
Registration of Histological Sections with Clinical Imaging: A Survey

Jonas Pichata,∗, Juan Eugenio Iglesiasa, Tarek Yousryb, Sébastien Ourselina,c, Marc Modata,c

aTranslational Imaging Group, CMIC, University College London, UK
bDepartment of Brain Repair and Rehabilitation, UCL Institute of Neurology, UK

cDementia Research Centre, UCL Institute of Neurology, London, UK

Abstract

Combining histology and non-invasive imaging has long attracted the attention of the medical imaging community due to its
potential to relate macroscopic information with the underlying microscopic properties of tissues. On the one hand, histology is an
invasive procedure which breaks the tissue spatial arrangement due to slicing, but enables its investigation at a cellular level. On the
other hand, macroscopic imaging allows for non-invasive acquisition of volumetric data but does not provide microscopic details.
Through the establishment of spatial correspondences between histological sections and volumetric medical images, it is possible
to relate micro- and macro-scale information so as to gain insight into what affects the signals used to construct medical images,
recover the original topology of histology and lost relationships, or build high resolution anatomical atlases.

This survey article synthesises almost three decades of registration methods between two-dimensional (2D) histological slices and
volumetric (3D) medical images. The problem is equivalent to reconstructing histological volumes using structural ground truth and
calls for mono- and multi-modal image registration techniques. We first summarise the process that produces digitised sections from
a tissue specimen in order to understand the peculiarity of data, associated artefacts and possible ways to minimise them. We then
delve into the description of methods for histological reconstruction with and without the help of external information. We finally
attempt to identify the trends and challenges that the field is facing, many of which are derived from the cross-disciplinary nature of
the problem as it involves the collaboration between physicists, histologists, computer scientists and physicians.
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1. Introduction

Histology is concerned with the various methods of micro-
scopic examination of a thin tissue section (Culling, 2013). Cut-
ting through a specimen reveals its internal topography and
staining the sections permits the observation of complex differ-
entiated structures. The digitisation of histological sections (re-
ferred to as digital pathology) makes high-resolution microscope
sections available for image computing and machine learning
algorithms. These allow for disease detection, characterisation
and prediction so as to complement the opinion of the pathol-
ogist (Madabhushi and Lee, 2016; Gurcan et al., 2009), and
constitute the field of histopathological image analysis.

When extending such examinations to the third dimension,
one faces a substantial challenge: volume slicing breaks the
spatial relations between structures. This results in partial under-
standing about physiology, since a tissue is an object that lives in
the 3D space: it is made of an ensemble of cells which, together,
carry out a specific function; in turn, organs and basic structures
are made of multiple tissues, and only looking at 2D fragments
results in narrower understanding of anatomy.

Hence, working with individual 2D histological slices comes
with a serious challenge: identifying 3D structures using 2D
samples. In this regard, Gagnier and Shipley (2013) showed that
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it is complicated to determine how features progress into a vol-
ume when only a single face is available. In addition, structures
are uniquely altered due to the histology process itself (Figure 1).
This may cause anatomically different structures to look similar
in microscope slides and conversely, slicing may cause one same
structure to have different views if not consistently cut parallel.
Other variations due to staining result in objects that may disap-
pear or become highly salient from section to section. Although
our ability to represent and mentally transform the shapes of
objects is impressive (Atit et al., 2013; Frick et al., 2014), it
worsens when structures are interconnected within a dense and
complicated environment or subject to complex transformations.

Reconstructing histological volumes from serial 2D sections
helps gaining knowledge about spatial environments while ac-
cessing microscopic information about tissues. In this respect,
the Swiss anatomist Wilhelm His Sr. (1831-1904) explained
that just looking through sections does not enable one to build
three-dimensional images in the mind and those who wish to
grasp anatomical structures must actively engage in working
through a reconstruction, reproducing the relationships they
wish to understand (Hopwood, 1999).

When using histology alone, reconstruction algorithms aim to
restore continuity and usually exploit the fact that the biological
specimens shape changes smoothly across sections. They pro-
vide a representation of structures and their environment in three
dimensions, although one needs to bear in mind that the original
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Figure 1: Artefacts related to the preparation of tissue sections (wax-
embedded here). Those include (but are not limited to) intensity inho-
mogeneities, stain diffusion, tears, missing pieces, debris, air bubbles,
various orientations and locations on glass slides, and spatial distortions.

shape is unattainable without prior knowledge. For illustration
purposes, Malandain et al. (2004) pointed out that if a banana
is sliced, an ellipsoid will be reconstructed through pairwise
alignment of adjacent slices, rather than the original fruit. This
is called the “banana effect” or “z-shift”.

The most direct way of recovering volumes from sets of 2D
histological slices is by optimising the spatial alignment of ev-
ery pair of adjacent slices using image registration techniques.
Composing the transformations from every slice to a reference
slice completes the process—the reference slice is picked for its
high contrast, few artefacts, and preferably but not necessarily
its location in the middle of the stack. A consequence is that any
registration failure (or misalignment) between any two slices
impacts the final reconstruction since errors propagate due to
the sequential nature of the process. Methods have therefore
been developed to minimise these effects by looking at neigh-
bourhoods rather than single slices and attention has also been
directed towards preprocessing tissue slices owing to their highly
variable quality.

A remedy to the incorrectness of the histological reconstruc-
tion is the use of volumetric medical images, such as magnetic
resonance imaging (MRI). By providing structural ground truth,
they reduce the space of solutions although registration itself
still remains an ill-posed problem. Blockface photographs (i.e.,
pictures of the tissue face taken prior to cutting) and needles may
also be used to help reconstruction. While the former provides
images of the tissue free of cutting artefacts, the latter allows for
straightforward extraction and matching of landmarks in both
medical imaging and histology.

Volumetric medical imaging, besides guiding reconstruction,
constitutes an invaluable source for accurate, non-invasive study
of biological structures and their functions. Relative to histology,
Fischl (2013) listed three advantages: the possibility of imaging
the exact same tissue with multiple contrasts (e.g., T1 or T2
MRI, MTR, etc.); imaging large samples (e.g., whole-brain or
whole-hemisphere) with much less effort than e.g., whole-brain
or prostate whole-mount histology; preserving the geometry of
the sample and avoiding irreversible damage and distortions
induced by processing, cutting, mounting and staining during
the histological preparation.

However, resolution-wise, 3D medical imaging is outper-
formed by histology (< 1µm). In addition, for many patho-
logical disorders, there is still no contrast mechanism that allows

imaging to be a full substitute for histology. This is due to
the poorly understood relationships between histological and
magnetic properties of tissues. Directly predicting what a given
histological signature will appear as (when it does) in medical
imaging is therefore extremely complex. Practically, this results
in that multiple pathologies can share a common imaging phe-
notype (Gore, 2015). For example, Filippi et al. (2012) noted
that in proton density, FLAIR and T2w MRI scans, Multiple
Sclerosis (MS) lesions appeared as non-specific focal areas of
signal increase and, therefore, resembled many other types of
pathology. This makes it difficult to differentiate them with
imaging only. Additionally, some cortical MS lesions can still
be missed with conventional MRI sequences (Seewann et al.,
2012). Direct comparisons with histology helps interpret images
better and derive more information. They may also correct or
adjust existing imaging protocols in order to optimally visualise
e.g., lesions in the grey matter of patients with MS.

One of the many benefits of combining histology and medi-
cal imaging is to confirm non-invasive measures with baseline
information on the actual properties of tissues (Annese, 2012).
By combining 3D medical imaging with digital pathology, it is
possible to simultaneously obtain both the rich structural infor-
mation of the former and the chemical and cellular information
of the latter, which may allow for more complete characterisa-
tion and understanding of e.g, diseases (Mori, 2016). One can
also derive more accurate segmentations of architectonic bound-
aries used in the creation of atlases (Ding et al., 2016; Oh et al.,
2014; Amunts et al., 2013; Hawrylycz et al., 2012; Yushkevich
et al., 2009) and brain mapping (Amunts and Zilles, 2015). Note
that a more realistic histological reconstruction is obtained as
a byproduct of multimodal registration with clinical imaging,
when a sufficient number of histological slices is available. Such
undertakings are intended to eventually bridge the gap between
in vivo and post mortem studies.

One lasting, sufficient correlation method between many
histopathological findings and imaging observations has been
by general (visual) comparison. On that matter though, it was
recently mentioned in the context of prostate cancer assessment
that due to variations in imaging technology, contouring proce-
dure and data analysis, available volume correlation studies had
yielded conflicting results (Priester et al., 2016). Such contra-
dictions were explained by the worrying observation that nearly
all prior attempts to define MRI/pathological relationships had
relied on imprecise techniques such as manual registration, vol-
ume approximation, and 2D measurements. Following the same
line of thought—two decades before, correlation was proved to
be optimised when the alignment between data had first been
carefully taken care of by use of a combination of linear and
non-linear transformations (Mazziotta et al., 1995). In other
words, ensuring the comparison of like with like is of utmost
importance (Madabhushi and Lee, 2016).

Multimodal image registration permits the automation of the
alignment process and allows to redefine “visual closeness” as
the optimisation of a certain matching criterion. It also accounts
for the complex transformations that affect histological sections
individually and grants higher reproducibility with less or no hu-
man effort. Careful use of registration techniques can establish
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Figure 2: Modalities that may be involved in the registration pro-
cess. From left to right, a screenshot of a T2w ex vivo slice
(0.1 × 0.1 × 0.4mm3), a visually corresponding blockface photograph
(tissue surrounded by wax) and a Nissl-stained histological section.

more accurate correspondences between histology and volumet-
ric medical imaging i.e., produce histological reconstructions
closer to reality, and contribute to more sound data analyses. To
this end, it is common to use intermediate modalities (Figure 2)
in the process of relating in vivo to post mortem, so as to keep
track on the deformations that the tissue undergoes during its
changes of state.

The objective of this paper is to survey the past 30 years of
literature on registering histology and clinical imaging. The
paper is structured according to the multidisciplinary nature
of the problem. Sections 2 and 3 explain the preparation of
histological slices, list artefacts associated with every step of
the process and cover preprocessing methods in order to best
cope with image deteriorations. Section 4 proposes a classifi-
cation of histological reconstruction methods from 2D serial
slices and Section 5 reviews pipelines that aim to combine his-
tological and clinical imaging information by spatially aligning
them. Section 6 presents approaches used to validate the cor-
rectness of reconstructions—with or without the help of external
information—and Section 7 enumerates the clinical applications
of such techniques. Finally, Section 8 returns on a few method-
ological points, discusses some of the remaining challenges
in the field and highlights the importance of cross-disciplinary
knowledge in solving a biological question.

2. From fresh tissue to digital pathology

A pathologist receiving fresh tissue has three options: keeping
it fresh, stabilising it in a fixative, or freezing it. Biological
tissue is too soft for direct sectioning (although a vibrating blade
might do the job), so it is most commonly either embedded
in a hardening material and sectioned using a microtome, or
frozen and sectioned in a cryostat (a microtome inside a freezer).
Sections are then mounted on glass slides and stained before
being observed under the microscope by the histopathologist,
and/or digitised using flatbed scanners (Dubois et al., 2007) for
all sorts of image processing and analyses.

