),

where f(·) is the protocol function corresponding to train-
ing volume m (fFS or fBS , depending on whether it be-
longs to the FreeSurfer or brainstem dataset, respectively).
The sum over all classes compatible with ci,m reflects the
uncertainty in the underlying fine labels at each voxel i.

The whole generative process is summarized in Fig-
ure 2. The final atlas, which is defined at the fine level
of detail, describes (at least partially) the following struc-
tures: midbrain, pons, medulla, SCP, third ventricle, fourth
ventricle, left / right lateral ventricle, left / right choroid
plexus, left / right cerebellar cortex, left / right cerebellar
white matter, left / right thalamus, left / right cerebral
cortex, left / right cerebral white matter, left / right hip-
pocampus, left / right amygdala, left / right pallidum, left
/ right putament, left / right thalamus and left / right
accumbens area.

2.4. Segmentation
Given the probabilistic atlas of brainstem anatomy, the

segmentation of a novel scan can be carried out with the
algorithm described in [24]. This algorithm builds on the
generative model of the data described above: first, we
assume that the probabilistic atlas generates an underly-
ing segmentation (at the fine level of detail) following the

four-step process described in Section 2.3. Given the seg-
mentation l, an intensity image y = {yi, i = 1, 2, . . . , I}
is generated from the labels by independently drawing at
each voxel a sample from a Gaussian distribution, whose
parameters (mean and variance) depend on the label of
the voxel. Because the appearance of the brainstem is rel-
atively flat in the MRI scans of all the datasets used in this
study, a single Gaussian was found to suffice to model the
intensities within each tissue type (although more com-
plex mixture models can also be used [22, 29]). Rather
than allowing each label to have its own Gaussian param-
eters, we assume that all white matter structures (cerebral
and cerebellar white matter; medulla; pons; midbrain; and
SCP) belong to a global white matter class, in order to re-
flect the fact that there is little image contrast between
such structures, increasing the robustness of the segmen-
tation. Likewise, CSF structures (third, fourth and lateral
ventricles) share a global class, and so do the gray matter
structures (cerebellar and cerebral cortex, hippocampus
and amygdala). The rest of structures in the atlas (pal-
lidum, accumbens, putamen, thalamus, choroid plexus and
background) have their own global classes, i.e., their own
sets of Gaussian parameters. The probability of observing
an intensity image is therefore:

p(y|l,θ) =
I∏
i=1

pi(yi|µG(li), σ
2
G(li)

) =
I∏
i=1

N (yi;µG(li), σ
2
G(li)

),

where N is the Gaussian distribution, θ groups the Gaus-
sian parameters of all global classes, and G(li) is the global
class corresponding to label li.

Given this generative model, segmentation can be cast
as Bayesian inference problem: given the probabilistic at-
las and the observed image intensities, what is the most
likely segmentation? This problem can be solved by first
estimating the model parameters (mesh deformation and
Gaussian means and variances) from the data, and using
the computed point estimates x̂ and θ̂ to determine the
most likely segmentation. Assuming a flat prior for the
Gaussian parameters and using Bayes rule, the point esti-
mates are given by:

{x̂, θ̂} = argmax
x,θ

p(x,θ|y,α,xref ,K,K)

= argmax
x,θ

log p(x|K,xref ,K)

+
I∑
i=1

log

[∑
G

pi(yi|µG, σ2
G)

∑
k∈G

pi(k|α,x,K)

]
.

This problem is solved with with a coordinate ascent
scheme, alternately optimizing the mesh deformation x
with a conjugate gradient optimizer and the Gaussian pa-
rameters θ with an expectation maximization (EM) algo-
rithm [30]. Once the optimal parameters have been com-
puted, the final segmentation can be computed for each
voxel independently as:

l̂i = argmax
k

pi(yi|µG(k), σ
2
G(k))pi(k|α,x,K),
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Figure 2: Generative model of training data. The abbreviations for the structures are the following: 4V = fourth ventricle, PO = pons,
CC = cerebellar cortex, CW = cerebellar white matter, ME = medulla, SCP = superior cerebellar peduncle, 3V = third ventricle, LV =
lateral ventricle, TH = thalamus, MB = midbrain, WM = white matter, CP = choroid plexus, CT = cortex, WB = whole brainstem. The
background is represented in black.

and the expected value of the volume of a given structure
is (in voxels):

V (k) =
I∑
i=1

pi(yi|µG(k), σ
2
G(k))pi(k|α,x,K)∑L

k′=1 pi(yi|µG(k′), σ
2
G(k′))pi(k

′|α,x,K)
, (1)

where k is the label corresponding to the structure.
Further details on the segmentation algorithm can be

found in [24, 31].

3. Experiments and results

3.1. Experimental setup
The brainstem segmentation algoritmh was evaluated

in three different sets of experiments, one with each dataset.
In all experiments, the brain MRI scans were preprocessed
as follows. First, the T1 data were processed with the
FreeSurfer pipeline, which includes resampling to 1 mm
isotropic resolution, bias field correction [32], skull strip-
ping [33], intensity normalization and segmentation of sub-
cortical structures [13]. The FLAIR scans (in the brain-
stem dataset) were bias field corrected and rigidly aligned
with the corresponding T1 images using mutual informa-
tion in order to ensure that the gold standard, T1 and

FLAIR images were in the same coordinate frame. In ad-
dition, the brain masks computed by FreeSurfer from the
T1 data were applied to the FLAIR scans of this dataset.

After preprocessing, the skull-stripped, bias-field-corrected
images (T1 or FLAIR) were then fed to the segmentation
algorithm, which was initialized by aligning the probabilis-
tic atlas to the whole brainstem segmentation produced
by FreeSurfer (“aseg.mgz”) with an affine transform. The
stiffness of the mesh was set to K = 0.05 in all experi-
ments. The mesh was rasterized (i.e., interpolated to a
regular voxel grid) at 0.5 mm isotropic resolution, which
produces a segmentation at that voxel size.

3.1.1. Direct evaluation with brainstem dataset
In this set of experiments, we used a leave-one-out

scheme to automatically segment the subjects in the brain-
stem dataset using the T1 and FLAIR scans as input.
First, we fused the two manual delineations of each T1 scan
of the brainstem dataset into a single gold standard seg-
mentation using the multi-label version of the STAPLE al-
gorithm [34] with flat label priors. Then, the leave-one-out
atlases were built upon the gold standard segmentations
and the manual delineations of the FreeSurfer dataset. The
T1 and FLAIR scans of each subject were finally analyzed
with the proposed segmentation algorithm using the cor-
responding leave-one-out atlas (i.e., built upon the anno-
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tations made on the images from the other nine subjects,
in addition to the FreeSurfer dataset).

