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Abstract

The hippocampal formation is a complex, heterogeneous structure that consists of a number of distinct, interacting
subregions. Atrophy of these subregions is implied in a variety of neurodegenerative diseases, most prominently in
Alzheimer’s disease (AD). Thanks to the increasing resolution of MR images and computational atlases, automatic
segmentation of hippocampal subregions is becoming feasible in MRI scans. Here we introduce a generative model for
dedicated longitudinal segmentation that relies on subject-specific atlases. The segmentations of the scans at the different
time points are jointly computed using Bayesian inference. All time points are treated the same to avoid processing
bias. We evaluate this approach using over 4,700 scans from two publicly available datasets (ADNI and MIRIAD). In
test-retest reliability experiments, the proposed method yielded significantly lower volume differences and significantly
higher Dice overlaps than the cross-sectional approach for nearly every subregion (average across subregions: 4.5% vs.
6.5%, Dice overlap: 81.8% vs. 75.4%). The longitudinal algorithm also demonstrated increased sensitivity to group
differences: in MIRIAD (69 subjects: 46 with AD and 23 controls), it found differences in atrophy rates between AD
and controls that the cross sectional method could not detect in a number of subregions: right parasubiculum, left and
right presubiculum, right subiculum, left dentate gyrus, left CA4, left HATA and right tail. In ADNI (836 subjects:
369 with AD, 215 with early cognitive impairment – eMCI – and 252 controls), all methods found significant differences
between AD and controls, but the proposed longitudinal algorithm detected differences between controls and eMCI and
differences between eMCI and AD that the cross sectional method could not find: left presubiculum, right subiculum,
left and right parasubiculum, left and right HATA. Moreover, many of the differences that the cross-sectional method
already found were detected with higher significance. The presented algorithm will be made available as part of the
open-source neuroimaging package FreeSurfer.
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1. Introduction

1.1. Background
The study of the human hippocampus has traditionally at-
tracted considerable attention from the neuroscience and
neuroimaging communities due to its connection with mem-
ory [1, 2] and an array or neurological disorders, especially
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Alzheimer’s disease (AD) [3, 4, 5]. Limits in MR acqui-
sition have for many years forced in vivo studies to treat
the hippocampus as a single structure. However, the hip-
pocampus consists of a number of subregions that have
been shown to have different memory functions using ani-
mal models [6, 7]. In humans, there is increasing evidence
that hippocampal subregions play different roles in mem-
ory [8, 9, 6, 10], and that they are differently affected by
AD [11, 12]. Therefore, in vivo analysis of hippocampal
subregions holds great promise to improve our understand-
ing of normal aging and AD, as well as to deliver more
sensitive biomarkers of AD and other neurological disor-
ders.

Recent advances in MRI acquisition have made it pos-
sible to study the hippocampal subregions in vivo. Ear-
lier studies had to rely on manual segmentations [13, 14],
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typically performed on T2 scans acquired coronally with
high in-plane resolution and relatively thick slices. Auto-
mated methods have since been proposed to bypass the
manual segmentation procedure, which requires extensive
expertise, is extremely time consuming, and cannot be re-
produced easily. Yushkevich et al. [15, 16] proposed a
multi-atlas segmentation algorithm using a library of man-
ually labeled T1 and T2 scans, whose output was refined
by a machine learning bias correction strategy. Wang et
al. [17, 18] employed a surface-based atlas approach. Our
group, in previous work, used a probabilistic atlas to pro-
duce segmentations with a Bayesian inference algorithm
within a generative framework. In a first version [19], the
atlas was constructed using high-resolution in vivo MRI
scans (coronal slices with .38 mm in-plane resolution, .8
mm slice separation). More recently, we acquired ultra-
high resolution ex vivo MRI, which enabled us to produce
very detailed manual segmentations and, in turn, a much
more accurate atlas [20]. It is the use of generative tech-
niques that enables the application of ex vivo atlases to the
segmentation of in vivo scans, since they do not require the
intensity characteristics of the training and test datasets
to match – in contrast with registration-based algorithms
such as Yushkevich’s and Wang’s.

Many large scale studies, including the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), are now collect-
ing longitudinal MRI data. Since they remove the con-
founding inter-subject variability, longitudinal studies en-
able us to accurately quantify within-subject neuroanatom-
ical changes, and provide higher sensitivity than their cross-
sectional counterparts [21]. However, until now, no dedi-
cated method exists (to the best of our knowledge) for the
longitudinal segmentation of hippocampal subregions.

In this paper, we introduce a novel Bayesian approach
for the joint segmentation of hippocampal subregions across
multiple time points. The method is based on a genera-
tive model of longitudinal MRI scans, extending our cross-
sectional approach [20] to longitudinal datasets. Rather
than by a population-wide atlas, the scans at the differ-
ent time points are assumed to have been generated by a
subject-specific atlas, which introduces a statistical depen-
dence between the time points and ensures that the dif-
ferent images and corresponding segmentations are similar
to each other. This subject-specific atlas is simply a de-
formed version of the population-wide atlas. Within this
framework, the segmentations of all time points are com-
puted simultaneously with a Bayesian inference algorithm;
the subject-specific atlas is obtained as a by-product. Due
to its generative nature and unsupervised intensity model,
the algorithm is robust against changes in MRI contrast.

1.2. Further related work on longitudinal segmentation
Longitudinal segmentation algorithms exploit the prior knowl-
edge that a set of images belongs to the same subject, in
order to produce more accurate and consistent segmenta-
tions than when the images are processed independently.
A crucial aspect of longitudinal methods is the need to

keep them unbiased: algorithms that do not treat all time
points the same way introduce processing bias due to the
additional processing steps applied to selected images [22].

Many longitudinal segmentation approaches rely on a
non-linear, group-wise registration that brings the images
from the different time points into a common coordinate
space. The registration should be computed in an inter-
mediate space [23], in order to avoid biases due to image
resampling in the space to a selected scan – typically the
baseline [24, 25]. In some methods, the group-wise align-
ment is precomputed with a registration algorithm. For
example, Gao et al. [26] used pre-aligned scans to optimize
a cost function that included an intensity correction term
matching the intensity profiles across time points. Other
approaches integrate the registration into the segmenta-
tion framework. For instance, Shi et al. [27] used a multi-
channel (T1/T2) segmentation algorithm guided by prior
tissue probability maps; the spatial mapping of the tis-
sue maps across time points was estimated simultaneously
with the segmentation using an expectation maximization
algorithm. Xue et al. [28, 29] proposed a similar approach,
which iteratively used the estimate of the segmentations
to update the registrations and vice versa.