We first briefly describe the two most common processes
to obtain sections, namely formalin-fixed paraffin-embedded
(FFPE) sections (Section 2.1)—henceforth referred to as paraffin
sections—and frozen sections (Section 2.2). Further details can
be found in the thorough presentation of histological techniques
by Bancroft and Gamble (2008). Then, we briefly present several
types of microscopy examinations and the process of digitisation

(Section 2.3). Finally, we highlight the most common artefacts
for both types of sections (Section 2.4).

2.1. Paraffin sections

FFPE tissue sections stained with H&E are the gold standard
(Buesa, 2007) as they provide with generic information in very
little time and cost (Rosai, 2007). Their widespread use also
relates to the familiarity histopathologists have with the method:
the artefact it produces at any stage during tissue handling and
processing is recognisable and well-documented. In contrast,
observing new patterns with other dyes requires time and train-
ing (Bancroft and Gamble, 2008). The above-mentioned artefact
is to be taken in the sense that it describes a structure that is not
naturally present in the living state of the tissue but is rather the
product of a series of preparation steps (see also Hardy (1899);
throughout the rest of the paper, the definition of artefact is
narrowed down to image degradations). Knowledge of the steps
relative to tissue preparation and diverse staining patterns is not
only essential for diagnosis and risk assessment—and this is still
an active area of research (Kakar et al., 2015)—but also for all
subsequent image analysis steps. In the following, we briefly
describe the different stages of FFPE sections preparation.

Fixation. It is the most important step when performing histo-
logical specimen preparation (Rolls, 2012). Fixation is critical
for several reasons: (i) it prevents the tissue from autolysis;
(ii) it keeps the tissue close to its living state, without loss of
arrangement; (iii) it minimises changes in shape or volume in
subsequent procedures and (iv) it yields clear staining of sec-
tions. Formaldehydes, such as formalin—which is the most
common of all—are routinely used for chemical fixation, such
as in Yang et al. (2013); Chen et al. (2003); Bürgel et al. (1999);
Weninger et al. (1998); Schormann and Zilles (1998); Streicher
et al. (1997). Among others, glutaraldehydes may be used (Ba-
heerathan et al., 1998).

Tissue processing. Since most fixatives are water-based and thus
not miscible with wax, the tissue must be processed to enable
impregnation. This process follows three steps. (i) Dehydration:
it removes water by immersion in gradients of alcohol. (ii)
Clearing: it replaces the dehydrating fluid with a wax solvent
(the wax solvent has the effect of raising the refractive index of
the tissue, making it appear clear, hence the name). Note that
long-term clearing creates distortions. Xylene is routinely used
for short schedules and blocks less than 4mm thick. Among
others, toluene is also used and has similar properties. (iii)
Impregnation: it replaces the clearing agent with the embedding
medium.

Embedding. The specimen infiltrated with wax is put in a mould
covered with liquefied wax and topped with a cassette. The spec-
imen should lay flat at the bottom of the mould as its orientation
conditions the plane of sectioning (an important consideration
when flatness is assumed for the comparison with clinical imag-
ing). The ensemble then cools on a cold plate and makes a
solid block for microtomy (blocks may also be stored at room
temperature for decades, which forms an important archive in
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retrospective analyses). Paraffin was used for example, in Axer
et al. (2011); Alic et al. (2011); Bajcsy et al. (2006); Breen et al.
(2005b); Schormann et al. (1995). Celloidin, more difficult to
remove, was used in Li et al. (2009); Gefen et al. (2008); Beare
et al. (2008).

Cutting (or microtomy). It is performed with a microtome,
to which the cassette with the wax-embedded tissue block is
clamped. It begins with “trimming”, which consists of removing
the surplus of wax until a full section of tissue is available. It
requires great care since tissue of diagnostic importance may
be removed or the block surface damaged. Cutting is then pro-
cessed at a certain thickness and the quality of the resulting
sections depends upon several factors such as the knife angle,
blade quality, speed of sectioning etc., as well as all the previous
preparation steps. Thin sections (1−20µm) were cut in Samavati
et al. (2011); Zhan et al. (2007); Burton et al. (2006). Thick
sections (> 20µm) were cut in Jiang et al. (2013); Osechinskiy
and Kruggel (2010); Mazaheri et al. (2010); Singh et al. (2008).

Floating, drying. The thin sections are picked up from the mi-
crotome and put in a flotation bath, filled with warm water in
order to flatten. Then, they are collected on a glass slide and
dried.

Staining, cover-slipping. It is the process of colouring and differ-
entiating certain structures in the tissue. Hematoxylin and eosin
(H&E) stain is the most common stain in histopathology labo-
ratories. It was used for instance in Le Nobin et al. (2015); Nir
et al. (2014); Gibson et al. (2012); Ward et al. (2012); Arganda-
Carreras et al. (2010); Ou and Davatzikos (2009); Meyer et al.
(2006). H&E method shows a wide range of normal and abnor-
mal cell and tissue components and is easy to perform using
either paraffin or frozen sections. Other popular stains include
Cresyl violet (Nissl staining), as used in Adler et al. (2014);
Yang et al. (2012); Mailly et al. (2010); Johnson et al. (2010);
Chakravarty et al. (2006); Ali and Cohen (1998), and methylene
blue (Annese et al., 2006) for nervous tissue sections, silver and
gold methods to demonstrate e.g., cell processes in neurones,
toluidine blue (Handschuh et al., 2010) to stain acidic compo-
nents, Masson’s trichrome (Song et al., 2013) to stain connective
tissue and Alcian blue (Magee et al., 2015) to stain certain types
of mucin. If immunohistochemical staining is to be performed, it
requires antigen retrieval (heat- or enzyme-enduced) due to loss
of antigenicity during fixation (Shi et al., 1991). Immunohisto-
chemistry (IHC) was performed in Capek et al. (2009); Groen
et al. (2010).
After the slice has been stained, it is cover-slipped: a smaller
sheet of glass covers the tissue mounted on the glass slide. This
creates even thickness for viewing and prevents the microscope
lens from touching the tissue. The slide can then be observed
under the microscope and/or digitised.

2.2. Frozen sections

Frozen sections are quicker to produce than paraffin sections
but it is a very demanding process: good section quality (in
terms of preservation of tissue morphology) is achieved through

great care and expertise (Peters, 2003). Although there are
conflicting reports about how much freezing may degrade cell
morphology and reduce the readability of histological specimens,
rapid freezing is known for limiting ice crystal formation and
minimising morphological damage. Among disadvantages, it
is harder to make the tissue lay flat; frozen sections are also
more difficult to cut than paraffin sections and inconvenient to
store. The main advantages of using them are the shortcuts in
the process (e.g., no dehydration is needed), and their better
preservation of antigens for immunohistochemistry. They were
used in Annese et al. (2014); Stille et al. (2013); Annese (2012);
Choe et al. (2011); Palm et al. (2010, 2008); Dauguet et al.
(2007c). In the following, we present the different stages of
frozen sections preparation.

Cryo-protection/embedding. The limiting factor involved in
cryosectioning is the cutting consistency of the block and the
freezing damages from ice crystals. Thus, the tissue may require
cryoprotection to make it less brittle (Barthel and Raymond,
1990). Cryoprotecting the tissue is not necessary and consists
of fixation (formaldehyde), rinsing and infiltration in increasing
series of sucrose solutions. The addition of sucrose provides
a smoother cutting block and minimises freezing artefacts. It
also happens that sections are prepared from fresh, rapid-frozen
tissue but cutting can be incredibly hard without any fixation.
Then, optimal cutting temperature (OCT) compound is used to
embed the tissue prior to frozen sectioning. OCT helps conduct
heat away from the specimen during freezing, protects the tis-
sue from drying during storage, and supports the tissue during
sectioning.

Rapid freezing (or flash/snap freezing). Once embedded in a
particular orientation e.g., face-up, the tissue sample needs to be
rapidly frozen to minimise freezing artefacts resulting from ice
crystal formation as water freezes in the tissue (Peters, 2010).
One method is to use dry ice (−70◦ Celsius) on its own. It is
simple and safe but creates freezing artefacts that break cell
membranes. An alternative is the immersion of the sample
in a freezing medium, like a mixture of dry ice and 2-methyl
butane (isopentane), which achieves very rapid freezing. Note
that direct freezing would cause the tissues or blocks to crack,
which would make them very difficult to cut. Tissues with fat
often produce poor quality sections since fat freezes at lower
temperatures and thus remains too soft to cut; further decreasing
temperature may weaken the sample and cause cracks. Tissues
with substantial water content, such as the brain, often yield ice
crystals during the freezing in the cryostat and result in e.g., non-
representative architecture of tumour growth or inflammatory
infiltrate (Taxy, 2009). Snap freezing with liquid nitrogen is
often employed to mitigate these artefacts. The frozen tissue can
then be stored in a −80◦ Celsius freezer for future cutting.

Cutting. This is similar to paraffin-embedded sections except
it is performed in a cryostat. It also starts with trimming of the
block. Frozen sections are usually cut between 3-10µm thick
(5µm thick sections provide adequate morphology). Ultra-thin
sections (< 1µm) were cut in Yushkevich et al. (2006) (0.25µm).
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Thin sections (1−20µm) were cut in Dubois et al. (2007); Humm
et al. (2003). Thick sections (> 20µm) were cut in Palm et al.
(2010); Malandain et al. (2004).

Retrieving, drying. Retrieving is the process of picking up the
cut frozen section and putting it on a glass microscope slide.
Tissue sections can be either picked up from the cryostat stage or
from the block directly. From the time the tissue section touches
a warm slide, it starts to develop a drying artefact. Air drying
frozen section slides will however allow the sections to better
adhere to the slide as complex staining procedures cause greater
tendency for the tissue to come off the slide during staining.

Fixation. Sections of fresh frozen tissue should be fixed im-
mediately unless they are going to be stored for future study.
A standard histology fixative: 4% neutral buffered formalin, is
the most suitable fixative for frozen sections. Sections of fresh
frozen tissue will rapidly dry if exposed to warm air, and this
will result in cellular artefact.

Staining. Slides prepared by frozen section technique can be
successfully stained by many of the staining procedures used for
routine paraffin embedded tissues. For example Nissl-stained
sections were used in Yushkevich et al. (2006); Yelnik et al.
(2007); Dubois et al. (2007) and H&E stained sections were used
in Humm et al. (2003). Frozen sections are usually preferred
for immunohistochemical staining due preserved antigenicity.
This a specific type of stain, in which a primary antibody is used
to bind specifically to a particular protein for the purpose of
detecting and measuring it. Then, a secondary antibody (which
carries a colorimetric or fluorescent detection tag) is used to
bind to the primary antibody and reveal its bounding location.
IHC was performed in Seeley et al. (2014); Stille et al. (2013);
Lockwood-Estrin et al. (2012); Lebenberg et al. (2010).