The automated segmentations computed from the T1
and FLAIR scans of each subject were compared with each
other (in order to estimate the robustness of the algorithm
against changes in MRI contrast) and with the gold stan-
dard (in order to evaluate the accuracy of the segmen-
tation). Segmentations were compared with three differ-
ent metrics: Dice overlap, symmetric maximal surface-to-
surface (Hausdorff) distance and symmetric mean surface-
to-surface distance (see definitions in Appendix D). We
also computed the correlation of the volume estimates de-
rived from the T1 and FLAIR scans of each subject.

3.1.2. Indirect evaluation through aging study on FreeSurfer
dataset

We also evaluated the segmentation method indirectly
with an aging analysis. First, we tested whether the algo-
rithm could detect the effects of aging in the volume of spe-
cific brainstem subregions. Such effects have been previ-
ously reported by studies based on manual delineations [35,
36]. We segmented the scans of the FreeSurfer dataset in a
leave-one-out fashion, i.e., each scan was segmented with
an atlas created upon the other 38 (in addition to the 10
gold standard segmentations of the brainstem dataset).
Then, the volumes of the brainstem structures of each
scan were computed with Equation 1. Next, for each of
the brainstem structures, we fitted a general linear model
(GLM) predicting the volume of the structure at hand as
a linear combination of a bias, the age of the subject and
his/her intracranial volume (ICV, as estimated by Free-
Surfer). Then, we tested whether the slope corresponding
to age was significantly different from zero. We chose the
FreeSurfer dataset – rather than ADNI – for the aging ex-
periment because of its wider age range (69 vs. 35 years).

In order to demonstrate the value of working with the
volumes of the midbrain, pons, medulla and SCP (rather
than using only the volume of the whole brainstem), we
conducted another experiment in which we used a GLM
to predict the age of a subject as a linear combination
of a bias, his/her ICV and either the volume of the whole
brainstem or the volumes of the four brainstem structures.
Then, we used an F-test to assess whether the improve-
ment of the fit yielded by the additional variables (the vol-
umes of the brainstem structures) was significant. More-
over, we also predicted ages from both models using a
leave-out-one scheme (such that the regression coefficients
used to predict the age of each subject are computed upon
all other subjects), in order to compare the correlations
of the predictions given by both models with the real age.
The statistical significance of the difference between the
two correlations was assessed with Meng’s test [37].

3.1.3. Evaluation with pathological dataset (ADNI)
The third set of experiments was based on the ADNI

dataset, which includes scans of elderly controls and AD
subjects acquired at different sites with different platforms,

and therefore exhibits a larger degree of variability in im-
age contrast and anatomy than the brainstem and Free-
Surfer datasets. We segmented the ADNI scans with an
atlas built upon all 39 manual delineations of the Free-
Surfer dataset and all 10 gold standard segmentations of
the brainstem dataset. In a first experiment, we assessed
the impact of AD on the volumes of the brainstem struc-
tures in a quantitative fashion. To do so, we first corrected
the data for age and ICV by fitting a GLM predicting the
volume of each structure from these two variables, and
then using a two-sample, one-tailed t-test to compare the
residuals from the AD and control groups. In a second ex-
periment, we evaluated the robustness of the segmentation
qualitatively. Since no ground truth was available for this
dataset, the robustness was assessed by visually inspecting
the outputs and grading each segmentation as satisfactory
or unsatisfactory; this task was performed by JEI.

3.2. Results
3.2.1. Direct validation: Dice scores and surface-to-surface

distances on brainstem dataset
Figure 3 shows box plots for the Dice overlap, symmet-

ric mean surface-to-surface distance and symmetric maxi-
mal surface-to-surface (i.e., Hausdorff) distance. The plots
compare the agreement of the automatic segmentations of
T1 and FLAIR between themselves and with the gold stan-
dard. They also display the agreement between the two
human raters (i.e., the inter-observer variability), which
puts the other metrics in context – since it represents
an upper bound of the performance than an automated
method can achieve.

For the midbrain and the pons, the automated segmen-
tation based on T1 images is very accurate (mean Dice:
88% and 94%; mean surface distance: 0.7 mm and 0.5 mm;
Hausdorff distance 3.7 mm and 3.5 mm, respectively), and
so is the segmentation based on FLAIR scans, which pro-
duces almost identical results (mean Dice: 88% and 94%;
mean surface distance: 0.7 mm and 0.5 mm; Hausdorff
distance 3.9 mm and 3.8 mm). Compared with the inter-
observer variability (with paired t-tests), the performance
is not significantly inferior according to the Dice scores (T1
and FLAIR) and the Hausdorff distances (T1); however,
the mean surface-to-surface distance is significantly larger
for both the T1 and FLAIR segmentations (p < 0.05 and
p < 0.01, respectively).

For the SCP, which is a small and thin structure, the
gap between the automated method and the inter-observer
variability is wider and statistically significant (p < 0.01)
according to all metrics, except for the Hausdorff distance
in FLAIR. The Dice score is particularly penalized by the
thin shape of the structure, since its width is comparable to
the voxel size. Therefore, surface distances are more infor-
mative for this structure. Specifically, the mean and max-
imal surface-to-surface distances are comparable to those
obtained for the midbrain and pons, which indicates that
the performance of the automated algorithm in the SCP is
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Figure 3: Box plots for the Dice overlap, symmetric mean surface-to-surface distance and symmetric Hausdorff (maximal) distance for the
SCP, midbrain, pons and medulla. R1-R2 represents the agreement between the two human raters (inter-observer variability), T1-GS is
between the T1 segmentation and the gold standard, FL-GS is between the FLAIR segmentation and the gold standard, and T1-FL is
between the T1 and FLAIR segmentations. Statistically significant differences (as measured by a paired t-test) between T1-GS and R1-R2,
as well as between FL-GS and R1-R2, are marked with an asterisk (when p < 0.05) or two (when p < 0.01). The light red box spans the 95%
confidence interval of the mean, which is marked by the red line. The blue box spans one standard deviation of the data. The circles mark
the raw data points – slightly jittered along the x axis for clarity. Note that, since there is no ground truth for the medulla, only T1-FL can
be computed for this structure.

on par with the larger structures. The mean surface dis-
tance is 0.6 mm for both T1 and FLAIR (compared with
0.3 mm for intra-observer variability) and the mean Haus-
dorff distance is 4.0 mm for T1 and 3.5 mm for FLAIR
(the intra-observer variability is 3 mm).