Some approaches do not require non-linear registration
to produce the segmentations – though rigid registrations
are still used to bring the images into rough alignment. In
the context of whole hippocampus segmentation, Wolz et
al. [30] built a 4D graph in which a voxel had 6 spatial
neighbors and 2 temporal neighbors (from the preceding
and following time points). In their model, unary terms
included intensity and anatomical priors, whereas pair-
wise terms were engineered to enforce spatial and temporal
smoothness in the segmentation. The segmentation of all
time points was then computed simultaneously with graph
cuts. In a similar framework, Bauer et al. [31] used a ran-
dom forest classifier in the unary term. Other papers have
exploited expert knowledge to drive the segmentation. For
example, Wang et al. [32] constrained the distance across
the serial images to remain within a biologically plausi-
ble range, and used a similar strategy in a more recent
paper [33] to segment the brain cortex (keeping the thick-
ness within a reasonable range).

Finally, some longitudinal segmentation approaches have
used a subject-specific atlas to produce consistent segmen-
tations. In the context of neonate brain segmentation, Shi
et al. [34] registered a population-wide atlas to the latest
time point, which is normally the most reliable one in in-
fants (least motion, and most contrast between gray and
white matter), in order to produce subject-specific tissue
probability maps. Rather than using a single time point
as the target of the registration, Aubert-Broche et al. [35]
built a subject-specific atlas by non-linearly coregistering
the time points; then, they registered a population-wide
atlas to the output to obtain subject-specific probability
maps.
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1.3. Contribution: an unbiased, longitudinal segmentation
method for hippocampal subregions based on a subject-
specific atlas

The contribution of this article is twofold. In first place, it
presents the first available automated algorithm for longi-
tudinal segmentation of the hippocampal subregions; prior
works have only addressed the longitudinal segmentation
of the hippocampus as a whole [30]. Additionally, it presents
a novel generative model for longitudinal segmentation
based on subject-specific atlases, which is unbiased and
adaptive to changes in MRI contrast. The models assumes
that the images are generated by a hidden subject-specific
atlas, which is in turn generated by a population-wide at-
las. Even though the idea of using subject-specific atlases
is not original, our model is novel: as opposed to works
like Aubert-Broche et al. [35], we estimate the subject-
specific atlas along with the registrations and segmenta-
tions in a probabilistic framework, rather than precom-
puting it based solely on image intensities. This has the
advantage that the segmentation and registration can it-
eratively improve each other.

The rest of this paper is organized as follows. Section 2
describes the generative framework that our method is
based on, as well as the Bayesian inference algorithm that
we used to obtain the segmentations. In Section 3, we de-
scribe a set of experiments that evaluated the test-retest
reliability and sensitivity to group differences; since the
hippocampal subregions cede to neurodegenerative pathol-
ogy that worsens over time, we tested our approach on two
public MRI datasets of AD patients (ADNI and MIRIAD).
The experiments compared our algorithm with two com-
peting methods; the results are discussed in Section 4,
while Section 5 concludes the article.

2. Methods

Our segmentation framework is based on a generative model
of longitudinal MRI data. In this section, we first describe
the forward generative model, in which longitudinal MRI
scans are assumed to have been generated by a probabilis-
tic atlas of anatomy. Then, we present an inference algo-
rithm that “inverts” the model with Bayes rule in order to
estimate longitudinal segmentations from MRI data.

2.1. Forward generative model of longitudinal MRI scans
Let {y1, . . . ,yT } be the image intensities of a set of T lon-
gitudinal MRI scans from the same subject. Each scan is
represented by a vector of intensities corresponding to J
voxels, i.e., yt = [yt1, . . . , ytJ ]. Here we follow the liter-
ature of probabilistic atlases with unsupervised intensity
models [36, 37, 38, 39], but modify the framework in order
to adapt it to the longitudinal nature of the data. The
image intensities are assumed to have been generated by
the following process (the graphical model is displayed in
Figure 1, and further illustrated in Figure 2):

Figure 1: Generative model for longitudinal MRI data. Random
variables are in circles, parameters in squares. Shaded variables are
observed. Plates indicate replication.

  

...

...

...

Population-
wide atlas

Time 
point 1

Subject-
specific atlas

Time 
point T

Figure 2: Illustration of the generative process through which the
longitudinal MRI data are assumed to be generated: the population-
wide atlas is first deformed into a subject-specific atlas, which is
subsequently deformed T times – once per time point. Segmenta-
tions are sampled from these deformed atlases, and image intensities
are generated from the segmentations through a Gaussian mixture
model.

i) We are given a probabilistic, population-wide atlas of
anatomy, which is encoded as a tetrahedral mesh [39]
that covers the region of interest (in our case, a cuboid
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containing the hippocampus). The mesh is defined
by its position xref (a vector with the coordinates
of its N nodes) and its connectivity K. Each node n
has a corresponding vector of label probabilities αn =
[αn1, . . . , αnL], where αnl is the frequency with which
label l is expected at node n, and L is the number of
neuroanatomical labels modeled by the atlas.

ii) The mesh is deformed from its reference position xref

to a new position x0, which is specific to the subject
at hand, and yields the corresponding subject-specific
atlas. The deformation is governed by a prior prob-
ability distribution that penalizes deformations and
explicitly forbids collapsing tetrahedra, thereby pre-
serving the topology of the mesh [40]:

p(x0) ∝ exp

[
−K0

∑
d

UKd (x0,xref )

]
, (1)

where d loops over the tetrahedra in the mesh, K0 is
the stiffness parameter, and UKd (x0,xref ) is the cost
of deforming the dth tetrahedron (see further details
in [40]).

iii) The mesh in position x0 (i.e., the subject-specific at-
las) is further deformed T times to positions {x1, . . . ,xT }
(corresponding to the T time points) – but this time
using x0 as reference position:

p(xt|x0) ∝ exp

[
−K1

∑
d

UKd (xt,x0)

]
, (2)

for t = 1, . . . , T . Note that the deformed mesh po-
sitions {xt} are conditionally independent given the
subject-specific atlas x0, which is the variable that
creates the statistical dependence between the time
points. A consequence of this conditional indepen-
dence is that no particular temporal trajectory (e.g.,
atrophy) is assumed. This choice increases the flexi-
bility of the method, by enabling it to model trajec-
tories that involve changes in trend over time (e.g.,
crossover studies, cyclic patterns).

iv) Using the deformed mesh positions, label probabilities
at each time point and voxel are computed by inter-
polating the values at the vertices of the tetrahedron
enclosing the voxel. Let rj be the 3D coordinates of
voxel j, and let φKtn be a deformed interpolation basis
function linked to node n at time point t. The inter-
polated label probabilities at voxel j of time point t
are then given by2:

pj(l|xt) =
N∑

n=1

αnlφ
K
tn(rj ;xt).