2.3. Microscopy and digitisation

Major types of light (or optical) microscopy include bright-
field (Wang et al., 2014), phase contrast, fluorescence (Dauguet
et al., 2007c) and confocal (Wang et al., 2015). Electron mi-
croscopy encompasses transmission electron microscopy (Dau-
guet et al., 2007a) and scanning electron microscopy, the latter
being mainly used in the context of serial blockface imaging
(Mikula and Denk, 2015; Denk and Horstmann, 2004). The
preparation of tissue specimens for light microscopy follows the
steps from Sections 2.1 and 2.2. The preparation of tissues for
transmission electron microscopy is described in Graham and
Orenstein (2007).

As for immunocytochemistry and immunohistochemistry
(Yelnik et al., 2007), the reaction of antibody with antigen in
can be examined and photographed with a fluorescence micro-
scope. Histochemical and cytochemical procedures (based on
e.g., specific binding of a dye, a fluorescent dye-labeled antibody
or enzymatic activity), can be used with both light microscopic
and electron microscopic preparations. Light and electron mi-
croscopes produce high resolution micrographs (orders of mag-
nitude of 0.1µm and 1nm respectively).

Autoradiography—or rather radioautography (Belanger and
LeBlond, 1946), can be observed with both light and transmis-
sion electron microscopes and reflects the rate of the energy
consumption required to support cellular activity. It is quanti-
fied using tracers of glucose metabolism incorporated by living
cells and tissues. They generate a labelled product allowing for
example, to measure circulating glucose in the blood or radioac-
tivity concentrations. The specimen is then killed and a sample
is processed for histology and sectioned. Sections are placed
against an X-ray film to produce autoradiographs. The exact
3D localisation of the radiation source is however unknown and
thus requires the reconstruction of autoradiographic volumes
(Schubert et al., 2016). Reconstruction is also a pre-requisite for
comparison against other three-dimensional modalities such as
functional imaging.

Although in the context of multimodal image registration,
computer scientists usually work with histological images at a
fixed resolution similar to that of a clinical image—most high-
resolution detail in histology is biological noise for the purpose
of registration—digital pathology should allow the histopathol-
ogist to scroll through any level of details of a “virtual” micro-
scopic slide for its examination at any time and anywhere (i.e.
not under a microscope), should it be on its own, against another
histological section or a 3D medical image plane. This process
of digitisation is fundamental (Ghaznavi et al., 2013) and brings
together the fields of virtual microscopy, digital whole slide
imaging and telepathology (Weinstein et al., 2009).

2.4. Artefacts

In histology, an artefact is the result of the alteration of a
tissue from its living state, caused by the very process of dy-
ing and the histological preparation. Artefacts affect different
structures from one same tissue section independently, and one
same structure in adjacent tissue sections differently. Artefacts
may compromise both image analysis for accurate diagnosis and
image registration for precise alignment. One challenge is to be
able to identify artefacts and not confuse them with normal tissue
components or pathological changes. This means understanding
the causes of such deteriorations as well as their expression in
order to provide relevant corrections. Whether paraffin or frozen
sections are used, some artefacts have similar characteristics
despite having different causes. This makes some preprocessing
methods applicable to both types of sections. An exhaustive list
of artefacts encountered in paraffin sections, along with ways to
minimise them is available in Rolls et al. (2008) and we present
some of the most common in the following.

Loss of detail. In paraffin sections, delayed fixation may cause
poorly defined nuclei and imprecise cytoplasmic details. Im-
proper draining of sections before drying may lead to out-of-
focus areas, and imperfect dehydration before clearing, which
leaves tiny water droplets in the tissue, may cause opaque areas.
Similarly for frozen sections, drying (which starts as soon as the
tissue is in contact with a warm glass slide) may blur nuclear
details and cytoplasmic borders (due to the leakage of fluids
from the cytoplasm), and a loss of contrast. Drying artefacts are
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described as cells melting and spreading on the slide by Peters
(2010).

Changes in morphology. In paraffin sections, the use of an
overheated forceps (beyond the melting point of wax) can cause
local heat damage and changes in morphology of structures in
the area surrounding the contact point. In frozen sections, drying
may cause enlargement of cells and nuclei.

Uneven staining. In paraffin sections, it may be result from in-
complete fixation of the specimen (which leads to zonal fixation),
incomplete slide dewaxing (which results in slides containing
patches of residual wax and produces unstained, or unevenly
stained areas) and excessive heat in the slide drier. Approxi-
mate timing as well as different storage conditions also produce
inconsistent results across sections. Poor quality formalin re-
sults in a “formalin pigment” formation in sections by reaction
with haemoglobin, leading to unwanted colouration. As for
frozen sections, issues may arise due to over-agitation of loosely
adherent tissue in the staining solution.

Folds and wrinkles. In paraffin sections, they may be due to
poor fixation and/or processing, too large a clearance angle
of the microtome, too thin sections, low temperature of the
flotation bath (which may not allow sections to flatten properly)
or mechanical damages (when attempting to remove a fold in
the section with a brush). In frozen sections, the tissue can fold,
stretch or tear if too rough during retrieving.

Cracks and holes. In paraffin sections, they may happen due
to over-processing (which makes the tissue very brittle), under-
processing (which makes the tissue poorly supported and there-
fore fragmented), flotation on a water bath that is too warm,
prolonged drying at too high a temperature, too quick sectioning,
insufficient clearance angle or a damaged cutting blade during
microtomy. As for frozen sections, freezing blocks (instead
of cooling them down) can make them crack during cutting.
Another challenge is faced with large blocks of tissue, such as
whole organs: liquid nitrogen will freeze faster and create a shell
around the exterior of the tissue. Then, the organ is likely to
crack when the interior expands due to slower freezing.

Contaminants. In paraffin sections, this may happen when the
water from the flotation bath is not replaced regularly, which
favours contaminants that may end up on the slide under the
section. Dust, organisms and other contaminants on the glass
slide can also spoil otherwise good sections.

Compression and distortion. In paraffin sections, they may
be due to under-processing (which results in the shrinkage of
the specimen); inappropriate size of the container compared to
the size of the specimen (which means using an insufficient
amount of fixative or squashing the specimen inside); rough
handling; poor quality embedding wax (which produces blocks
that are difficult to cut); suboptimal knife tilt angle during
microtomy and wrong blade type; delay before cutting the
final sections of a block (which makes the block warmer); and
overheated flotation bath and sections left too long in it (which

cause over-expansion). It is also important to be aware that
paraffin sections are unlikely to be of even thickness as the first
couple of sections are the widest (due to the thermal expansion
of the block during the first passes across the knife) and the
least compressed; however as the block warms the sections
get narrower and more compressed. As for frozen sections,
compression and distortion will most likely result from ice
crystal formation—the more water a tissue contains, the more
chances artefacts will occur. As water freezes, the expansion of
ice crystals compresses cellular tissues (compression artefacts)
and distort histopathological correlations. They usually have the
appearance of bubbles (ice crystals “bubbles” artefacts). The
knife used in cryosectioning can also create cutting artefacts
(shearing of the tissue).

In the end, artefacts are unavoidable but also surmountable
as pathologists learn to read around them. However, it is very
important to try to minimise their impact on subsequent steps,
which heavily rely on the tissue quality: for example, sections
with cracks and holes often have to be manually discarded be-
cause they cannot be registered. Artefacts hamper image com-
puting methods by reducing comparability between supposedly
similar structures within or across modalities. For this reason,
preprocessing methods have been developed.

3. Preprocessing of digital pathology

Among the artefacts resulting from histological preparation,
loss of detail and changes in morphology burden image analysis.
Not much can be done about them as content is hardly retrievable
from lost or corrupted information without any prior knowledge.
When due to scanning, though (local poor focusing can cause
blurred regions in images), loss of detail is surmountable but
at the cost of time-consuming review by the scanner operator.
In the context of whole slide imaging, Lopez et al. (2013) au-
tomatically identified tiles that required additional focus points.
Specifically, they compared the ability of several features in
discriminating between blurred and sharp regions of images and
showed that the Haralick contrasts and gradient-based features
best performed at this task. Compression and distortion are usu-
ally taken care of by the process of registration. As for the rest
of them, namely: inhomogeneous intensity distributions within
and across slices; folding and crumpling; cracks and holes; as
well as other artefacts including contaminants and vignetting, or
techniques for stitching, dedicated preprocessing methods are
presented in the following paragraphs.

Inhomogeneous slices appearance. Ideally, the absolute colour
of a slide reveals the biological component that a pathologist
wishes to retrieve. For example, in the case of H&E, the colour
value quantifies the amount of nucleic acids (blue-purple) Hema-
toxylin has bound to, and the amount of proteins (in pink) Eosin
has bound to. However, for the reasons listed in Section 2.4—
and/or because of the microscope and the camera used for imag-
ing (Yagi and Gilbertson, 2005)—slides exhibit different colours.
Improved feature classification, segmentation and visualisation
require the reduction of these variations as well as some sort of
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standardisation of the imaging protocols (Badano et al., 2015).
This calls for transforming the appearance of a source image
into that of a target image preferred by an expert.

In general, histological reconstruction methods use greyscale
images for intensity standardisation (or the channel that pro-
vides the best contrast in an RGB image). Most techniques
are based on histogram matching (Gonzalez and Woods, 2002).
One representative method, used for example in Yelnik et al.
(2007) and Alegro et al. (2016), was proposed by Malandain and
Bardinet (2003). Using Parzen windowing, they first computed
continuous probability density functions from the discrete inten-
sity histograms of two input slices—a Gaussian kernel was also
used in Ceritoglu et al. (2010) and Casero et al. (2017). Then,
Malandain et al. estimated the optimal affine intensity transfor-
mation between them (though higher order polynomial fits may
be used). This type of method can be applied in different ways
and the reference slice is usually picked for its relative smooth
intensity variation of staining and high-contrasted structures
(Gaffling et al., 2009; Yang et al., 2013). Adler et al. (2014) opti-
mised the parameters of a global affine intensity transformation
using white and grey matter masked images jointly. The central
slice was taken as a reference. Yang et al. (2012) used histogram
equalisation, in which case a flat histogram is implicitly used
as reference for matching. Equalisation is however not robust
because it highly depends on the extremal values of the intensity
histogram (Malandain and Bardinet, 2003).

Attempts at decreasing the bias introduced by selecting a sin-
gle reference slice have been proposed: Li et al. (2009) applied to
each slice a transformation that was a weighted sum of transfor-
mations from that slice to a set of references (experimentally, one
slice every 30 slices). Weights were based on its distance to the
corresponding reference slices. Chakravarty et al. (2003) used
least trimmed square technique to calculate two third order poly-
nomials for every slice, each of which mapped its intensity pro-
file to that of its predecessor and successor. These polynomials
were then averaged and applied to the single slice. Chakravarty
et al. (2006) extended their previous work (Chakravarty et al.,
2003) by adding an extra layer that accounted for local varia-
tions, in which the same averaging process (though restricted
to linear fitting) was applied to patches of every slice. This
approach however depends on where it starts in the stack. Pichat
et al. (2015) computed an unbiased average intensity profile to
which the intensity distributions of all slices were matched.