The robustness of the method against changes in MRI
contrast is demonstrated by how close the similarity met-
rics are when the T1 and FLAIR segmentations are com-
pared with the gold standard. The similarity of the two au-
tomated segmentations with each other is also large, par-
ticularly when measured with Dice. Moreover, the volumes
derived from them are highly correlated (see Figure 4): the
correlation coefficient is 0.999 for the pons, 0.987 for the
midbrain, 0.968 for the medulla and 0.815 for the SCP,
which is once more penalized by its thin shape.

Finally, Figure 5 shows sample automatic segmenta-
tions and compares them with the manual delineations.
The agreement between the two is strong, except for the
SCP, which is typically undersegmented by the automated
method – especially in T1.

3.2.2. Indirect validation with FreeSurfer dataset: aging
study

Figure 6 shows scatter plots and the linear fit of the
ICV-corrected volumes of the brainstem structures of the
subjects from the FreeSurfer dataset against their ages;
in all four structures, the dependence of the volume on
ICV is statistically significant (p < 10−4). However, the
only structure for which there is significant atrophy (i.e.,

Figure 4: Scatter plots and linear fits for the volumes of the brain-
stem structures derived from the segmentations of the T1 and FLAIR
scans of the brainstem dataset.
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Figure 5: Sample slices (top two rows), manual delineations (middle row) and automated segmentations (bottom two rows) from the brainstem
dataset. The color code is the following: red is pons, green is midbrain, blue is SCP, and gray is medulla. Note that there is no manual
segmentations for the medulla.

Figure 6: Scatter plots for the ICV-corrected volumes of the brain-
stem structure versus age (FreeSurfer dataset). The linear fit is su-
perimposed. The p-value for the hypothesis that the slope of this
fit is zero is displayed in the title of each subfigure, along with the
yearly atrophy (in %).

statistically significant dependence of volume on age) is
the midbrain (p = 0.01, yearly decline 0.12%); the pons,
medulla and SCP are spared. This is consistent with pre-
vious MRI studies based on manual delineations [35, 36].

In the age prediction experiment, the simultaneous use
of all brainstem structures in the estimation produces a
significant improvement of the fit of the GLM (i.e., age
prediction) compared with using only the volume of the

Figure 7: Scatter plots for real and predicted ages in the FreeSurfer
dataset, using only the volume of the whole brainstem (left, r = 0.14)
and the volumes of all the brainstem structures (right, r = 0.60).

whole brainstem (p = 5.3× 10−5). Moreover, when age is
predicted in a leave-one-out framework, the standard error
of the prediction error decreases from 24.95 to 18.64 years,
and the correlation coefficient increases from 0.14 to 0.60
(p = 8.5 × 10−3). The scatter plots and linear fits of the
true and predicted ages are shown in Figure 7.

3.2.3. Effect of AD and robustness of segmentation against
pathology

Table 1 summarizes the differences in volume between
the AD and control groups for the different brainstem
structures. The largest effect is found in the midbrain, as
in the aging experiment. Moderate effect sizes were also
obtained for the pons, SCP and whole brainstem, whereas
no difference between the groups was found in the medulla.
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Structure Vol.diff.(%) Effect size p value
Pons 2.6 0.25 0.0072
SCP 4.4 0.24 0.011

Midbrain 2.2 0.32 0.00091
Medulla 0.4 0.04 0.67

Whole BS 2.0 0.24 0.011

Table 1: Volumetric study of brainstem structures in ADNI: elderly
controls vs. AD patients. The table shows the mean difference in
volume between the two classes for each structure (as a percentage
of the mean volume), the effect size of the difference, and the corre-
sponding p value (two-sample, one-tailed t-test).

Finally, Figure 8 shows the segmented midsagittal slices
of the first 132 scans in the ADNI dataset; segmenta-
tions for the remaining 251 scans are displayed in Figures
E.9 and E.10 in the supplementary material. Despite the
anatomical heterogeneity of the images, visual inspection
of the complete 3D labelings did not reveal any poorly
segmented scan withing the whole dataset. The volume
estimates for the brainstem structures of these subjects
can be found in Tables E.2-E.7 (also in the supplementary
material).

4. Conclusion and discussion

In this paper we have described the construction of a
probabilistic atlas of four brainstem structures (midbrain,
pons, medulla and SCP) and evaluated the segmentations
derived from it on three different datasets. The segmen-
tation is efficient and runs in approximately 15 minutes
on a desktop computer. The results have shown that the
method can accurately segment the midbrain and pons.
The segmentation of the SCP yields lower Dice scores due
to its thin shape (its thickness is comparable to the voxel
size), but approximately the same surface-to-surface and
Hausdorff distances as the midbrain and pons. The seg-
mentation of the medulla could not be evaluated directly
due to the lack of ground truth segmentations. In the indi-
rect evaluation through the aging experiment, the medulla
did not shown the mild decline reported in [36]; however,
this could be due to the noise introduced by the inferior
part of the medulla’s being left out by the field of view of
the scan or the brain extraction. This could also explain
why no difference was found between the AD and control
groups for this structure.

The results on the age prediction experiment have also
shown that the volumes of the different brainstem struc-
tures contain more information than the volume of the
brainstem as a whole: the GLM based on all the volumes
produces a much more accurate prediction than the GLM
that only uses the volume of the whole brainstem. How-
ever, the differences found between AD patients and con-
trols in the ADNI dataset were modest compared with the
values reported by Nigro et al. [18]. Further exploration
will be required to assess whether this is due to differ-
ences in the chosen subset of ADNI or in the segmentation

methods.
The experiments have also shown that the segmen-

tation method is robust against changes in MRI acqui-
sition platforms and protocols: it produces consistently
satisfactory results on three different datasets, including
one with two types of MRI contrast (brainstem dataset,
T1 and FLAIR) and another that contains scans from el-
derly subjects and AD patients scanned at different sites
(ADNI). The segmentations of the FLAIR scans were only
marginally less accurate than those of the T1 scans. This
is in spite of the fact that manual delineations were made
in the space of the T1 images, implying that errors in the
registration of the FLAIR volumes directly affect the sim-
ilarity metrics computed for their segmentations.