2Linear barycentric interpolation leads to simpler solutions and
provides satisfactory results in our case, but more complex models
could be used, e.g. [41, 42].

Segmentation images {l1, . . . , lT } are then created by
independently sampling these categorical distributions
at each voxel:

p(lt|xt) =
J∏

j=1

pj(ltj |xt)

where ltj is the label of voxel j in time point t.
v) The intensities of the voxels are generated following

three assumptions. First, that they are conditionally
independent, given the segmentations. Second, that
they follow a Gaussian distribution for each label and
time point. And third, that labels describing struc-
tures of the same tissue type share their Gaussian
parameters (means and variances) through G global
classes. For example, gray matter structures such as
the amygdala, the cerebral cortex, and many of the
hippocampal subregions will belong to the same global
class (see details in Section 2.2.5). Under these as-
sumptions, the probability of observing the image at
time point t is:

p(yt|lt,θt) =
J∏

j=1

p(ytj |ltj ,θt)

=
J∏

j=1

N (ytj ;µtG(lti), σ
2
tG(lti)

),

whereN is the Gaussian distribution, G(l) ∈ {1, . . . , G}
is the global class corresponding to label l, (µtg, σ

2
tg)

are the Gaussian parameters for time point t and
global class g, and θt = {{µtg}, {σ2

tg}} represents all
Gaussian parameters for time point t. Note that we
allow the Gaussian parameters to be different for each
time point, which removes the need to standardize the
intensities across time points, and also models possible
changes in contrast induced by disease. The param-
eters of each Gaussian (µtg, σ

2
tg) are assumed to be

independent samples of normal-inverse gamma (NIG)
distributions, which is the conjugate prior for a Gaus-
sian distribution with unknown mean and variance:

p(θt) =
G∏

g=1

p(µtg, σ
2
tg)

p(µtg, σ
2
tg) = NIG(µ0

tg, νtg, 0, 0)

= N (µtg;µ0
tg, σ

2
tg/νtg),

where we have assumed that the variance-related pa-
rameters of the NIG are equal to zero (i.e., the prior
on the variance is a uniform distribution), and the
remaining hyperparameters µ0

tg and νtg encode any
prior knowledge that we might have on the image in-
tensities of each time point: µ0

tg represents the ex-
pected mean of class g at time point t, which is as-
sumed to have been obtained as the sample mean of
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νtg prior observations. Details on how these hyperpa-
rameters are computed are given in Section 2.2.5 and
Table 1.

2.2. Segmentation as Bayesian inference
Given the model described above, segmentation can be
cast as a Bayesian inference problem:

{l̂t} = argmax
{lt}

p({lt}|{yt}).

Solving this problem exactly leads to an intractable in-
tegral over the model parameters, so we make the stan-
dard approximation that the posterior distribution of the
parameters is heavily peaked. If we group all Gaussian pa-
rameters in θ = {θ1, . . . ,θT }, and all deformations (subject-
specific atlas and time points) in x = {x0,x1, . . . ,xT }, we
have:

{l̂t} = argmax
{lt}

∫
x

∫
θ

p({lt}|x,θ, {yt})p(x,θ|{yt})dxdθ

≈ argmax
{lt}

p({lt}|x̂, θ̂, {yt}),

where the point estimates of the model parameters are
given by:

{x̂, θ̂} = argmax
x,θ

p(x,θ|{yt}).

Using Bayes’ rule, we can rewrite this problem as:

{x̂, θ̂} = argmax
x,θ

p({yt}|x,θ)p(x)p(θ)

= argmax
x,θ

p(x0)
T∏

t=1

p(yt|xt,θt)p(xt|x0)p(θt).

Finally, taking the logarithm of this expression, and ex-
panding:

p(yt|xt,θt) =
∑
lt

p(yt|lt,θt)p(lt|xt)

=
∑
lt

J∏
j=1

p(ytj |ltj ,θt)
J∏

j=1

pj(ltj |xt)

=
J∏

j=1

L∑
l=1

p(ytj |l,θt)pj(l|xt),

we obtain the following objective function of the variables
x0, {xt}, and {θt}:

log p(x0) +
T∑

t=1

log p(xt|x0) +
T∑

t=1

log p(θt)

+
T∑

t=1

J∑
j=1

log

[
L∑

l=1

p(ytj |l,θt)pj(l|xt)

]
. (3)

The optimization of this objective function solves a joint
registration, segmentation and subject-specific atlas esti-
mation problem. We use a coordinate ascent scheme, in

which one variable is updated at a time in an iterative
fashion. In the rest of this section, we first describe the
optimization procedure for each of the variables; then, we
describe how the final segmentation is obtained once the
point estimates have been computed; next, we provide de-
tails on our implementation; and finally, we close the sec-
tion with a description of our strategy to avoid biases in
the longitudinal analysis.

2.2.1. Optimization of xt, t > 0
The deformations of the individual time points can be up-
dated independently of each other. Dropping any terms
that are independent of xt in Eq. (3), the problem reduces
to:

argmax
xt

log p(xt|x0) +
J∑

j=1

log

[
L∑

l=1

p(ytj |l,θt)pj(l|xt)

]
.

(4)
This is a registration problem, which includes a regular-
ization term (the first) and a data term (the second). As
in [20], we solve this problem directly with a conjugate gra-
dient optimizer. The problem is actually identical to that
of [20], with the only difference that the node positions
of the population-wide atlas xref are replaced by those of
the subject-specific atlas x0.