Should it be using a single, a set of, or an average reference
distribution, normalisation always depends on the set of histo-
logical slices at hands. Hence, the goal of standardising slices
appearance is, in general, more to bring visual consistency and
help with subsequent segmentation and classification tasks, than
being representative of tissue behaviours relative to staining.

The idea of computing a standard histogram allows for a
standardisation that is not “stack-specific”. This was proposed
in Nyul and Udupa (1999) within the context of clinical imag-
ing, where a standard histogram was computed from a training
dataset made of images coming from several acquisition proto-
cols. A similar principle was used in Bagci and Bai (2010). The
method developed in Dauguet et al. (2004) followed the same
effort, although standard values of each class of tissues had to

be user-defined.
Within the field of histopathological image analysis, the im-

portance of the consistency of colour has long been known and
is still an objective of research: computational methods, referred
to as colour normalisation, have been developed to cope with
inter-slice colour variations. Two ways of addressing the prob-
lem stand out: (i) colour modification methods represent the
mathematical transformations applied to the source images to
match the characteristics of a target image—they are similar
to previously described intensity standardisation methods for
grey-scale images; (ii) colour separation (or deconvolution)
methods, concerned with first extracting the main components
(i.e., the stains) constituting the original image (relying on the
manual delineation of regions of interest, non-negative matrix
factorizations, plane fitting in the optical density domain or other
colour models), then normalising them individually and finally
recombining them, such as in Macenko et al. (2009); Magee
et al. (2009); Khan et al. (2014); Vicory et al. (2015); Vahadane
et al. (2016); Bejnordi et al. (2016). These methods apply to
sections stained with more than one dye, mostly H&E stained
images, and are still actively developed. Colour modification
was introduced in Shirley (2001), who proposed to match the
colour distribution of one image to that of a reference image
by use of a linear transform in Lab colour space (a more per-
ceptual colour model than RGB) so as to match the means and
standard deviations of each colour channel in the two images in
that colour space. This was applied to histological data in Wang
et al. (2007). In order to account for scanner-induced variations,
Bautista et al. (2014) proposed to use a colour-calibration slide
made in-house to derive a colour correction matrix. Bautista and
Yagi (2015) showed that it is possible to achieve consistent and
accurate segmentations with simple classifiers by accounting for
the staining conditions of the slides using dye amount tables.

The use of such colour normalisation methods in the (multi-
modal) histological reconstruction literature is, to the best of
our knowledge, sparse: Braumann et al. (2005) used them and
linearly transformed the three RGB colour channels of every
image to match the histogram statistics (i.e., mean and standard
deviation) of a manually selected reference slice.

Folds. They are defined as regions containing multiple layers of
stained tissue. This results in regions with higher saturation and
lower luminance. As already established, Kothari et al. (2013)
used the difference between colour saturation and luminance to
detect them. They developed a model that adaptively finds the
difference-value range of tissue folds in order to account for the
high variability of colour saturation and intensity in different
slides. Bautista et al. (2010) enhanced folds and limited the
changes in hue by using the difference value between saturation
and luminance as a shifting factor for pixel values. Palokangas
et al. (2007) used k-means clustering on HSI-transformed images
(although only saturation and intensity components were said to
be discriminative enough). However, such clustering assumes
that there are always folds in the images and the method relies
on careful initialisation of cluster centres. Simple thresholds
are said to be less effective because a tissue fold in a lightly
stained image can look similar to e.g., a tumour in a darkly
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stained image (Kothari et al., 2013; Palokangas et al., 2007).
Similarly to intensity/colour normalisation, fold detection and
masking were shown to improve subsequent feature extraction
and classification tasks.

The correction of folds may be one of the most difficult prob-
lem to solve here, mainly because of the interference of con-
stituents caused by the overlap of different parts of the tissue.
Although modelling of developable surfaces has been proposed
in computer graphics (Solomon et al., 2012), the reconstruction
of unfolded tissue section is difficult as it supposes the separation
of structures belonging to different overlapping bits of the tissue
section—the number of folded layers is also unknown a priori.

Tears (or cracks) and holes. Such artefacts are more frequently
addressed than folds but their correction remains sparse. Cracks
require, in general, manual delineation of the torn area (Breen
et al., 2005b) as it is challenging to automatically tell whether a
piece of tissue is missing or if the tissue has effectively opened
up without loss of material. Yang et al. (2012) filled up the
missing sections and missing parts and corrected folds using a
procedure described in Qiu et al. (2009). Choe et al. (2011) used
a two-stage process involving manual contouring of the torn area
was performed and filling by vertical translation of pixel values
(columns of the image). Such a process however makes a strong
assumption about the horizontality of tears. A similar protocol
was followed in Kindle et al. (2011). Breen et al. (2005a) used
correspondences between landmarks to stitch the torn piece
back: a first thin-plate splines (TPS) warping (Bookstein, 1989)
was performed between histology and blockface photograph
using manually defined sets of corresponding landmark points.
Then, another set of landmarks was found at the borders of the
torn piece of tissue in histology and in the intact corresponding
piece of the blockface photo (both were overlaid to ease the
process). Finally, a separate TPS warping was applied to register
the torn piece of tissue back. Correspondences between sets of
landmarks were found using the “live-wire” algorithm developed
by Falcão et al. (1998); Mortensen et al. (1992). One could also
approach the problem of tear correction as jigsaw puzzle solving
(Kong and Kimia, 2001; Paikin and Tal, 2015), although it has
failed in Yigitsoy and Navab (2013) because these methods rely
on borders and medical images usually have low signal and
distortions at their boundaries. The tearing/cracking of thin
sheets has been subject to extensive studies within the fields
of statistical physics (Holmes and Crosby, 2010) or computer
vision (Pfaff et al., 2014).

Masking. In order to discard various contaminants in the back-
ground or edges of the glass slide, which could have an influence
in subsequent registration steps, tissue is usually separated from
the background. Thresholding is widely used Nikou et al. (2003);
Malandain et al. (2004); Lee et al. (2005); Dauguet et al. (2007b);
Palm et al. (2010); Goubran et al. (2013); Stille et al. (2013) and
it is usually complemented by mathematical morphology oper-
ations (Malandain and Bardinet, 2003; Dauguet et al., 2007b;
Palm et al., 2010). Dubois et al. (2007) used iterative Gaussian
smoothing of histograms for automatic threshold computation:
following Mangin et al. (1998), they tracked the positions of

modes in the scale-space and the two modes that remained across
most scales were picked as those representing background and
tissue. Region growing was then applied in the histogram using
previously computed upper and lower bounds. Masking was
preformed with mathematical morphology (successive erosions
using a priori knowledge of the tissue surface) and the largest
connected component was extracted. Yushkevich et al. (2006)
used active contour segmentation with region competition (Zhu
and Yuille, 1996) followed by mathematical morphology to re-
fine the masks: opening (which is less destructive than erosion
but still removes foreground bright pixels) was performed and
the largest connected component was kept as final mask. Level-
sets were used with a dynamic speed function in Li et al. (2009),
and in Uberti et al. (2009) (based on Li et al., 2005). They incor-
porated higher level constraints obtained from prior knowledge
and understanding of mouse brain anatomy. Palm et al. (2010)
used k-means clustering on the “a” channel, after transformation
from RGB to CIELab colour space, to segment tissue in block-
face photographs. This was followed by a hole-filling algorithm.
Adler et al. (2014) used Atropo (Avants et al., 2011), an n-class
Markov random field segmentation software package for tissue
foreground segmentation. They used three labels: grey matter,
white matter and background—grey matter and white matter
labels were united into foreground tissue mask, from which the
largest connected component was retained.

Vignetting (or shading). A common problem irrespective of
the type of camera and method of microscope attachment is
uneven illumination at the edges of the image (Leong et al.,
2003). In general, it occurs in most imaging sensors due to an
uneven illumination of the scene being imaged. As a conse-
quence, images are usually lighter near the optical centre and
darker at image borders (i.e., a shading artefact). This effect
is particularly evident when stitching images into a mosaic in
order to increase the field of view of the microscope to obtain
e.g., whole-slide images. Correction of uneven illumination in
histological slices has borrowed ideas from intensity inhomo-
geneity correction in MRI (Sled et al., 1998; Vovk et al., 2007).
The correction of vignetting was addressed in Peng et al. (2014);
Piccinini et al. (2013b) and the interested reader may also re-
fer to Reyes-Aldasoro (2009); Yu (2004). In the (multi-modal)
histological reconstruction literature, shading correction was per-
formed as preprocessing in Bürgel et al. (1999) using methods
from Gonzalez (1987). Arganda-Carreras et al. (2010) devel-
oped a background correction algorithm based on a phantom
(Fernandez-Gonzalez et al., 2004) that was used to correct the
mosaic-like effect of the images caused by uneven illumination
of the field of view of the microscope. Capek et al. (2009) also
applied methods for compensation of such a light variability,
further described in Čapek et al. (2006). Hsu et al. (2008) ac-
counted for colour difference and optical degradation by means
of a Gaussian-like model and a wavelet-based image blending.

Stitching (or mosaicing). It is needed when the field of view of
the classical microscope is too narrow to allow for the visualisa-
tion of the entire tissue. The section can either be physically cut
into several pieces that are isolated in the image (see Chappelow
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et al. (2011b), or Ou and Davatzikos (2009), who simulated
it), or spatial tiles can be obtained by moving the microscope
stage (Capek et al., 2009). The latter protocol however intro-
duces overlapping between adjacent fields of view. Overlap is
recommended to account for field curvature-induced artefacts in
the image and avoid loss of detail at the edges between images;
Gareau et al. (2008) included 10% overlap in the translation
step distance. Spatial rearrangement of the pieces relatively to
each other is required in both situations to recover an image of
the full tissue section for subsequent volume reconstruction or
registration with other modalities. This is usually performed
through image registration. Capek et al. (2009) performed stitch-
ing by first positioning the tiles using landmark points, and then
optimising a similarity measure in the parameter space of trans-
lations using n-step search (Tekalp, 1995). This method was
implemented in GlueMRC (Karen et al., 2003). Hsu et al. (2008)
solved mosaicing by matching features detected in adjacent his-
tological tiles. Those were extracted using wavelet-based edge
correlation and pairs of corresponding features were then identi-
fied by maximisation of the normalised correlation coefficient.
Saalfeld et al. (2012) solved mosaicing of ssTEM images based
on previous work (Saalfeld et al., 2010) using SIFT features.

There exist several softwares that automatically perform the
task (Piccinini et al., 2013a): in ImageJ, the Stitching1 plug-in
(Preibisch et al., 2009); Autostitch2 (Brown and Lowe, 2007);
MosaicJ3 (Thévenaz and Unser, 2007); XuvTools4 (Emmenlauer
et al., 2009); HistoStitcher and AutoStitcher5 (Chappelow et al.,
2011b; Penzias et al., 2016). Only a few studies, such as Ma et al.
(2007) using Autostitch, have been accounting for vignetting
(Piccinini et al., 2013a). Piccinini et al. (2013a) developed Mi-
croMos6 and ensured their tiles had all been flat-field corrected
prior to stitching them back together.