In order to model the relationship between the seg-
mentations and the intensities, we used a simple Gaus-
sian likelihood. While this model sufficed in our study,
MRI sequences designed to maximize the contrast of brain-
stem structures might require more flexible distributions,
such as Gaussian mixture models. More complex likeli-
hood terms will also be necessary to incorporate other
MRI modalities into the algorithm in order to increase
its performance. For instance, diffusion MRI promises to
improve the accuracy of the method in the SCP, since cere-
bellar tracts provide a salient feature for its segmentation.
Exploring these directions, along with including brainstem
substructures (e.g., raphe nuclei, red nuclei) in the atlas,
remains as future work.
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Appendix A. Guidelines used in the manual de-
lineation of the pons

1. Tracing of the superior boundary: in the midsagittal
plane, first trace the line passing through the su-
perior pontine notch and the inferior edge of the
quadriminal plate, then the line to the quadrimi-
nal plate and, after all regions have been traced,
erase the extraneous portions of the lines. Then,
continue tracing in lateral slices. Once the oculo-
motor nerve (CN III) is visible, make sure that the
anterior boundary point is below CN III. Once the
inferior colliculus is no longer visible, switch view
to the most lateral slice in which the midbrain and
pons begin to separate. On this slice, trace a diag-
onal line along the notch that appears between the
midbrain and pons. Repeat this procedure in the
medial slices. If the posterior notch is not visible in
a given slice, identify where it would be based on the
posterior notch position in both medial and lateral
adjacent slices.

2. Tracing of the inferior boundary: in sagittal view,
identify the slice in the left hemisphere where the

anatomical boundary between the medulla and pons
is most prominently visible as a bright white line.
Trace a straight line from the anterior to the poste-
rior point of the anatomical boundary. Even if the
anatomical boundary is not straight, the line defin-
ing the inferior boundary should be a straight line.
Then, in axial view, identify the most superior slice
where the voxel from the sagittally drawn line ap-
pears. In this slice, trace the posterior boundary
based on the tissue-CSF (cerebrospinal fluid) bound-
ary between the fourth ventricle and the pons. Trace
along the CSF-tissue boundary just past the vestibu-
lar nuclei (CN VIII), which can be visualized by
the notch of the fourth ventricle boundary, which
becomes a vertical line. Then, in sagittal slices,
trace the inferior boundary as the straight diagonal
line that extends anteriorly from the inferior pontine
notch to the posterior voxel created by the axial-
defined boundary. In the most lateral (sagittal) slice
where the axial-defined voxel boundary is visible,
move the cursor to the inferior pontine notch and
switch to coronal view. In this one coronal slice,
trace around the curvature of the bright pons and
middle cerebellar peduncle regions and fill in the re-
gion. Finally, return to sagittal view and verify that
in the next lateral sagittal slice a vertical line ap-
pears extending from the fourth ventricle. This line
will define the posterior boundary in subsequent lat-
eral sagittal slices.

3. Tracing of the posterior boundary: in sagittal view,
first trace the line along the tissue-CSF boundary.
Once the middle and superior cerebellar peduncles
make contact with the pons, draw a straight line
from the superior point where the peduncle first branches
from the pons to the most inferior point where the
peduncle branches from the pons. Then, repeat this
step in subsequent sagittal slices. If there is inciden-
tally any CSF space covered by the labeling, make
sure it is not included in the final segmentation.

4. Tracing of thee anterior and anterior-inferior bound-
aries: first trace the line along the tissue-CSF bound-
ary in sagittal view. Then, in lateral slices, trace
the inferior boundary as defined by the tissue-CSF
interface, without including the blood vessels and
nerves that extend from the middle of the pons. Fi-
nally, identify the most inferior axial slice where the
posterior boundary of the segmentation appears to
protrude posteriorly from the line that defines the
posterior boundary. On that slice, draw a straight
diagonal line from the most lateral point of the me-
dially protruding segmentation to the most lateral
voxel of the line defining the posterior boundary.
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Appendix B. Guidelines used in the manual de-
lineation of the midbrain

1. In sagittal view: in the most lateral slice of the right
hemisphere where the CSF boundary is clearly vis-
ible between the thalamus and midbrain, trace the
superior boundary of the midbrain as defined by the
CSF boundaries. In order to make sure structures
above the midbrain are not included, do not seg-
ment any voxels above the line of superior-most line
of the superior colliculus. Trace the anterior bound-
ary as the straight vertical line just posterior of the
mammillary bodies. Repeat on left side.

2. Identify the superior-most axial slice in which the
outline of midbrain is visible based on tissue-CSF
boundary. Make sure that the CSF boundary is
clearly visible on the anterior boundary. In this slice,
the midbrain should appear clearly separated from
other structures; this may be different slices for each
side of the brain. Trace around this shape.

3. Identify the most posterior coronal slice where the
“neck/bridge” portion that is thinner than both the
midbrain and thalamus is clearly visible. In this
slice, trace a straight diagonal line from the lateral
inferior corner of the third ventricle to the inferior
notch between the midbrain and thalamus. This will
likely be in different slices in each side of the brain.

4. Continue tracing posteriorly in coronal view using
the technique described in step 3, i.e., tracing a straight
diagonal line from the lateral inferior corner of the
third ventricle to the most lateral voxel of the line
created by the axially traced slice.

5. Once the midbrain and thalamus are separated by
CSF space, the superior midbrain boundaries are de-
fined by the tissue-CSF boundaries. Trace around
the colliculi and midbrain in coronal view until the
colliculi are no longer visible.

6. Continue tracing anteriorly in coronal view using the
technique described in step 5. If two voxels from the
sagittal tracing are visible, use the most superior to
define the superior midbrain boundary. Once the
sagitally traced voxels are no longer visible in coro-
nal, stop drawing the superior boundary in coronal
and trace around the inferior portion bounded by
CSF.

7. Identify the sagittal slice described in step 1. Then,
draw a line from the superior voxel of the line cre-
ated in the coronally-traced slice from step 3 to the
anterior voxel of the horizontal line given by the seg-
mentation at this point. This will create a right tri-
angle that must be filled in. Repeat this procedure
in all lateral sagittal slices. Also, make sure that the
small area of midbrain tissue bounded by CSF space
below the horizontal line is filled in.

8. In sagittal slices medial to the slice described in step
4, make sure that the thin midbrain portion posterior
to the mammillary body are segmented by tracing a

straight vertical line upwards from the most poste-
rior voxels of the mammillary body. Of this line only
include the voxels that are superior to the most in-
ferior point of the thin midbrain bridge.