2.2.2. Optimization of θt

As with xt, the Gaussian parameters can be updated one
time point at a time. The problem of Eq. (3) becomes:

argmax
θt

log p(θt) +
J∑

j=1

log

[
L∑

l=1

p(ytj |l,θt)pj(l|xt)

]
, (5)

which can be solved with an Expectation-Maximization
(EM) algorithm [43]. The method iterates between an
expectation (E) and a maximization (M) step until con-
vergence. In the E step, a lower bound of the objective
function in Eq. (5) that touches it at the current estimate
of θt is built, which involves computing a soft classification
of each voxel in the image corresponding to the time point
t:

Wtjl =
p(ytj |l,θt)pj(l|xt)∑L

l′=1 p(ytj |l′,θt)pj(l′|xt)
. (6)

In the subsequent M step, this bound is optimized with
respect to θt, thereby guaranteeing to improve the original
objective function of Eq. (5) compared to the previous
iteration [43]. Taking derivatives and setting them to zero,
we obtain the following update equations:

µtg ←
νtgµ

0
tg +

∑J
j=1 Ωtjgytj

νtg +
∑J

j=1 Ωtjg

, (7)

σ2
tg ←

νtg(µtg − µ0
tg)2 +

∑J
j=1 Ωtjg(ytj − µtg)2∑J

j=1 Ωtjg

, (8)

where we have defined Ωtjg =
∑
G(l)=g Wtjl.
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2.2.3. Optimization of x0

Considering only terms depending on x0, Eq. (3) becomes:

argmax
x0

[
log p(x0) +

T∑
t=1

log p(xt|x0)

]
,

which is independent of the image intensities. Since the
function UKd (xa,xb) in Eqs. (1) and (2) is symmetric [40],
we can rewrite:

argmin
x0

∑
d

[
K0U

K
d (x0,xref ) +K1

T∑
t=1

UKd (x0,xt)

]
. (9)

Eq. (9) can be seen as a weighted “average” of the mesh
positions of the time points and that of the population-
wide atlas xref . The atlas essentially plays the role of an
additional time point, though with a different weight (K0,
rather than K1). We solve this problem numerically with
a conjugate gradient algorithm.

2.2.4. Computation of final segmentation
Once the point estimates of the model parameters have
been computed, the conditional posterior label probabili-
ties for each voxel are given by the soft classifications pro-
vided by the E step of the EM algorithm used to update
the Gaussian parameters (Eq. (6)):

p({lt}|x̂, θ̂, {yt}) =
T∏

t=1

p(lt|x̂t, θ̂t,yt)

=
T∏

t=1

J∏
j=1

Wtjltj . (10)

If we desire to compute discrete segmentations, the MAP
(maximum-a-posteriori) estimate can be computed voxel
by voxel as:

l̂tj = argmax
l

Wtjl,

whereas if we are interested in the volumes of the struc-
tures, their expected value can be shown to be equal to:

Vtl =
J∑

j=1

Wtjl,

where Vtl is the volume of the structure with label l in the
image acquired at time point t.

2.2.5. Implementation details
Given a set of longitudinal scans, we first preprocess the
data using the FreeSurfer [44, 45, 46, 47] longitudinal
stream [48, 22]. The longitudinal stream creates an unbi-
ased within-subject template space and image (“base”) [48]
using an inverse consistent registration method [49]. This
template is a robust representation of the average sub-
ject anatomy and is processed with a modified FreeSurfer
pipeline. The original time point images are conformed

Global class Structures
Gray matter Cerebral cortex, amygdala,

parasubiculum, presubiculum,
subiculum, CA1, CA2/3, CA4,
GC-DG, HATA

White matter Cerebral white matter, fimbria
Cerebrospinal fluid Ventricle, hippocampal fissure
Dicencephalon Diencephalon
Thalamus Thalamus
Pallidum Pallidum
Putamen Putamen
Choroid plexus Choroid plexus

Table 1: Global tissue classes grouping structures with similar image
intensity properties. GC-DG stands for granule cell layer of the den-
tate gyrus, and HATA for hippocampus-amygdala transition area.

and resampled to the template space via a single cubic b-
spline interpolation step. Several processing steps of the
FreeSurfer pipeline are then initialized for each time point
with common information from the subject template to
increase reliability and thus statistical power. The normal-
ized, bias-field corrected, skull-stripped images (“norm.mgz”)
corresponding to the different time points are then used
as input for the proposed longitudinal segmentation algo-
rithm (i.e., {yt}).

To initialize the mesh positions, we first use an affine
registration procedure to align the modeled image region
with the cuboid in which the population-wide atlas is de-
fined. As reference image, the registration uses a binary
hippocampal mask extracted from the automated segmen-
tation (FreeSurfer’s “aseg.mgz”) of the subject template.
As moving image, the registration uses a soft segmentation
of the hippocampus estimated from xref . After the affine
registration, we further deform the mesh (non-linearly, us-
ing Eq. 1) to the same automated segmentation of the
subject template. This mesh deformation is used to ini-
tialize the node positions of subject-specific atlas x0, as
well as the deformations of the time points x1, . . . ,xT .

The hyperparameters of the different time points and
global tissue classes are computed from the corresponding
norm and aseg images as follows: for each global class g,
we extract the intensities of the voxels of norm labeled
as any of the compatible labels by aseg (i.e., l, s.t.G(l) =
g). We set µ0

tg to the median value of such intensities,
and νtg to a conservative value equal to one half of the
number of such voxels. The complete mapping of labels to
global tissue classes is detailed in Table 1. Note that voxels
from outside the hippocampus to estimate the intensity
properties of the hippocampal subregions, which makes
the algorithm more robust. For example: since they both
consist of white matter, the intensity distribution of the
fimbria can be more easily estimated from the cerebral
white matter, which is much bigger and easier to segment.