An automatic mosaic acquisition and processing system for
multiphoton microscopy was described in Chow et al. (2006),
along with the importance of normalisation to avoid shading
artefacts at the border of tiles. Methods that extend the tiles
beyond their boundaries by propagating available structures
were also developed in Jia and Tang (2008) and Yigitsoy and
Navab (2013). Stitching is extensively studied in the general
computer vision literature (Brown and Lowe, 2007).

4. 3D histological reconstruction

Histological reconstruction methods aim to restore the loss
of continuity due to volume slicing. They are based on the fact
that the shape of a biological specimen changes smoothly across
sections, but suffers from various artefacts that affect every sec-
tion independently during its preparation. When using histology

1http://imagej.net/Image_Stitching
2http://www.autostitch.net/
3http://bigwww.epfl.ch/thevenaz/mosaicj/
4http://www.xuvtools.org/doku.php
5http://engineering.case.edu/centers/ccipd/content/

software
6https://sourceforge.net/projects/micromos/

alone, reconstruction algorithms provide representations of struc-
tures and their environment in three dimensions—which help
with subsequent segmentation and classification tasks (McCann
et al., 2015)—but one needs to bear in mind that the original
shape is unattainable without prior or external knowledge.

Reconstruction algorithms from serial histological slices rely
on image registration and consist of optimising the spatial align-
ment of variously oriented 2D slices relative to each other, while
being robust to artefacts following histological preparation. The
most straightforward way is to register every slice with its direct
neighbour and repeat the process with the following pairs, but
this is not robust to errors. First efforts towards the reconstruc-
tion and visualisation of volumes from 2D sections relied on this
technique and were initiated in the early 1970s (Levinthal and
Ware, 1972; Lopresti et al., 1973). A list of company/academic
softwares and plugins for histological reconstruction from serial
sections is available in Table 1.

Registration is the process of bringing two images (one usu-
ally referred to as “reference, fixed or target” and the other as
“floating, moving or source”) into spatial alignment and deform-
ing the floating image such that it looks like the reference image
(for transformations others than rigid-body). The objective is to
estimate the transformation that optimises an energy function.
It is usually made of two terms, one referred to as the matching
criterion (a distance measure, in a broad sense) and a regulariser,
either implicit (by restricting the type of transformation) or ex-
plicit (e.g., deformation field filtering, penalty terms, etc.), which
controls the transformation and prevents excessive or unrealistic
deformations. This definition holds for the rest of the paper.
Further details can be found in reviews about (medical) image
registration (Maintz and Viergever, 1998; Hill et al., 2001; Zi-
tova and Flusser, 2003; Sotiras et al., 2013) and a report was
recently presented in Viergever et al. (2016) to assess whether
the goals of the field were met. A list of open-source toolkits for
medical image registration is available in Table 2.

Histological reconstruction is obtained by the composition of
every single pairwise transformation with respect to a certain
reference. The quality of the resulting volume highly depends
upon the choice of that reference slice. It is usually an arbitrary
choice made by an expert, who selects a slice that exhibits little
deformations, few artefacts and high contrast. Although the first
slice (Lee et al., 2005; Colchester et al., 2000) is sometimes
chosen as reference (Chen et al., 2003; Krinidis et al., 2003a),
it may be preferable to select it around the centre of the stack
(Ourselin et al., 2001b; Pitiot et al., 2006; Cifor et al., 2011). This
minimises the propagation of errors due to slight misalignments
(let aside registration failures), which may produce skewed or
helicoidal stacks. To the best of our knowledge, only Bagci and
Bai (2010) proposed to automate the process of selecting the
best reference slice by considering the information content in
feature space.

Without any information about the true shape, volume recon-
struction remains an ill-posed problem i.e., although there exists
a solution, it is not unique (and the true one is unknown); for
example, changing the initial arrangement of slices relative to
one another will lead to a different reconstruction. Whichever
way it is addressed, the process tends to straighten up structures:
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Table 1: Company/academic softwares and plugins for histological reconstruction from serial sections and their use in the literature.

softwares/plugins institution non-rigid warping references used in

TrakEM2 (ImageJ) Uni of Zürich (CHE) no (Cardona et al., 2012) (Chklovskii et al., 2010)
StackReg (ImageJ) EPFL (CHE) no (Thevenaz et al., 1998) (Micheva and Smith, 2007)

AutoAligner Bitplane (CHE) no - (Friedrich and Beutel, 2010)
Voloom TU München (DEU) yes (Feuerstein et al., 2011) (Fónyad et al., 2015)

BrainView LIN (DEU) yes (Lohmann et al., 1998) (Dubois et al., 2007)
Free-D INRA (FRA) yes (Andrey and Maurin, 2005) (Bonnet et al., 2013)

BrainVISA CEA I2BM (FRA) yes (Cointepas et al., 2001) (Dubois et al., 2007)
AlignSlices (Amira) FEI VSG (FRA) no - (Andersson et al., 2008; Cornillie et al., 2008)

3DHISTECH (HUN) - - (Onozato et al., 2013)
poSSum Nencki Institute (POL) yes (Majka and Wójcik, 2015) (Majka and Wójcik, 2015)

ImageRegistration (ImageJ) NTUST (TWN) yes (Wang et al., 2014) (Wang et al., 2014)
BioVis3D (URY) - - (Dezső et al., 2012)

HistoloZee UPenn (USA) yes (Adler et al., 2014) (Yushkevich et al., 2016)
Protomo Florida SU (USA) no (Winkler, 2007) (Singh et al., 2016)

Reconstruct Boston Uni (USA) yes (Fiala, 2005) (Mathiisen et al., 2010)
IMOD Uni of Colorado (USA) yes (Kremer et al., 1996) (Mishchenko, 2009)
ImageJ NIH (USA) no (Schneider et al., 2012) (Le Nobin et al., 2015)

NIH Image NIH (USA) no (Rasband and Bright, 1995) (Laissue et al., 1999)

a banana-like original volume, cut and reconstructed, will end
up looking like an ellipsoid—hence its name, the “banana effect”
or “z-shift” effect (Malandain et al., 2004).

Some works tried to bypass registration failures through graph
theoretic approaches (Yushkevich et al., 2006; Adler et al., 2014;
Pichat et al., 2015), which formulate the reconstruction problem
as a shortest path problem in order to identify the best sequence
of transformations. Alternatively, most recent works commonly
proceed by aligning every slice with a set of neighbouring slices
(as opposed to considering only one neighbour) in order to
smooth out potential errors and improve continuity (Mertzanidou
et al., 2016; Rusu et al., 2015; Saalfeld et al., 2012; Feuerstein
et al., 2011; Nikou et al., 2003).

We classify works aiming to reconstruct volumes based on
the registration method they used. This yields two categories:
registration using geometric features (Section 4.1) and registra-
tion using voxel comparison (Section 4.2). While the former
may be fast (because it uses a subset rather than the whole im-
age domain), the latter is more accurate but slower and requires
careful initialisation as methods tend to settle in local optima.

4.1. Geometric methods (landmark-based)
Geometric methods aim to register two images by minimis-

ing a criterion that takes into account landmark information.
The first step in geometric registration is to obtain points of
interest (Section 4.1.1). Those are usually noticeable locations
in the image, under the assumption that saliency at the image
level is equivalent to relevant anatomical regions. After finding
correspondences between landmarks, a smooth transformation
is sought so that their alignment is respected (Section 4.1.2).
Further details can be found in Sotiras et al. (2013).

4.1.1. Detecting points of interest
Processing histological images is complex when it comes to

using points of interest: the appearance of slices vary greatly

and adjacent sections expose similar rather than the same con-
stituents. Consequently, their description should be flexible
enough to grant matching, while peculiar enough to disam-
biguate between close potential candidates. Besides, the very
task of locating reliable landmarks remains an open problem,
and it is still an active area of research (Sotiras et al., 2013). In
this section, we use interchangeably the terms landmark, key-
point and point of interest. Points of interest fall into three
categories: manually extracted landmarks, needle tracks, and
automatically extracted landmarks.

Manual landmark selection. It is usually carried out by expe-
rienced histopathologists and benefits from the rich details that
high resolution histological images provide. The main advan-
tage of manual selection is that it allows for accurate, consistent
selection of anatomically relevant landmarks. The task is how-
ever very time-consuming and subject to inter- and intra-user
variability, and was for example performed in Gaffling et al.
(2011). Zhao et al. (1993) manually segmented the contours of
the autoradiographs, which is a special case of landmark extrac-
tion as points may be sampled along those contours or curves
used as such for boundary matching.

Needle tracks as landmarks. Needles can either be inserted in
the fresh tissue, or in the embedding medium by placing ink
marks (Simonetti et al., 2006). The marks can then be manually
or automatically isolated, such as in Colchester et al. (2000)
who identified centres of labelled needles tracks using Hough
transform. Although the technique is known to be invasive,
recent advances allow to minimise damages to the tissue (Hughes
et al., 2013)

Automatic feature extraction. Within the context of histology,
we identified three main types of features associated with auto-
mated methods to extract and describe them, namely Fourier-
based, blob-like and object-level features.
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Table 2: List of open-source registration toolkits/softwares used for histological reconstruction (L and NL stand for linear and non-linear
registrations respectively).

softwares/packages/plugins institution type of transformation(s) references used in

ANIMAL McGill (CAN) NL (Collins et al., 1994, 1995) (Chakravarty et al., 2006)
TurboReg (ImageJ) EPFL (CHE) L (Thevenaz et al., 1998) (Riddle et al., 2011)
UnwarpJ (ImageJ) EPFL (CHE) NL (Sorzano et al., 2005) (Wang et al., 2015)

MERIT (MeVisLab) Fraunhofer MEVIS (DEU) L/NL (Boehler et al., 2011) (Schwier et al., 2013)
bUnwarpJ (ImageJ) UAM (ESP) NL (Arganda-Carreras et al., 2008) (Kindle et al., 2011)

Elastix UMC Utrecht (NDL) NL (Klein et al., 2010) (Alic et al., 2011; Stille et al., 2013)
NiftyReg UCL (UK) L/NL (Modat et al., 2010, 2014) (Pichat et al., 2015)

VTK CISG KCL (UK) L/NL (Hartkens et al., 2002) (Benetazzo et al., 2011)
AIR USC (USA) L/NL (Woods et al., 1998a,b) (Brey et al., 2002; Beare et al., 2008)
ITK NLM (USA) L/NL (Yoo et al., 2002) (Mosaliganti et al., 2006; Gijtenbeek et al., 2006)

ANTs UPenn (USA) NL (Avants et al., 2009) (Adler et al., 2014)
DRAMMS UPenn (USA) NL (Ou and Davatzikos, 2009) (Ou and Davatzikos, 2009)

Fourier-based features: Hsu (2011) adjusted the method
they used earlier in the context of mosaicing (Hsu et al., 2008)
for histological reconstruction, based on work from Hsieh et al.
(1997). The detection of edges was handled by wavelet trans-
forms. The robustness to noise was achieved using edge corre-
lation, as introduced in Xu et al. (1994). Reliability of feature
points was increased by means of multiscale edge confirmation,
which filtered out the noise since mostly features remain across
multiple scales (unlike noise). The reader may also refer to
Mallat’s works for a thorough study of multiscale edge detection
through wavelet theory (Mallat and Zhong, 1992). The orienta-
tion of the feature point was determined through a line-fitting
method rather than estimated using the result of the wavelet
transform (which is sensitive to noise): it essentially considered
a neighbourhood of a detected feature and estimated the orienta-
tion of the edge line passing through it and neighbouring edge
points. Braumann et al. (2005) used Fourier-Mellin invariant
(FMI) descriptors of images (Casasent and Psaltis, 1976). They
were obtained by Fourier-Mellin transform of the image in a
polar coordinate system, which decoupled translation, rotation
and scaling (respectively for rotation and scale invariance). Note
that Ghorbel (1994) later showed that using instead the analyt-
ical Fourier-Mellin transform allows getting a complete set of
similarity-invariant features.