Appendix C. Guidelines used in the manual de-
lineation of the SCP

1. In axial view, identify the most inferior slice where
the parabrachial recess is clearly visible. In this slice
draw a vertical line extending down from the lat-
eral boundary of the fourth ventricle. The sagittal
slice where this line appears will be the most lat-
eral slice for tracing the SCP. The recess will appear
in different slices on the left and right sides. Erase
extraneous portions of the axially drawn line.

2. Do all tracings in sagittal view. In the midsagittal
plane, trace around the thread-like structure that ex-
tends from the bottom of the tectum into the cere-
bellum. If the upper and lower parts of the SCP are
not connected, trace around both parts separately.

3. The superior boundary is formed by the inferior bound-
ary of the midbrain tectum. The upper part of the
SCP will be defined as the non-black voxels that are
excluded from the pons and midbrain.

4. The posterior boundary is defined as a straight ver-
tical line extending down from the superior point
where the SCP merges with the cerebellum, at the
vertex of the dark right triangle.

5. In lateral sagittal slices, where the SCP makes con-
tact with the pons, the anterior boundary is defined
by the posterior boundary of the pons.

Appendix D. Metrics used to compare two seg-
mentations

In this study, we have used three different metrics to
measure the (dis-)similarity of two segmentations. The
first one is the Dice overlap. If A and B are two binary
masks corresponding to a brain structure, their Dice over-
lap is:

DICE =
2|A ∩B|
|A|+ |B|

,

where | · | represents the size (number of voxels) of a mask.
The other two measures are based on the distances

between surfaces. If δA and δB are the surfaces of masks
A and B, the symmetric Hausdorff distance is:

SHD =
1
2

sup
a∈δA

inf
b∈δB

d(a, b) +
1
2

sup
b∈δB

inf
a∈δA

d(b, a),

where sup is the supremum, inf is the infimum, and d(a, b) =
d(b, a) is the Euclidean distance between two points a and
b. The symmetric mean surface-to-surface distance is:

SMSTSD =
1
2

1
|δA|

∑
a∈δA

inf
b∈δB

d(a, b)+
1
2

1
|δB|

∑
b∈δB

inf
a∈δA

d(b, a).
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Appendix E. Supplementary material

Subj. Group Age ICV Med. Pons SCP Midb.
0003 AD 81 1.913 5627 17349 261 7423
0005 EC 74 1.651 4913 15114 281 6104
0008 EC 85 1.396 4311 13216 215 5419
0010 AD 74 1.471 4647 16085 243 6336
0015 EC 81 1.512 4758 17216 333 6423
0019 EC 73 1.417 5182 15316 223 6048
0029 AD 64 1.905 5672 21405 394 7833
0031 EC 78 1.339 3460 12212 172 5191
0035 EC 77 1.495 4523 14595 236 6092
0040 EC 73 1.609 4676 14773 249 6184
0043 EC 76 1.674 4800 14304 303 5672
0047 EC 85 1.687 4483 15594 234 6647
0053 AD 80 1.753 5387 16019 311 6534
0055 EC 76 1.844 4045 15627 237 6962
0058 EC 70 1.433 4370 14900 258 6689
0066 EC 75 1.239 3617 12052 200 5215
0067 EC 75 1.527 4844 16611 282 6427
0068 EC 75 1.379 4343 13288 200 5357
0069 EC 73 1.730 4458 14418 241 6370
0070 EC 74 1.636 4931 16455 245 6512
0072 EC 71 1.552 4475 17147 267 6814
0074 EC 78 1.706 4554 14657 294 6295
0076 AD 78 1.523 4336 15411 332 6383
0081 EC 71 1.541 4199 13013 208 5848
0083 AD 73 1.515 4407 14039 247 6085
0084 AD 75 1.339 4196 13573 177 5287
0086 EC 80 1.431 4072 12271 277 5823
0088 AD 66 1.612 4410 13878 219 6497
0089 EC 65 1.568 4760 14849 245 6256
0090 EC 70 1.558 4893 17321 340 6695
0091 AD 62 1.365 4582 14632 260 6240
0093 AD 77 1.414 4247 15297 185 5753
0094 AD 71 1.565 3750 13651 198 5953
0095 EC 71 1.481 4773 15772 254 6346
0096 EC 80 1.815 4676 16349 235 6823
0097 EC 73 1.678 4809 15544 231 6643
0106 EC 73 1.806 4335 16122 218 6950
0109 AD 70 1.368 4268 12595 226 5269
0110 AD 83 1.698 4696 15973 270 5948
0112 EC 71 1.703 5353 17665 404 7562
0113 EC 75 1.760 4663 16665 364 7178
0118 EC 81 1.566 4417 12960 218 5395
0120 EC 72 1.560 5173 16122 317 6801
0123 EC 73 1.417 4186 12757 197 5184
0125 EC 73 1.856 5416 17348 264 7019
0127 EC 71 1.476 3934 12863 225 5616
0129 AD 80 1.342 3922 13864 215 5503
0130 EC 73 1.816 5487 18151 356 7008
0138 EC 86 1.664 4449 14739 248 6264
0139 AD 66 1.317 4649 13464 264 5697
0147 AD 60 1.685 4570 16369 245 6800
0149 AD 88 1.514 4559 14249 303 5508
0156 EC 74 1.614 4198 14475 234 6077
0159 EC 78 1.319 3745 14167 190 5656
0166 EC 76 1.452 3696 14213 203 5668
0168 EC 89 2.035 5106 18010 270 7606
0171 EC 78 1.404 4128 11213 198 5042
0172 EC 71 1.441 4005 13784 219 5388
0173 EC 73 1.649 4690 15264 336 6742
0177 EC 75 1.390 3919 13201 208 5353
0183 AD 73 1.532 4527 12761 160 6040
0184 EC 78 1.294 4792 15140 209 5466
0186 EC 81 1.593 4089 14776 285 5860
0188 EC 86 1.837 4958 16306 299 7028