We set the stiffness parameters to K0 = K1 = 0.05,
which is the default value for the cross-sectional method
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Algorithm 1 Longitudinal segmentation
Compute µ0

tg, νtg,x0 with norm.mgz, aseg.mgz
µtg ⇐ µ0

tg, ∀t, g; σ2
tg ⇐ 100, ∀t, g; xt ⇐ x0, ∀t > 0

for its = 1 to 10 do
for t = 1 to T do
LogPprev ⇐ −∞; LogPcurr ⇐ 0
while LogPcurr − LogPprev > 10−5 do
LogPprev ⇐ LogPcurr
LogPcurr ⇐ Eq. 5
Wtjl ⇐ Eq. 6; µtg ⇐ Eq. 7; σ2

tg ⇐ Eq. 8
end while
if its < 10 then
itDef ⇐ 0; maxDef ⇐∞
while itDef < 20 and maxDef > 10−5 do
itDef ⇐ itDef + 1
(xt,maxDef)⇐ conjugate gradient on Eq. 4

end while
end if

end for
if its < 10 then
itDef ⇐ 0; maxDef ⇐∞
while itDef < 20 and maxDef > 10−5 do
itDef ⇐ itDef + 1
(x0,maxDef)⇐ conjugate gradient on Eq. 9

end while
end if

end for
l̂tj ⇐ argmaxl Wtjl, ∀t, j
Vtl ⇐

PJ
j=1Wtjl, ∀t, l

currently implemented in FreeSurfer [20]. We rasterize
(i.e., interpolate) the mesh at 0.333 mm isotropic resolu-
tion, which is also the default value in the current Free-
Surfer implementation. This resolution represents the voxel
size at which the final segmentations are obtained.

For the optimization, we use the following scheme: we
first alternately update {θt} and {xt} 10 times. Each up-
date of θt iterates between the E and M steps until the
change in the objective function is less than 10−5, whereas
each update of xt takes at most 20 iterations of the con-
jugate gradient method (it stops early if the maximum
shift across mesh nodes is less than 10−5). Next, x0 is up-
dated with the conjugate gradient algorithm (maximum
100 steps; the early termination criterion is the same as
for xt). The optimization then returns to the update of
{θt}, starting a new external iteration. We set the max-
imum number of external iterations to 10. The complete
segmentation algorithm is summarized in Algorithm 1.

2.2.6. Avoiding biases
As mentioned in the introduction, processing bias can be
introduced if all the time points are not treated in exactly
the same way. In our algorithm, the initialization is com-
puted with the output from the FreeSurfer longitudinal
pipeline, which is designed to avoid processing bias [49, 48].
The segmentation algorithm is also unbiased, since all im-
ages are treated identically. Moreover, subjects with a

single time point are treated as if they were longitudi-
nal, which makes the measures derived from them com-
parable with those obtained from subjects with multiple
time points. More specifically, the FreeSurfer longitudinal
pipeline includes a pose normalization step that introduces
resampling artifacts and a subject template, and the hip-
pocampal segmentation estimates the mesh position for a
subject-specific atlas (rather than using the population-
wide atlas directly). This procedure makes it possible to
include all subjects in analyses that support single time
point data, such as linear mixed effects models [50].

3. Experiments and Results

3.1. MRI data
We used two publicly available datasets in the experiments
in this study: MIRIAD and ADNI. The MIRIAD dataset
consists of T1-weighted brain MRI scans of AD patients
(n = 46) and cognitively normal (CN) controls (n = 23)
acquired at intervals from two weeks to two years. All
69 subjects were scanned at 0, 2, 6, 14, 26, 38 and 52
weeks from baseline; 39 subjects were also scanned at 18
months; 22 of these 39 were further scanned at 24 months.
At 0, 6 and 38 weeks, two back-to-back scans were con-
ducted without removing the subject from the scanner in
between. The mean age at baseline of the subjects was
69.6±6.9 years. All the scans were acquired on the same
1.5 T scanner (GE Signa) with an IR-FSPGR sequence
(coronal slices with 0.9375×0.9375 mm resolution, 1.5 mm
slice thickness, TR=15ms, TE=5.4ms, TI=650ms, flip an-
gle 15◦). Further information can be found at https://
www.ucl.ac.uk/drc/research/miriad-scan-database.

The ADNI dataset consists of longitudinal T1-weighted
scans from 836 subjects of the ADNI dataset. The subjects
are divided into four classes: elderly controls (n = 252),
early mild cognitive impairment (eMCI, n =215), late MCI
(lMCI, n = 176), and AD (n = 193). The subjects were
scanned on average 4.8 times (minimum: a single time;
maximum: 11 times; 4013 scans in total), with a mean
interval between scans equal to 286 days (minimum: 23
days, maximum: 1567 days). The mean age at baseline of
the subjects was 75.1±6.6 years. Since the ADNI project
spans multiple sites, different scanners were used to ac-
quire the images; further details on the acquisition can be
found at http://www.adni-info.org.

The ADNI was launched in 2003 by the National Insti-
tute on Aging, the National Institute of Biomedical Imag-
ing and Bioengineering, the Food and Drug Administra-
tion, private pharmaceutical companies and non-profit or-
ganizations, as a $60 million, 5-year public-private part-
nership. The main goal of ADNI is to test whether MRI,
positron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can be
combined to analyze the progression of MCI and early AD.
Markers of early AD progression can aid researchers and
clinicians to develop new treatments and monitor their
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effectiveness, as well as decrease the time and cost of clin-
ical trials. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California - San Francisco. ADNI is a joint ef-
fort by co-investigators from industry and academia. Sub-
jects have been recruited from over 50 sites across the U.S.
and Canada. The initial goal of ADNI was to recruit 800
subjects but ADNI has been followed by ADNI-GO and
ADNI-2. These three protocols have recruited over 1,500
adults (ages 55-90) to participate in the study, consisting
of cognitively normal older individuals, people with early
or late MCI, and people with early AD. The follow up
duration of each group is specified in the corresponding
protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects
originally recruited for ADNI-1 and ADNI-GO had the
option to be followed in ADNI-2.

3.2. Experimental setup
3.2.1. Competing methods
We compared the performance of our algorithm with that
of two other approaches. The competing methods were:

1. Cross-sectional segmentation (henceforth “C-S”): the
algorithm described in [20] was used to segment each
time point independently of the others in a cross-
sectional fashion (i.e., as if they were different sub-
jects).

2. Cross-sectional segmentation with longitudinal ini-
tialization (henceforth “L-INIT”): same as C-S, but
initializing the algorithm with the automated seg-
mentation (aseg) from the longitudinal FreeSurfer
stream (rather than the cross-sectional aseg).

3. Longitudinal segmentation (henceforth “LONG”): the
algorithm described in this paper was used to seg-
ment all the time points corresponding to each sub-
ject simultaneously.