Blob-like features: Scale-invariant feature transform
(SIFT) is ubiquitous in the computer vision literature. It is based
on local extrema (or blob) detection (Lowe, 1999). The detector
relies on difference of Gaussians (DoG), which is an approxi-
mation of the scale-normalised Laplacian of Gaussian (related
to each other through the heat equation) and thus contains no
directional information. Keypoints are local optima in the DoG
scale space of the image. Candidate keypoints that are unstable
i.e., low contrasted extrema or those lying on edges (since they
are invariant to translations along their direction) are discarded.
Location, scale and orientation (estimated as the main gradient
orientation over a keypoint neighbourhood) are encoded in the
descriptor of every keypoint. The interested reader may refer to
Toews and Wells (2009) for efficient encoding of that vector. An
in-depth analysis of the SIFT method is available in Rey Otero
and Delbracio (2014).

SIFT was used in Koshevoy et al. (2006) as well as in Saalfeld
et al. (2012), based on previous work (Saalfeld et al., 2010)
for the registration of tiled serial TEM sections7. Wang and
Chen (2013) used colour deconvolution (see Section 3) to sepa-
rate hematoxylin and eosin stain contributions from individual
histopathological images. Eosinophilic structures were used as
object-level features for image registration, from which points
of interest were detected using DoG detector. This was reused
in Wang et al. (2014, 2015).

Lobachev et al. (2017) used another popular feature detector
and descriptor, SURF (Bay et al., 2006). The keypoint detector
is based on the determinant of the Hessian matrix operator and
relies on integral images for fast computation. As far as SIFT is
concerned, DoG is basically a Laplacian-based detector and the
Laplacian operator is defined as the trace of the Hessian matrix.
Using its determinant (instead of the trace) as it is the case
with SURF, discourages the detection of elongated, ill-localised
structures.

Ulrich et al. (2014) used Binary Robust Invariant Scalable
Keypoints, BRISK (Leutenegger et al., 2011), based on the
AGAST corner detector (Mair et al., 2010). Note that an evalua-
tion of binary feature descriptors performance can be found in
Heinly et al. (2012).

Object-level (or high-level) features: Another school of
thought recommends the use of structures such as vessels, nuclei
etc., (Ruiz et al., 2009). The rationale is that traditional feature
detection schemes generate a great amount that are regular in
appearance, thereby making matching unrealistic. Such features
are also described in Gurcan et al. (2009). For example, Schwier
et al. (2013) extracted vessel-like structures in greyscale im-
ages using thresholding and mathematical morphology in every
slice. The sets of structures were then refined using eccentric-
ity, ellipticity and size criteria. Prescott et al. (2006) extracted
specific regions in cochlear images using Otsu’s thresholding,
mathematical morphology and only kept the largest connected
components. For each stain type, colour segmentation followed

7Saalfeld and Tomancák (2008) developed plug-ins for ImageJ to extract
SIFT and Multi-Scale Oriented Patches, MOPS (Brown et al., 2005) correspon-
dences in two images: http://imagej.net/Feature_Extraction
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by mathematical morphology allowed Cooper et al. (2009) to
segment significant structures such as blood vessels, other ductal
structures or small voids within the tissue area.

Other methods, although relying on the same type of features,
address the matching step by comparing informative patches
(also referred to as windows, blocks, boxes or tiles) centred
around those keypoints. In other words, features are described
by the intensities of pixels around them, which comes down to
a block-matching strategy to infer correspondences. We thus
explain the matching step for such approaches (referred to as
tile-based methods) in Section 4.2. As such, Xu et al. (2015)
extracted relevant structures from the images based on colour
and size. Arganda-Carreras et al. (2010) extracted structures of
interest by combining fast marching algorithm and level-sets.
Ruiz et al. (2009) selected tiles that have rich content i.e., which
variance is above a certain threshold.

The registration of differently stained histological sections
also relies on those high-level features but the literature on that
problem is sparse (Braumann et al., 2006; Song et al., 2013,
2014). It is a multimodal problem in that every section varies
in appearance: images exhibit different colour distributions and
different structures due to different staining. This is solved by
identifying common structures and grouping them into compa-
rable clusters. The problem thus becomes monomodal using
labeled images or probability maps. Braumann et al. (2006)
assigned every pixel a “segmentation vector” containing, for
successive Gaussian smoothed versions of the image, its RGB
value and the colour mean of a neighbourhood around the pixel.
The clustering of the image into different numbered classes was
based on Pernkopf and Bouchaffra (2005), who selected the
number of components that best modeled the distributions in
order to represent the characteristics of the images adequately.
A similar idea was proposed in Song et al. (2014) except that the
segmentation vectors for each pixel, called “appearance feature
vectors”, also included information about texture. The cluster-
ing of the appearance feature vectors was carried out using a
principal eigenvector binary tree clustering algorithm.

One last type of methods makes use of the tissue boundary. Af-
ter extraction, it is used for contour matching. Extracted curves
may also be sampled to perform point matching (those points
are also referred to as nodes). Tissue edge points sampled along
boundaries have the advantage of being less vulnerable to e.g.,
tearing—when sampled appropriately—from which intensity-
based methods would suffer. However, their detection relies on
accurate segmentations, which in turn may be affected by inten-
sity inhomogeneities if for example a simple global threshold
is to be used for all the slices. Tissue edges may be obtained
through Otsu’s thresholding, such as in Shojaii et al. (2014);
Shojaii and Martel (2009).

Tan et al. (2007) extracted the sharpest curvatures from the
contours of the tissue, which yielded three feature points at
consistent locations in every section. The tractability across
slices allowed for the computation of “trajectories”.

Krinidis et al. (2003b) obtained each slice contours using a 2D
elastic physics-based deformable model. The model consisted
of a set of nodes, initially distributed over a circle. In its fully
deformable configuration, the model allowed each node to move

independently, without affecting adjacent ones.
Guest and Baldock (1995) extracted two types of nodes with

the aim of creating a mesh: object nodes were automatically
selected, ideally along the boundary of the structure i.e., with
large gradient, and a minimum distance criterion to prevent them
from being too close. Background nodes were sought in the
background region with larger minimum distance. Delaunay
triangulation from the obtained nodes provided a mesh with
higher density over the domain of the tissue.

Rangarajan et al. (1997) extracted the locations of high confi-
dence edges (including tissue boundaries) by thresholding edge
images obtained from Canny edge detection (Canny, 1986).

Cohen et al. (1998) used thresholding to define a contour and
it was manually edited if necessary in order to obtain satisfactory
boundaries. Contours were then modeled using B-splines and
the inverse chord length method was used to estimate knot points
that best described a given curve data. This method regulates
their number based on the amount of shape variation a region
subjected to (fewer knots when the variation is small).

4.1.2. Correspondences and spatial transformations
Correspondences between landmarks may be straightforward,

as it is the case when extracted manually (although labour inten-
sive and time-consuming) or using segmented needle track holes.
For example, Gaffling et al. (2011) computed the trajectories
of landmarks tracked across the slices through a fourth order
polynomial fit. Note that polynomial transformations are usually
advised to be computed using a low-degree polynomial due to
noise and numerical instabilities (Ali and Cohen, 1998). Those
landmarks were placed at identifiable locations along the tissue
outer and inner boundaries.

Needle track holes allow for the computation of a (linear)
transformation by least-squares minimisation. Colchester et al.
(2000) used a set of photographs of both anterior and posterior
faces of every tissue sections. ”Within-slice co-registration” was
achieved by minimising the sum of squared distances between
centres of labelled needles tracks for every pair of faces. Then,
”between-slice co-registration” consisted of registering the
posterior face of one section with the anterior face of the next
using block-matching (Ourselin et al., 2001b). Other examples
of use of fiducial markers include works from Goldszal et al.
(1995); Humm et al. (1995). Although they may increase the
reliability of the registration process because their locations are
easy to track in the images, needles also damage the tissues
and introduce bias if the cutting plane is not orthogonal to the
needles’ axes. This protocol was however improved in Gibson
et al. (2012); Hughes et al. (2013).

In contrast, automatically extracted features require a ded-
icated step that seeks for correct matching pairs in order to
derive the correct transformation. Automatically discarding
false matches is critical; otherwise the latter methods would
suffer from the same problems that hamper intensity correlation
(Rangarajan et al., 1997).

Hsu (2011) used an analytic robust point matching method
for global registration. The alignment was refined using a
feature-based modified Levenberg-Marquardt algorithm (Moré,
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1978). Braumann et al. (2005) matched FMI descriptors
between a reference and a target image using a symmetric
phase-only matched filtering (Chen et al., 1994). The parameters
of rigid transformations were derived from it.

As for blob-like features like SIFT, SURF etc., matching pairs
are usually found by minimising the Frobenius norm in the de-
scriptor space. Random sample consensus, RANSAC (Fischler
and Bolles, 1981) is then used to discard wrong correspondences
and solve for the transformation.

Koshevoy et al. (2006) assumed that serial section transmis-
sion electron microscopy (ssTEM) images were taken at the
same scale, and suffered from minor deformation on the global
scale, which made the scale-invariance requirement unnecessary.
Only SIFT descriptors belonging to the same octave and scale
of the DoG scale space thus needed to be compared against
each other. To this end, they used an optimised kd-tree with
a best-bin-first nearest neighbour search algorithm (Beis and
Lowe, 1997). Wrong correspondences were filtered out using a
criterion based on Euclidean distances, similar to that introduced
in Hsieh et al. (1997).