Table E.2: List of ADNI subjects used in this study, along with their
demographics (age, diagnosis) and automatically estimated volumes
for the brainstem structures. All volumes are in cubic mm, except for
the ICV, which is in liters. The ICV was estimated with FreeSurfer,
whereas the volumes of the brainstem structures were estimated with
the method presented in this article. EC stands for “elderly control.”
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Subj. Group Age ICV Med. Pons SCP Midb.
0194 AD 81 1.297 3943 12500 182 4968
0196 EC 78 1.436 4146 12796 244 5227
0205 EC 67 1.655 4370 16167 332 6563
0210 EC 72 1.393 3857 13116 205 5280
0213 AD 63 1.600 4878 15845 259 6493
0216 AD 84 1.865 4875 15623 224 6848
0221 AD 68 1.776 4467 14191 194 6290
0228 AD 80 1.584 4403 14052 222 5533
0229 EC 74 1.346 3899 13196 174 5473
0230 EC 80 1.725 4841 15507 261 6640
0245 EC 74 1.527 4122 12430 242 5845
0257 EC 79 1.331 3702 12945 195 5139
0259 EC 76 1.420 4071 11814 216 5130
0260 EC 79 1.323 4408 13206 236 5794
0262 EC 86 1.468 5039 14483 233 6240
0266 AD 86 1.669 5092 16714 303 6384
0272 EC 71 1.591 4192 13661 251 5925
0283 EC 78 1.638 4216 15553 222 6718
0286 AD 66 1.869 5993 18149 361 7676
0295 EC 85 1.643 4511 15685 214 6444
0298 EC 77 1.501 4732 15908 214 6509
0299 AD 89 1.377 3525 13426 194 5573
0300 AD 56 1.847 4716 16402 290 6759
0301 EC 74 1.467 4218 15225 240 6236
0303 EC 84 1.505 4361 13800 257 5837
0304 EC 71 1.713 5508 16317 441 7175
0310 AD 76 1.521 5058 16974 331 6454
0311 EC 78 1.363 3791 11760 202 5273
0312 EC 83 1.709 5356 16401 295 6321
0315 EC 72 1.652 5066 19308 328 7323
0316 AD 76 1.618 4475 14353 224 6284
0319 EC 70 1.414 4680 15649 384 6282
0321 AD 68 1.438 4246 12649 218 5632
0327 EC 70 1.712 4563 14357 211 6487
0328 AD 77 1.576 4780 15417 333 6606
0335 AD 84 1.554 3877 12808 260 5759
0337 EC 76 1.827 4801 15888 283 6543
0341 AD 74 1.809 4981 14939 217 6689
0343 AD 72 1.802 5324 15298 267 6793
0352 EC 77 1.256 3332 10966 162 4830
0356 AD 80 1.702 4784 14176 185 6409
0359 EC 81 1.222 3587 11982 199 4998
0360 EC 73 1.656 4263 16813 291 7128
0363 EC 76 1.609 5221 14810 281 6457
0366 AD 57 1.287 4309 12944 260 5490
0369 EC 76 1.622 4809 13914 254 6676
0372 AD 79 1.725 4838 15980 238 6692
0374 AD 76 1.493 4996 16060 251 5846
0382 EC 76 1.545 4141 13586 237 5716
0384 EC 80 1.541 4838 17751 237 6750
0386 EC 72 1.522 4045 13446 230 6067
0392 AD 85 1.467 3987 13616 316 5528
0400 AD 69 1.720 5215 18582 295 7435
0403 EC 76 1.599 4779 16723 266 6457
0404 AD 88 1.290 3467 10990 204 4698
0405 EC 76 1.583 4403 15653 295 6161
0413 EC 76 1.610 4260 13885 285 5625
0416 EC 73 1.414 3979 11804 158 5575
0420 EC 74 1.504 5243 17334 230 6828
0422 EC 62 1.722 4539 15602 217 6578
0425 EC 86 1.716 5101 17184 265 7160
0426 AD 80 1.994 5607 16359 275 6761
0429 EC 63 1.800 5095 15646 460 6473
0431 AD 84 1.701 5066 16747 237 6311

Table E.3: List of ADNI subjects used in this study: continuation of
Table E.2.

Subj. Group Age ICV Med. Pons SCP Midb.
0433 EC 86 1.293 4290 16479 181 6066
0436 EC 85 1.680 5091 15099 293 6096
0438 AD 82 1.422 4516 15177 219 6711
0441 EC 73 1.473 3789 13526 218 5750
0443 EC 63 1.449 4622 15234 273 6120
0454 EC 82 1.447 4104 14156 199 5818
0457 AD 83 1.242 3771 12356 194 5313
0459 EC 73 1.594 4700 17653 352 6735
0467 EC 81 1.529 4161 14574 200 5712
0470 AD 87 1.480 4273 15467 202 5863
0472 EC 73 1.573 4353 15288 229 6152
0473 EC 73 1.657 4336 13327 217 5734
0474 AD 77 1.561 4225 12841 188 5454
0479 EC 74 1.502 5072 18812 247 7319
0484 EC 71 1.719 5416 16762 430 6977
0487 AD 77 1.469 4364 12526 265 5467
0488 EC 71 1.534 5121 17076 266 6669
0489 EC 74 1.229 3866 13016 185 4868
0492 AD 87 1.450 4323 14262 258 6152
0493 EC 78 1.759 6020 18048 235 7176
0497 AD 76 1.872 4928 16007 214 6805
0498 EC 71 1.621 5194 15556 256 6437
0500 EC 78 1.822 5170 18097 253 7774
0502 EC 75 1.629 4239 14358 252 6043
0506 EC 72 1.610 4450 15416 217 6419
0516 EC 88 1.637 4881 21728 417 7871
0517 AD 82 1.636 4380 14542 252 6205
0519 EC 74 1.548 4794 15570 346 6064
0520 EC 78 1.562 5097 17960 341 6545
0522 EC 70 1.757 4220 14695 241 6278
0525 EC 70 1.301 3833 13499 306 5664
0528 AD 71 1.334 3423 12644 199 5214
0534 EC 63 1.772 5078 16756 339 6551
0535 AD 77 1.671 4355 14568 219 6128
0538 EC 83 1.659 4853 16813 294 7370
0543 AD 72 1.227 4113 14063 192 5808
0545 EC 72 1.798 4581 16511 351 6949
0547 AD 76 1.597 3947 12037 233 5432
0551 EC 64 1.659 5156 17651 345 7100
0553 EC 85 1.602 4197 13751 263 5913
0555 EC 77 1.795 4863 16166 258 6504
0558 EC 80 1.688 5237 15787 301 6332
0559 EC 79 1.713 4821 17007 314 7336
0575 EC 87 1.471 4237 14817 254 5899
0576 EC 78 1.654 4285 13844 286 6468
0577 AD 72 1.406 4815 15912 285 6447
0578 EC 77 1.353 3860 11705 186 5280
0592 AD 78 1.607 5151 16082 306 6590
0601 EC 77 1.616 4284 13971 182 5865
0602 EC 71 1.461 5457 17224 280 6825
0605 EC 76 1.778 5339 17971 287 7219
0606 AD 69 1.440 4809 14600 198 5755
0610 EC 79 1.557 4457 14380 228 6133
0618 EC 75 1.514 4826 15622 240 6509
0619 AD 78 2.070 4759 15527 322 6985
0622 EC 75 1.409 3946 12767 238 5228
0627 AD 59 1.412 3900 14542 220 6117
0633 AD 83 1.374 4072 13254 186 5649
0637 EC 76 1.491 3949 12779 192 5457
0640 EC 73 1.450 4280 15653 241 6600
0642 AD 85 1.702 5434 18622 231 7136
0643 EC 71 1.531 4713 15798 284 6408
0647 EC 73 1.517 4182 14261 238 6713
0648 EC 72 1.692 5464 18111 351 6799