The motivation for testing L-INIT is twofold. First, it
is currently the recommended setup for longitudinal hip-
pocampal subfield segmentation in FreeSurfer. And sec-
ond, it enables us to isolate the contribution of our pro-
posed generative model to the results of LONG, separating
it from the contribution of the longitudinal initialization.

In order to assess the segmentation accuracy of the
methods, we would ideally use ground truth labels ob-
tained from manual delineations of the hippocampal sub-
structures made on the in vivo MRI scans. However, such
manual annotations would have to be made with the proto-
col that we used to build the ultra-high resolution ex vivo,
which is not possible. Instead, we validated the method
indirectly through two sets of experiments: test-retest re-
liability, and group differentiation with linear mixed effect
(LME) modeling.

3.2.2. Experiment 1: test-retest reliability
In order to evaluate the test-retest reliability of the meth-
ods, we used them to segment the scan-rescan data of the

MIRIAD dataset. For each subject, we took the scan-
rescan session corresponding to the first time point (there-
fore including both AD subjects and controls). After seg-
menting each of the n = 69 pairs of scans with the three
competing algorithms, we compared their performance with
two different metrics. First, we measured the absolute
difference in volume estimates for each of the segmented
hippocampal subregions. The smaller this difference, the
larger the agreement across the two scans. Second, we
computed the Dice overlap between the MAP segmenta-
tions of each subregion in the two scans. The Dice coeffi-
cient between two binary masks X and Y is defined as:

Dice(X,Y ) = 2
|X ∩ Y |
|X|+ |Y |

,

and is bounded by 0 (no overlap) and 1 (perfect overlap).
When the C-S method is used, computing the Dice over-
lap requires a rigid registration between the two scans,
which was computed with the robust registration tool in
FreeSurfer [49]. In order to mitigate the effect of image
resampling on the Dice overlaps in this scenario, we used
linear resampling to warp the scans to the intermediate
space (the base) and replaced the Dice coefficient by a soft
counterpart:

Dices(Xs, Ys) = 2
∑
rXs(r)Ys(r)∑

rXs(r) +
∑
r Ys(r)

,

where r represents spatial locations, and Xs(r), Ys(r) are
resampled masks defined between zero and one3.

3.2.3. Experiment 2: group analysis with LME
The test-retest experiment described above only evaluated
one aspect of the longitudinal algorithms: their ability to
produce consistent segmentations. Additionally, it is nec-
essary to test the performance when capturing the tem-
poral evolution of the segmented structures. For example,
an algorithm that always produces the same output yields
perfect test-retest reliability, but also fails to capture any
anatomical changes over time or differentiate groups based
on such changes.

We carried out two experiments using group analyses:
one with MIRIAD, and one with ADNI. The setup was
identical in both cases, with the only difference that the
datasets have different numbers of classes. For each hip-
pocampal subregion, we built an LME model for the esti-
mated volume in which subject intercept and slope were
random effects, intracranial volume (ICV) and age at base-
line were fixed effects, and each group had its own (fixed)
bias and slope. The model fit and and computation of p
values for F tests comparing the fixed slopes of the dif-
ferent groups was done with the LME toolbox in Free-
Surfer [50]. We then took the ability of the measurements

3Despite using soft Dice, some bias against the C-S method is still
introduced; this is further discussed in Section 4.
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(a)

(b)

Figure 3: Absolute volumes differences (in % of total volume) for the hippocampal subregions in the back-to-back scans of the MIRIAD
dataset: (a) left hippocampus, (b) right hippocampus. The bars represent the mean, and the error bars, one standard deviation. A two-tailed
paired t-test was used to assess whether there were significant differences between the methods: one asterisk represents p < 0.05, two asterisks
represent p < 0.01, and three asterisks represent p < 0.001. The abbreviations of the hippocampal subregions are: SUB = subiculum, PRE
= presubiculum, PARA = parasubiculum, ML = molecular layer, DG = granule cell layer of the dentate gyrus, CA3 = CA2+CA3, FIM =
fimbria, HATA = hippocampus-amygdala transition area, WHOLE = whole hippocampus. For anatomical and morphological definitions of
these subregions, see [20].

to separate the (fixed) slopes of the groups as a measure of
the sensitivity of the longitudinal segmentation to detect
anatomical change associated with disease

For the ADNI dataset, we chose to merge the late
MCI and AD classes into a single class (“lMCI/AD”). This
choice was motivated by the fact that a pilot LME analysis
using whole hippocampal volumes from FreeSurfer’s lon-
gitudinal stream did not reveal any differences in atrophy
rates between the two classes. This is consistent with the
results of other studies based on manual [51, 52] and auto-
mated segmentations [53]. This lack of differences between
the late MCI and AD groups may be explained by the con-
tinuous nature of pathology; current in vivo imaging tech-
nology cannot identify the subtle differences in atrophy
rates between the two groups. It is necessary to examine
the patient serially to be sure of the clinical findings, and
10-20% of patients with MCI will worsen and convert to
AD (in fact, many lMCI subjects are diagnosed as AD at
other time points in ADNI). In addition, the presence of
co-morbidities and other dementia etiologies (e.g., vascu-
lar dementia or dementia of the Lewy body disease [54])

makes it difficult to decipher the stage of the pathology at
this point with in vivo imaging.

3.3. Results
3.3.1. Test-retest
Figure 3 displays the absolute differences (in %) between
the volumes of the hippocampal subregions estimated from
the scan-rescan data of the MIRIAD dataset. The average
differences across structures are: 6.5% for C-S, 5.9% for
L-INIT, and 4.5% for LONG. L-INIT provides a slight im-
provement over the purely cross-sectional (C-S) method,
thanks to the implicit regularization introduced by the use
of the FreeSurfer longitudinal stream in the initialization.
Despite being quite consistent across subregions, this im-
provement is only significant (as measured with a two-
tailed paired t-test) for one of them: the left granule cell
layer of the dentate gyrus (DG). The proposed longitudinal
method (LONG), which explicitly regularizes the segmen-
tations, produces the lowest difference for all structures
except for the right fimbria. The improvements over the
C-S method are statistically significant for all structures
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(a)

(b)

Figure 4: Dice overlaps for the different subregions in the back-to-back scans of the MIRIAD dataset: (a) left hippocampus, (b) right
hippocampus. Please see the caption of Figure 3 for the abbreviations of the hippocampal subregions and the convention for representation
of statistical significance.

except for the presubiculum and fimbria (both sides); left
molecular layer; and left whole hippocampus. In absolute
terms, the errors are below 5% for all structures except
for the parasubiculum, hippocampus-amygdala transition
area (HATA) and fimbria. These three subregions suffer
from the highest variability in volume estimates: the para-
subiculum because it represents the transition of the hip-
pocampus with the entorhinal cortex, and its boundaries
are not well defined; the HATA because it is a transitional
region with the head of the hippocampus (dorsal subicu-
lum) and amygdala; and the fimbria due to its occasional
low contrast.