Solving for the transformations parameters was achieved us-
ing RANSAC in Koshevoy et al. (2006); Wang and Chen (2013);
Wang et al. (2014, 2015). It essentially estimates the set of
feature points that behave consistently with respect to a linear
transformation. Saalfeld et al. (2010) estimated simultaneously
the rigid arrangement of tiles within and across sections us-
ing SIFT features and RANSAC registration. The methods are
available online8. It was extended in Saalfeld et al. (2012) by
refining the alignment using intensity-based registration (a block-
matching strategy detailed in Section 4.2). The combination of
both strategies was used to initialise an elastic registration, for
which each image was tessellated into a mesh of regular triangles.
Like in Guest and Baldock (1995), the the system of equations
representing the whole stack of slices was an elastic spring finite
element model. The entire system stabilised when the sum of
the forces of all springs was close to zero.

Lobachev et al. (2017) used SURF keypoints. Descriptors
were matched using a bi-directional brute-force matcher and the
rigid transformation was computed using RANSAC. Then, a non-
rigid transformation was computed at multiple resolutions using
feature pairs in adjacent sections to constrain control points of
B-splines. At every iteration, the feature size decreased while the
resolution of the grid of control points increased. No reference
section was taken and all the images were deformed towards a
minimum energy function.

Ulrich et al. (2014) used BRISK feature detector which is
faster than SURF. RANSAC-based rigid registration was also
performed and the non-rigid registration step consisted of the
alignment of all feature pairs by least-squares deformations.
This process was repeated if the pairs after transformation were
not stable. The methodology was reused in Lobachev et al.

8Two stand-alone plugins were implemented: Elastic Montage, for mosaic-
ing, and Elastic Stack Alignment, for the alignment of images from serially
sectioned volumes. They are incorporated in the TrakEM2 software and available
at http://imagej.net/Elastic_Alignment_and_Montage

(2017) and incorporated into a multi-resolution framework.

The Euclidean distance in combination with other criteria,
such as size, is also used to assess the similarity between pairs
of object-level features. As such, Schwier et al. (2013) tried all
possible combinations of pairs in adjacent sections. The trans-
formation that gave the best similarity was kept. The matching
cost took into account a distance range, within which matching
pairs should lie, as well as the closeness in terms of object size
(area). This was robust to cases where no valid correspondence
was found. Pairwise non-rigid registrations (Modersitzki, 2004)
were performed and implemented as part of a software (Boehler
et al., 2011).

Prescott et al. (2006) paired features using the area only. Mis-
matches were identified using a distance-based criterion, similar
to that presented in Koshevoy et al. (2006). The linear transfor-
mation was derived from a matching graph, in which every node
is a matching pair and is associated with a transformation. An
edge exists between two nodes if the two transformations are
sufficiently similar. The global transformation is the average of
those constituting the maximal cyclic structure from the graph.
It served as an initialisation for subsequent registration based on
maximisation of mutual information and gradient information
(Pluim et al., 2000).

Cooper et al. (2009) paired features based on both size (area)
and eccentricity. Mismatches were filtered out in a way similar
to Prescott et al. (2006) and rigid transformation parameters
were associated with every correct pair. The correct rigid
transformation was then estimated through a voting scheme.
Non-rigid registration was performed using second-order
polynomials, which coefficients were calculated using correct
feature pairs.

In the context of the registration of differently stained
histological sections, the problem is that of matching labelled
classes corresponding to common structures in the images.
Braumann et al. (2006) used a methodology that was partly
based on Braumann et al. (2005) and reused in Wentzensen et al.
(2007). After clustering the images into different numbered
classes, class label adjustment was performed in cases where
the assignment was not consistent. The problem of having
more and/or different classes—because sections may exhibit
different structures—was tackled by merging classes so as to
have the same regions segmented in both images. Every labelled
image pair was finally aligned by computing the displacement
vector field using non-linear, non-parametric curvature-based
registration. Song et al. (2014) solved the correspondence
problem by grouping clusters into three superclusters (called
“content classes”) in each image according to various partition
schemes. The pair of partitions that maximised mutual
information provided the optimal content classes in each image.
These classes were then refined using spatial features. Then,
each image was transformed into a multichanel probability
map, where each channel corresponded to one content class.
Block-matching registration was performed between pairs of
probability maps for each channel independently. This provided
a displacement field, from which a non-rigid transformation
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was estimated using a regularised least squares difference
minimising method.

When sets of points sampled along the boundary of the tissues
are to be matched, one popular method is the Iterative Closest
Point (ICP) method (Besl and McKay, 1992). Shojaii and Martel
(2009) used ICP to register every histological slice with its
corresponding blockface photograph. Points were uniformly
distributed along every smoothed boundary of the tissue by
excluding high curvatures using a rolling-ball filter. They argued
that “high-curvature boundaries might lead ICP to converge
to local minima and deteriorate its robustness”. Deformable
registration was then performed using TPS.

Rangarajan et al. (1997) simultaneously optimised the affine
transformation parameters and the one-to-one correspondences
between two sets of edge points in adjacent sections. This
method is referred to as robust point matching.

Krinidis et al. (2003b) found correspondences between con-
tour nodes of adjacent slices using an affinity matrix. Corre-
sponding nodes between adjacent slices were couples which
relative distance was lower than a certain threshold. False match-
ing were filtered out by global affinities, which ensured that
correct correspondences also exist in slices further away. Trans-
lation and rotation parameters were computed by minimising
the mean square error between pairs of matching nodes.

Gaffling et al. (2011) used the offsets of every landmark to
a smooth curve representing the trajectory of that landmark
across slices, and computed a sparse displacement field for
every slice; the vector fields were then densified (Fischer and
Modersitzki, 2003). Every image was finally deformed such
that its landmarks lied on the trajectories, and every following
slice was then registered to it. A similar strategy was followed
earlier by Tan et al. (2007), where three edge points in every
slice were used as control points of three non-uniform rational
B-spline curves (trajectories).

Curve matching was proposed in Cohen et al. (1998). They
matched contours from adjacent sections (modeled as B-splines)
based on comparing their knot points. The major drawback asso-
ciated with B-spline representations is the non-uniqueness of the
set of control points, which hampers the comparison of curves.
This was solved in Ali and Cohen (1998) (see Section 5.1.2)
using the intrinsic features of curves, which properties derived
from the Frenet frames (Millman and Parker, 1977). Zhao et al.
(1993) affinely registered slices of autoradiographs by minimis-
ing displacement of manually segmented contours (using SSD)
by analysis of point-to-point disparities in two images: a bound-
ary point in one section differs from its corresponding point in
the adjacent section by a disparity vector. Trahearn et al. (2014)
used Curvature Scale Space (Mokhtarian and Mackworth, 1986)
to represent shape (the tissue boundary) at various scales and
register whole-slide images of histological sections.

4.2. Iconic methods (intensity/voxel-based)

Histological reconstruction can also be achieved by use of
intensity-based registration. The main difference with geometric

methods described in Section 4.1 is that iconic methods are
based on voxel intensities instead of features. This means the
distance-optimisation framework (where the distance can be a
similarity measure) is applied to the entire image domain. In
that sense, they can potentially be better at estimating a dense
deformation field—feature-based methods require interpolation,
which makes them less accurate when the set of landmarks is
sparse. However, their efficacy comes at a computational cost.

Some authors have relied on linear registrations to address the
task. Andreasen et al. (1992) optimised the parameters of every
rigid transformation by minimising a weighted SSD between the
intensities of two adjacent slices. Weights were defined as the
ratio of intensities of both images. More recently, methods more
robust to intensity variations across slices have been proposed.

Ourselin et al. (2001b) used block-matching (Ourselin et al.,
2000), in which correspondences between blocks of two images
were found by maximisation of a certain similarity locally. This
provided a displacement field and a global rigid transformation
was obtained through least trimmed squares (LTS) (Rousseeuw,
1984) in order to filter out mismatches.

Nikou et al. (2003) defined a local energy function that was
optimised sequentially in order to bring into rigid alignment
every unvisited slice with a group of neighbouring slices. This
was repeated until convergence. They used M-estimators as
cost functions, which aimed to reduce the effect of outliers
in the regression process by replacing the square function of
the residual in the standard least square minimisation by the
German-McClure ρ-function.

Dubois et al. (2007) opted for a robust way of jointly
reconstructing histological and autoradiographic volumes. After
stacking sections using their centre of mass, pairwise rigid
registration was carried out using block-matching between
adjacent sections for each stack. The histological volume was
then used as a reference for the refinement of the reconstructed
autoradiographic volume (2D-2D registration between autora-
diographs and histology), due to the fact that inner anatomical
structures of the brain are more visible in histology.

Other authors employed non-linear transformations (Gefen
et al., 2003) for reconstruction. Such methods are usually ini-
tialised with a linear registration. One should note that initialisa-
tion is a non-trivial and non-negligible step, and this statement
holds for Section 5 too. Incidentally, non-linearly deforming
slices has been criticised in Lee et al. (2005) and Dubois et al.
(2007); in particular, Lee et al. stated that they preferred to pre-
serve the shape of the tissue rather than arbitrarily and possibly
wrongly compensate for distortions. As no external information
about the shape is available, bias is introduced by choosing one
slice as the reference shape.

Cifor et al. (2011) ensured smoothness of the reconstructed
volume in three steps: the volume was initially reconstructed us-
ing pairwise rigid registrations. Next, boundaries of interesting
structures were extracted (by thresholding) in every 2D section
and smoothed using a min-max curvature flow constrained to 2D
(out-of-plane)—and using a mean curvature flow in (Cifor et al.,
2009). This provided a sparse displacement field computed over

14



pixels along the initial boundary of the extracted surface, then
extrapolated to the entire slices.

Smoothness was also used as a criterion for histological re-
construction in Casero et al. (2017), where the refined alignment
of the stack was a solution of the heat diffusion equation. The
algorithm alternated between the updates of slices’ transforma-
tions and their neighbours’ transformations until convergence.
Finally, accumulated transformations updates were applied to
each slice.

Following the same purpose, Gaffling et al. (2015) formu-
lated the reconstruction of a stack of histological slices as an
iterative Gauss-Seidel update scheme applied to images, using
by definition two adjacent slices (above and below) and modi-
fied to also include information from the image itself (Gaffling
et al., 2009)—thereby, they also showed that a small neighbour-
hood is sufficient to restore smoothness. That scheme allowed
for smoothing high-frequency perturbations more than lower
frequencies associated with the progression of anatomical struc-
tures along the stack (as it is assumed to vary slowly enough
by nature of the histological process). A similar strategy was
followed earlier in Krinidis et al. (2003a), using iterated con-
ditional modes (Besag, 1986) for the optimisation of a global
energy function that quantified similarity between slices.

Gaffling et al. (2009) are, to the best of our knowledge, the
only work addressing the problem of histological reconstruction
with missing slices by interpolating them. Images adjacent to a
missing slice were non-rigidly registered using the variational
approach of the problem defined in Modersitzki (2003). The in-
terpolated deformation field, which is a fraction of the resulting
deformation field depending on the gap between the two regis-
tered images, is applied to the template image to approximate
the missing intermediate slice.

Ju et al. (2006) represented deformations by independent
single valued functions in horizontal and vertical directions:
they considered that every 2D warp can be decomposed into 1D
piecewise linear deformations with elastic constraint in x and
y. The minimisation of the error function for registration was
achieved by means of an extension of the dynamic time warping
in 1D (Sakoe and Chiba, 1978) to 2D problems.