Table E.4: List of ADNI subjects used in this study: continuation of
Table E.3.
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Subj. Group Age ICV Med. Pons SCP Midb.
0653 AD 74 1.455 4858 15424 249 5875
0657 EC 78 1.690 4690 16205 228 6778
0668 EC 74 1.523 5047 14449 243 6165
0669 EC 76 1.823 4823 16268 211 6596
0672 EC 62 1.424 4175 14303 253 5605
0677 EC 71 1.580 4423 15400 237 6466
0680 EC 78 1.455 4291 14397 338 6042
0681 EC 77 1.502 3970 13776 271 5888
0682 AD 68 1.421 5111 14764 266 6075
0685 EC 90 1.539 4385 14508 292 6422
0686 EC 72 1.831 4935 16323 151 7628
0689 AD 64 1.790 4930 16013 282 6708
0690 AD 76 1.572 4995 17304 272 6435
0691 AD 64 1.566 4699 14387 281 5740
0692 EC 77 1.503 4595 12845 196 5519
0702 EC 85 1.627 4197 11654 209 5577
0711 EC 77 1.597 4975 15017 256 6428
0712 AD 77 1.429 4049 12075 219 5227
0717 EC 76 1.793 4435 18181 270 7340
0720 AD 78 1.344 4778 14800 264 5864
0722 EC 70 1.897 4880 16042 372 6669
0724 AD 79 1.800 4833 15214 245 6684
0726 EC 81 1.604 4721 15114 277 6304
0730 AD 71 1.471 5294 16290 337 6382
0731 EC 72 1.501 4910 15952 394 6756
0733 AD 57 1.344 4575 13485 288 5967
0734 EC 73 1.671 4758 14623 269 6427
0740 AD 76 1.627 4784 15664 269 6485
0741 EC 80 1.535 4098 12303 234 5405
0751 EC 76 1.726 4182 13163 194 6218
0753 AD 66 1.770 4047 14559 264 5999
0754 AD 68 1.609 5595 15106 290 6341
0759 AD 82 1.442 4451 15747 245 5798
0760 AD 69 1.471 4138 13534 192 5573
0761 EC 71 1.449 4188 15394 253 6489
0767 EC 73 1.340 3921 15000 202 5539
0768 EC 77 1.799 5393 17601 282 7142
0778 EC 73 1.601 4100 13123 189 5383
0784 AD 76 1.395 4093 11085 173 5169
0786 AD 75 1.592 4156 14454 214 6206
0790 AD 83 1.351 4032 12009 171 5452
0793 AD 69 1.692 5546 16639 277 6836
0796 AD 80 1.893 4462 14581 301 6090
0803 AD 85 1.423 3962 13424 266 5792
0810 EC 84 1.669 4804 14123 271 6126
0812 AD 72 1.577 4418 14477 193 5940
0813 EC 73 1.659 4850 17073 311 6549
0814 AD 71 1.455 4056 12597 215 5455
0816 AD 71 1.618 5146 16625 357 6584
0818 EC 74 1.443 4970 15995 246 5916
0824 EC 76 1.518 4177 12587 312 5841
0828 AD 77 1.311 3743 12988 194 5176
0829 AD 65 1.318 4171 13762 213 5473
0836 AD 83 1.699 4501 18031 364 6328
0841 AD 76 1.323 3629 12244 222 5284
0842 EC 76 1.691 5205 16592 272 7091
0844 AD 85 1.552 4286 11273 213 5153
0845 EC 80 1.852 5690 17946 257 7305
0850 AD 78 1.458 4603 14195 269 5813
0852 AD 84 1.357 4108 14816 213 5841
0853 AD 87 1.553 4650 14700 209 6012
0862 EC 76 1.490 4553 14366 189 5817
0863 EC 79 1.652 4212 15319 253 6115
0866 EC 80 1.388 4278 16207 224 6051

Table E.5: List of ADNI subjects used in this study: continuation of
Table E.4.