Figure 4 displays the Dice coefficient for the different
hippocampal subregions and competing methods. The av-
erages across subregions are: 0.754 for C-S, 0.775 for L-
INIT, and 0.818 for LONG. L-INIT outperforms C-S for
nearly all structures, in a statistically significant manner
in most cases (once more, significance was assessed with a
two-tailed paired t-test). LONG provides the highest Dice
for all subregions except for the left tail, right tail and
right fimbria. Moreover, it yields a statistically significant
increase with respect to the other two methods in all hip-
pocampal subregions except for the tail and fimbria. It is

  

     INPUT                 C-S                  L-INIT               LONG

Figure 5: Registered coronal slices of back-to-back scans of a sample
subject of the MIRIAD dataset. From left to right: input, cross-
sectional segmentation, segmentation with FreeSurfer longitudinal
initialization, and proposed longitudinal method. The top row cor-
responds to the first scan, and the bottom row to the second scan.

worth noting that the Dice scores for C-S are negatively
affected (to a very small extent) by the resampling that is
required to compute them.

Figure 5 shows a coronal slice of a test-retest scan il-
lustrating the differences between the algorithms. In this
sample subject, C-S undersegments the superior region of
the hippocampus (pointed red arrow) only in the first scan,
creating a large difference with the second scan. While this
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Figure 6: MIRIAD dataset: atrophy rates (percentage of baseline, per year) for the hippocampal subregions of the left hemisphere as estimated
by the three competing methods. The abbreviations for the subregions and the conventions for statistical significance can be found in Figure 3.

Figure 7: MIRIAD dataset: atrophy rates for the hippocampal subregions of the right hemisphere. The abbreviations for the subregions and
the conventions for statistical significance can be found in Figure 3.

issue is fixed by L-INIT, some undersegmentation still oc-
curs in the subicular region of the first scan (blue arrow),
and some inconsistencies are observed in the presubiculum
and molecular layer (green arrow). The proposed longitu-
dinal framework (LONG), on the other hand, produces
segmentations that are more consistent with each other.

3.3.2. Group analysis
Figures 6 and 7 show the atrophy rates for the MIRIAD
dataset (computed for each group as the fixed slope di-
vided by the fixed intercept) as estimated by the three
competing methods. The cross sectional method (C-S) can
detect the differences in some of the subregions and in the
whole hippocampal volume, particularly in the right hemi-
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Figure 8: ADNI dataset: atrophy rates (percentage of baseline, per year) for the hippocampal subregions of the left hemisphere as estimated
by the three competing methods. The abbreviations for the subregions and the conventions for statistical significance can be found in Figure 3.

Figure 9: ADNI dataset: atrophy rates (percentage of baseline, per year) for the hippocampal subregions of the right hemisphere. See caption
of Figure 8 for an explanation of this figure.

sphere (which is known to atrophy at a faster rate [55]).
When L-INIT is used, effects that the C-S method could
not detect are now found: moderate effects on the right
tail and subiculum, and mild effects on the left dentate
gyrus and CA4, though a strong effect is lost for the left
subiculum. Our new algorithm (LONG) improves group
differentiation even further: in addition to all the effects
that the other two approaches could detect combined, it

also finds a strong effect on the left presubiculum, a mod-
erate effect on the right presubiculum, and mild effects on
the left HATA and right parasubiculum.

Figures 8 and 9 show the atrophy rates for the ADNI
dataset. When comparing the controls with the lMCI/AD
group, strong effects are found by all three methods for al-
most every hippocampal subregion (except for the highly
variable fimbria). However, when comparing controls with
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eMCI and lMCI/AD with eMCI, the longitudinal meth-
ods reveal differences that the cross-sectional version could
not find. Initializing with the longitudinal FreeSurfer seg-
mentation (L-INIT) yields stronger signal for a number of
subregions, such as the left CA3, left HATA, and right
subiculum. The proposed longitudinal model (LONG) de-
tects even more effects, such as slight differences in the left
subiculum and presubiculum, and the right parasubicu-
lum. LONG also detects stronger effects for many other
subregions, such as the left DG, left CA4, or right CA1.

4. Discussion

The model we propose in this paper assumes that longi-
tudinal scans of a certain individual have been generated
by a hidden subject-specific atlas. This spatio-temporal
approach allows a completely symmetric setup (all time
points are treated identically), thus avoiding potential pro-
cessing bias. The subject-specific atlas explicitly regu-
larizes the segmentation across scans from different time
points, which consistently increases the test-retest relia-
bility while improving sensitivity. Perfect reliability can,
of course, be enforced by reporting the same result across
time independent of the image (over-constraining the method).
However, this will prevent the detection of longitudinal
changes and group differences. The presented approach
aims at optimizing the trade-off between noise reduction
and over-regularization by keeping the model flexible enough
to follow temporal morphometric changes.

The proposed longitudinal segmentation method was
evaluated against a purely cross-sectional implementation
(C-S) and a variant of it (L-INIT) that uses the FreeSurfer
longitudinal stream in the initialization. The test-retest
experiments revealed that taking advantage of the lon-
gitudinal stream already enabled L-INIT to consistently
outperform C-S in terms of volume error and Dice coef-
ficient. The generative model takes the performance one
step further, and enables our proposed method (LONG)
to outperform L-INIT for both metrics and nearly every
hippocampal subregion. It is worth noting that the Dice
coefficients computed for C-S are negatively affected by
the registration it requires. However, given that all other
metrics (including the sensitivity to differences in atrophy
rates) support the superiority of L-INIT and LONG, and
given that we used a soft version of the Dice coefficient
to reduce the impact of resampling, there is no reason to
believe that the observed differences can be attributed ex-
clusively to interpolation artifacts.