Subj. Group Age ICV Med. Pons SCP Midb.
0883 EC 76 1.587 4886 14223 184 5721
0884 AD 79 1.449 4583 14258 249 5971
0886 EC 71 1.444 4500 13034 234 5404
0889 AD 73 1.450 3683 10201 214 4693
0891 AD 79 1.460 3710 12888 219 5510
0896 EC 77 1.789 4698 17880 290 6977
0898 EC 83 1.572 4295 14647 257 5873
0899 EC 80 1.363 4114 11527 224 5312
0907 EC 89 1.405 4967 14344 240 5521
0916 AD 80 1.537 4235 14228 209 6397
0920 EC 80 1.464 4821 15571 326 6433
0923 EC 83 1.571 5284 16709 200 6664
0926 EC 71 1.486 4035 15931 239 6102
0929 AD 82 1.591 5018 14481 226 5723
0931 EC 86 1.268 4074 13723 295 5467
0934 EC 70 1.397 4085 13920 234 5885
0938 AD 82 1.384 4373 13615 296 5643
0951 EC 85 1.690 5454 15299 233 6898
0955 AD 78 1.508 5324 14926 286 6583
0963 EC 73 1.533 4578 15582 403 6510
0969 EC 70 1.512 5134 15593 242 7027
0972 EC 78 1.477 4479 15354 265 6222
0979 AD 86 1.605 4740 14752 236 5804
0981 EC 84 1.388 3994 13761 192 5706
0984 EC 77 1.868 4338 14654 257 6669
0985 EC 82 1.354 4183 13467 235 5516
0991 AD 86 1.380 3962 12922 193 5185
0996 AD 91 1.392 3932 12116 224 5277
0999 AD 76 1.409 3920 11958 261 5666
1002 EC 76 1.622 3924 12535 216 5669
1016 EC 78 1.398 4466 15739 265 6203
1018 AD 71 1.522 5484 17119 248 6162
1021 EC 87 1.410 3450 11644 175 5349
1023 EC 77 1.392 3748 13239 215 5769
1024 AD 69 1.744 5265 16240 243 6678
1027 AD 69 1.323 5110 13812 235 5558
1035 EC 87 1.614 4816 17375 217 6446
1037 AD 74 1.785 4989 18034 301 6846
1041 AD 71 1.665 5364 17870 268 6965
1044 AD 66 1.609 4822 15770 317 6354
1055 AD 85 1.585 4573 16240 276 6754
1056 AD 71 1.481 4099 13525 156 5576
1059 AD 85 1.523 4349 13926 227 5416
1062 AD 82 1.656 4448 12095 205 5889
1079 AD 78 1.914 5174 17416 337 7404
1081 AD 85 1.564 4742 13834 202 5854
1082 AD 70 1.477 5112 14355 313 6022
1083 AD 72 1.484 3853 15755 200 6524
1086 EC 82 1.484 5049 12660 271 5735
1090 AD 71 1.715 5022 17010 254 6787
1092 EC 74 1.337 3854 14315 215 5729
1094 EC 76 1.774 4831 15138 252 6455
1095 AD 80 1.609 4600 15917 224 6417
1098 EC 72 1.341 3908 13551 180 5819
1101 AD 71 1.236 3730 10790 158 5159
1102 AD 73 1.269 3910 9836 141 4660
1109 AD 78 1.333 4136 12733 224 4944
1113 AD 79 1.540 4078 11856 220 5240
1123 EC 76 1.336 4156 12593 241 5210
1133 EC 80 1.385 3916 14859 243 5941
1137 AD 82 1.310 3755 13604 198 5413
1144 AD 78 1.605 4224 14061 243 5967
1152 AD 72 1.357 3775 10128 243 5243
1161 AD 80 1.640 4878 16327 205 6653

Table E.6: List of ADNI subjects used in this study: continuation of
Table E.5.
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Subj. Group Age ICV Med. Pons SCP Midb.
1164 AD 70 1.329 4062 11685 234 5048
1168 EC 81 1.332 3541 12088 232 4976
1169 EC 72 1.566 4135 13527 275 5844
1170 AD 73 1.487 3968 13100 238 5487
1171 AD 72 1.811 5425 16595 273 6820
1184 AD 65 1.469 4087 11737 222 5097
1185 AD 62 1.627 4476 14400 325 5982
1188 EC 81 1.428 4382 15071 231 6379
1190 EC 77 1.425 3787 13092 282 5860
1191 EC 79 1.526 4567 12535 221 5773
1194 EC 85 1.741 5298 17123 266 6785
1195 EC 77 1.650 4298 13009 224 6031
1197 EC 82 1.407 4025 12892 208 5352
1200 EC 85 1.719 4421 16260 272 6891
1203 EC 83 1.419 3793 11410 231 5124
1205 AD 83 1.362 4392 14314 192 6008
1206 EC 73 1.747 5673 17982 253 6619
1209 AD 72 1.767 5169 18149 284 6879
1212 EC 75 1.559 4121 13437 226 5966
1221 AD 71 1.746 4456 13649 235 6473
1232 EC 72 1.431 5086 17392 250 6621
1245 EC 71 1.338 4070 13137 191 5299
1248 AD 80 1.415 4425 13983 211 6466
1249 EC 71 1.390 3997 14549 201 5812
1251 EC 74 1.374 4410 16565 259 6046
1253 AD 63 1.519 4908 15036 233 5962
1254 AD 84 1.653 4596 13872 258 6193
1256 EC 72 1.356 3876 12216 179 5446
1257 AD 85 1.959 5408 18128 229 7749
1261 EC 71 1.500 4513 13757 226 5460
1262 AD 73 1.385 4203 13438 203 5794
1263 AD 65 1.378 3702 12003 204 5074
1267 EC 73 1.746 4918 15377 275 6218
1276 EC 72 1.426 4334 13006 254 6020
1281 AD 78 1.420 4249 14449 218 5739
1283 AD 60 1.782 5116 14480 181 6635
1285 AD 80 1.625 4488 14921 242 6311
1286 EC 76 1.759 4707 14471 288 6339
1288 EC 60 1.676 5501 16578 321 7164
1289 AD 77 1.362 4762 16554 212 5901
1290 AD 79 1.440 4266 14089 249 5832
1296 AD 77 1.578 4542 14993 259 5907
1301 EC 72 1.631 5913 18437 358 6669
1304 AD 75 1.354 4232 12650 256 5977
1306 EC 76 1.321 3535 12278 240 5255
1307 AD 75 1.573 4769 14737 253 6296
1308 AD 80 1.601 4497 14713 293 6045
1334 AD 64 1.727 5028 16431 300 6475
1337 AD 71 1.639 4425 14746 208 5997
1339 AD 80 1.662 4605 15113 319 6414
1341 AD 72 1.307 4135 12717 163 5267
1368 AD 76 1.435 4259 12234 217 5283
1371 AD 84 1.541 4416 13627 329 6187
1373 AD 75 1.392 4220 13189 143 5797
1377 AD 83 1.952 4705 16207 275 6836
1379 AD 88 1.873 4230 13287 241 6006
1382 AD 64 1.943 5335 16278 447 6588
1391 AD 76 1.819 4500 13774 211 5775
1397 AD 76 1.537 4691 13749 221 5931
1402 AD 69 1.938 5178 18789 240 7607
1409 AD 66 1.807 5468 18930 288 7732
1430 AD 84 1.215 3685 12022 192 5351
1435 AD 82 1.572 4879 14922 287 6075

Table E.7: List of ADNI subjects used in this study: continuation of
Table E.6.
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Figure E.9: Segmentation of subjects 133-264 of the ADNI dataset. See caption of Figure 5 for the color code.
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Figure E.10: Segmentation of subjects 265-383 of the ADNI dataset. See caption of Figure 5 for the color code.
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