When comparing atrophy rates across disease groups,
we observed a similar trend as in the test-retest experi-
ments. L-INIT revealed effects that C-S could not detect,
and we also demonstrated that the regularization scheme
in LONG increases the ability to separate various groups in
the two datasets (MIRIAD and ADNI) even further. This
is essential as significance in group comparisons is affected
both by the measurement noise and the effect size.

In absolute terms, the three competing methods yielded
approximately the same annual rates of atrophy for the
whole hippocampus in controls: 1% in MIRIAD, and 1.5%
in ADNI. For early MCI (in ADNI), they all produced sim-
ilar estimates as well (2%). In the AD group, however,
the rates dropped from 3.75% to 3.35% in MIRIAD and
from 4% to 3.6% in ADNI for the proposed method. This
could indicate that the regularization scheme used by our
method (i.e., the subject-specific atlas) might slightly over-
smooth trajectories corresponding to larger atrophy rates
(i.e., those corresponding to AD patients).

We also need to emphasize that higher atrophy rates
do not necessarily correspond to more accurate segmen-
tations. Ideally, one would evaluate such accuracy di-
rectly with the help of manual delineations, but this was
not possible in this study because the 1 mm in vivo im-
ages cannot be manually annotated with our ex vivo de-
lineation protocol. Nevertheless, the atrophy rates esti-
mated by our method agree well with previously published
data. In MIRIAD, our estimates are very similar to those
reported by Cash et al. [56], who surveyed the output
from 13 automated methods, and reported 0.7% for con-
trols and 3.8% for AD. In ADNI, our estimates for late
MCI / AD are also very close to those reported by [51]
(3.5%) and [52](3.3%-3.6%) using manual segmentations,
even though higher values have also been reported by other
studies (e.g., Henneman et al. [57] reported 4.0%). A more
thorough analysis of hippocampal atrophy rates estimated
with neuroimaging can be found in [58].

5. Conclusion

In this article, we have proposed a novel Bayesian longitu-
dinal segmentation algorithm for hippocampal subregions
based on a hidden subject-specific atlas. The method is
general and could in principle be applied to other brain
regions, though such a setup would require further evalua-
tion in future work. Also, the method does not make any
assumptions on the shape or temporal smoothness of the
trajectories, i.e., it treats all time points the same way.
This design increases the flexibility of the proposed seg-
mentation method. Further information on ordering and
time spacing, as well as further assumptions on the shape
of the trajectories (e.g., linear) can be exploited byy the
statistical tools that are used to analyze the output of the
segmentation. For example, in this study, we used a linear
mixed effect model that accounted for the time spacing
a correlations between repeated measures, while assuming
linear trajectories (which approximately holds in atrophy
studies).

Our approach builds on the literature of Bayesian seg-
mentation with unsupervised intensity models, and inher-
its the robustness of such methods against changes in MRI
contrast – which stems from the fact that intensity prop-
erties are inferred directly from the images to be seg-
mented. This is actually a requirement if the atlas is
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constructed using ex vivo data (which enables ultra-high-
resolution), since fixation and death radically change MRI
contrast. Therefore, the algorithm does not require and
intensity standardization across time points, and can han-
dle changes in contrast induced by disease. That said, if
the image intensities at all time points are know to be nor-
malized and not affected by pathology, the robustness of
the algorithm could be enhanced by forcing the Gaussian
parameters to be equal across time points, i.e., θt = θ̄,∀t.
However, the potential gain would be minimal because
there are sufficient voxels in each time point to estimate
θt with high certainty [59].

Another advantage of Bayesian segmentation with prob-
abilistic atlases that our algorithm also inherits is its com-
putational efficiency. Our implementation runs in approx-
imately 15T − 20T minutes on a modern desktop, where
T is the number of time points4. The implementation will
be publicly shared as part of the popular neuroimaging
package FreeSurfer, and will be (to the best of our knowl-
edge) the first available method to longitudinally segment
the hippocampal subregions.

As in the original cross-sectional method [20], the vol-
umetric results from individual subfields need to be inter-
preted with caution when segmenting 1 mm images; at
that resolution, the molecular layer is not visible, and the
fitting of the internal boundaries of the hippocampal atlas
relies mostly on the prior. In that sense, the statistical
dependence introduced by the subject-specific atlas helps
increase the stability of the segmentation of such inter-
nal boundaries across time points. Nevertheless, we would
only recommend complex analyses (e.g., shape analysis)
of the segmentations if the proposed method is applied
to longitudinal data acquired at a higher resolution (e.g.,
0.4× 0.4× 2.0 mm scans as in [20].)

As a growing number of studies are beginning to collect
longitudinal MRI data, the development of dedicated algo-
rithms that exploit the relationship between scans of the
same subject is paramount. Longitudinal methods that
provide higher sensitivity than their cross-sectional coun-
terparts permit reduction of sample sizes in neuroimaging
studies and the detection of much smaller effects. More-
over, longitudinal segmentation algorithms for the hip-
pocampal subregions hold great promise to increase our
understanding of AD progression and disease etiology; to
provide powerful biomarkers for computer-aided diagnosis
at presymptomatic stages; and to allow a highly accurate
and localized quantification of treatment response in AD
and other neurological disorders.
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J. Fripp, O. Salvado, P. Bourgeat, M. Reuter, B. Fischl, et al.,
Assessing atrophy measurement techniques in dementia: Re-

sults from the miriad atrophy challenge, NeuroImage 123 (2015)
149–164.

[57] W. Henneman, J. Sluimer, J. Barnes, W. Van Der Flier,
I. Sluimer, N. Fox, P. Scheltens, H. Vrenken, F. Barkhof, Hip-
pocampal atrophy rates in Alzheimer disease added value over
whole brain volume measures, Neurology 72 (11) (2009) 999–
1007.

[58] J. Barnes, J. W. Bartlett, L. A. van de Pol, C. T. Loy, R. I.
Scahill, C. Frost, P. Thompson, N. C. Fox, A meta-analysis of
hippocampal atrophy rates in Alzheimer’s disease, Neurobiology
of aging 30 (11) (2009) 1711–1723.

[59] J. E. Iglesias, M. R. Sabuncu, K. Van Leemput, A. D. N. Initia-
tive, et al., Improved inference in bayesian segmentation using
monte carlo sampling: Application to hippocampal subfield vol-
umetry, Medical image analysis 17 (7) (2013) 766–778.

16