Wirtz et al. (2004) first rigidly registering slices using prin-
cipal axis transformation, and then performed multi-scale non-
linear registration with a regularisation based on elastic poten-
tials. The system of Navier-Lamé equations was linearised by
means of a non-linear Gauss-Seidel iteration method and ap-
proximated by finite differences. This was extended in Wirtz
et al. (2005) by replacing the SSD similarity measure in the
variational formulation with a weighted combination of two
derivative-based (respectively gradient and Laplacian of the im-
age) SSD measures. The error function was thereby less sensitive
to intensity inhomogeneities.

Braumann et al. (2005) performed non-rigid registration on
rigidly pre-aligned slices in two steps. First, they used poly-
nomial warping on luminance-transformed images: correspon-
dences between control points of adjacent slices were used to
estimate the polynomial coefficients through the minimisation of
a least-square error. This provided a sparse displacement field.
Then, a curvature-based registration (Fischer and Modersitzki,

2003) was performed on staining-based tumour probability maps.
Such maps reduced artefacts around the tumour and thus eased
the registration. Braumann et al. also suggested to skip the
intermediate polynomial registration as improved performance
is expected using a multi-grid scheme for the curvature-based
registration.

Pitiot et al. (2006) developed a method that computed a global
non-linear transformation by elastically interpolating between
linear transforms defined on pairs of sub-images (hence the
name of “piecewise affine registration”). These sub-images rep-
resented geometrically, and often anatomically, coherent com-
ponents. They were automatically extracted through clustering
of an initial displacement field (Ourselin et al., 2000) computed
between the images to be registered.

Feuerstein et al. (2011) formulated the problem of optimising
transformation parameters for every slice relative to, simultane-
ously, a reference image and the two neighbouring sections, as
Markov random fields (MRF). The MRF energy is composed
of unary potentials, which account for the registration to the
reference images and pairwise potentials, which encode the reg-
istration to neighbouring slices and the regularisation of the
displacement field. This formulation served as basis for the
deformation field model in Müller et al. (2014).

Brandt et al. (2005) performed an initial affine registration
followed by non-rigid registration, both by maximisation of the
NMI. The latter transformation was modeled as a cubic B-spline
free-form deformation (Sederberg and Parry, 1986).

Schmitt et al. (2007) initialised the reconstruction by
registering slices affinely using a variant of principal axes
transformation (PAT, Alpert et al., 1990). They adopted the
stochastic interpretation of PAT presented in Modersitzki (2004)
(p.45), in which the images are represented as Gaussian density
functions. The problem was formulated as the estimation of a
density that best fits a set of reference densities in the sense that
the Kullback-Leibler distance is minimised. Due to the lack
of robustness of Gaussian distributions to perturbations, such
as tears, wrinkles, torn out pieces, artefacts etc., Schmitt et al.
used Cauchy density functions instead, on which robust PAT
relies. Standard PAT was used in Cooper et al. (2006). This was
followed by two partial optimisations of the SSD with respect
to the shear first, and then to rotation, shearing and translation.
Finally, elastic deformation was performed, similar to that used
in Saalfeld et al. (2012).

Tile-based methods introduced in Section 4.1.1 use patches of
the image as features and are therefore similar to block-matching
when establishing correspondences. Ruiz et al. (2009) found
the translation and rotation parameters relating a block with
its corresponding block within a sufficiently large area in the
adjacent slice by maximisation of normalised cross-correlation.
This provided a sparse displacement field and a second-order
polynomial transformation was computed, which coefficients
were obtained using least squares. Xu et al. (2015) explicitly
based their method on block-matching (Ourselin et al., 2000).
Arganda-Carreras et al. (2010) proposed a shape-based rigid reg-
istration method. After an initial rigid-body registration between
adjacent sections, correspondences between structures of interest
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were sought for by means of bounding boxes around them. Over-
lapping boxes in adjacent sections were assigned the same group
label. Two bounding boxes overlapping in the same section were
grouped into a supergroup. Remaining ungrouped structures
were assigned the number of the closest group/supergroup in the
adjacent section. Registration of every grouped structures was
performed using the phase correlation method. Correction of
remaining misalignments was achieved by elastic registration us-
ing B-splines in a multiresolution framework. Auer et al. (2005)
also kept meaningful tiles (called “subimages”) that satisfied a
variance criterion. Their centres were used as control points for
TPS registration. TPS was preferred for its physical properties
but Auer and colleagues outline that it highly depends on the
control points, as opposed to e.g., B-spline interpolation.

5. Histological reconstruction using medical images

In this section, we survey pipelines that seek for correspon-
dences between histology and 3D medical imaging. This process
reconstructs a histological volume from a set of 2D sections
using structural information from the medical image volume.
Different approaches exist and some of them require an initial
histological reconstruction, prior to using 3D information from
medical imaging.

Combining histology and medical imaging dates back to the
late 1980s. Early attempts include Sze et al. (1986), who aimed
to provide histological explanation for high intensities detected
routinely in MR. Nesbit et al. (1991) studied the pathogenesis
of multiple sclerosis using MR, computed tomography (CT) and
a biopsy.

The process of combination benefits from the heterogeneity
and multiple resolutions of the images. In the end, it serves to
increase the specificity of medical imaging analysis with base-
line information about the actual properties of [brain] tissues
(Annese, 2012): since medical imaging provides only indirect in-
formation, it is essential to show that resultant findings correlate
with pathological findings.

Multi-modal works treat their different images as separate
entities: the terms (co-)registration, (co-)alignment, matching,
mapping or warping are used interchangeably in the covered
literature. They all provide additional, combined information in
the form of overlays for diagnostics, treatments, quantification
etc. The term “fusion” is also commonly used but it should be
distinguished from “data fusion” in the sense of creating a single
composite image from different sources via numerical fusion
operators, extensively reviewed in Bloch (1996) and more
recently in James and Dasarathy (2014) for medical images.

The section is structured according to the modalities involved
in the registration process: (i) registration of histology with ex
and/or in vivo 3D medical imaging (Section 5.1). This includes
cases where ex vivo is used as an intermediate modality; (ii)
registration of histology with ex and/or in vivo 3D medical imag-
ing using blockface photographs as an intermediate modality
(Section 5.2). This also includes cases where both blockface
photographs and ex vivo are used as intermediate modalities.

5.1. Histology↔ 3D medical imaging

Multi-modal registration between histological slices and 3D
medical imaging can be addressed in three ways:
– Slice-based approaches (Sections 5.1.1 and 5.1.2) They con-

sider every histological slice as an individual object. Those
may be preferred over volume-based approaches in cases
where e.g., the histological dataset is too sparse or has too few
slices. The alignment between histology and medical imaging
is then carried out using either (i) slice-to-volume (2D-3D)
registration or (ii) slice-to-slice (2D-2D) registration, which
is a simplification of the former point and requires careful
identification of the “corresponding” plane in the medical
image volume.

– Volume-based approaches (Section 5.1.3) They consider the
set of histological slices as a whole and therefore rely on
an initial histological volume. The main goal of initial re-
construction is to correct for the various orientations that the
tissues may have across slices (when mounted on glass slides)
in order to facilitate subsequent registration with 3D medical
imaging. It provides better “support”—as opposed to simply
stacking slices—and aids the optimisation of the similarity
measure. More complex initialisations have also been devel-
oped, which intended to be more robust to registration failures.
Both the alignment and the reconstruction are then refined in
various ways.

– Hybrid approaches (Section 5.1.4) They also rely on initial
histological reconstructions and alternate between volume-
and slice-based approaches so as to get the best out of the
two worlds: a more accurate histological reconstruction for a
refined alignment with clinical imaging and vice versa. They
repeat until the histological reconstruction has converged.

5.1.1. Slice-to-slice approaches (2D-2D)
These methods assume that the cutting planes of histological

slices and the acquisition planes of the 3D medical image are
parallel and that there always exists a histological section that
has a counterpart in the set of MR slices. The problem therefore
simplifies to a 2D-2D registration between every histological
slice and its corresponding slice in the 3D medical image.

Slice Correspondences can be achieved visually (Gangolli
et al., 2017; Chappelow et al., 2011a; Mazaheri et al., 2010),
in which case an expert radiologist is most commonly asked
to identify the MRI slice corresponding to a histological slice
on the basis of anatomical landmarks. Chappelow et al. took
advantage of all the data to drive image registration using a
multivariate formulation of mutual information, while Mazaheri
et al. performed rigid alignment of the images’ centres of mass,
followed by 2D affine registration and finally 2D non-rigid
registration using free-form deformations (FFD) (Rueckert et al.,
1999). Li et al. (2006) used TPS transformation to register the in
vivo MR plane with its visually corresponding histological slice.
It was a smooth registration based on specified corresponding
landmarks. The optimal number of landmarks was evaluated as
a minimiser of the non-rigid registration error. Gangolli et al.
(2017) used manually extracted landmarks at visually matching
locations along the tissue edges, within and at the boundary

16



linear / non-linear
Sec$on	5.1.(1-2)
Slice-based	
approaches	

Sec$on	5.1.3
Volume-based	
approaches

2D-2D	registra$on
with	the	“corresponding”	3D	
medical	image	plane	

2D-3D	registra$on	with	3D	
medical	image

Sec$on	5.1.4
Itera5ve	
approaches

           linear non-linear

step	2 step	3

non-linear

step	3

iterative process

step	2

linear

Identifying the 
corresponding 
medical image 

slice

identifying an 
initial location

linear

step	2step	1

    linear      non-linear

step	3

—

step	1

Tissue sections

registration between 
in and ex vivo

extra	step

(*)

registration with 3D medical imaging

slice-based	
approaches	

volume-based	
approaches

hybrid	
approaches

registration with 3D medical imaging

linear non-linear

3D-3D
3D-3D 3D-3D

2D-2D 2D-2D
step	2 step	3

registration with 3D medical imaging

non-linear

2D-2D

step	3

iterative process

step	2

3D-3D 2D-2D
linear

3D-3D 2D-2D 2D-2D

step	1

—

identifying the 
corresponding 3D 

medical plane

initialisation

linear

step	2
step	1

   linear      non-linear

step	3
2D-2D

3D-3D

—
—

step	1

tissue sections

histological 3D 
reconstruction

step	1

histological 3D 
reconstruction

3D medical image

linear

3D-3D

step	2

3D-3D 2D-2D

non-linear

3D-3D

step	3

2D-2D

non-linear

identifying the corresponding 
3D medical image plane

step	1 registration with 3D medical imaging

3D medical image

linear

step	2

non-linear

step	3

2D-2D

+or or

histological 3D 
reconstruction

step	1

histological 3D 
reconstruction

step	1

2D-3D

step	2

—
non-linear

2D-2D 3D-3D —

2D-2D2D-2D3D-3D —
3D-3D 2D-2D 2D-2D —

3D-3D 3D-3D—
3D-3D 2D-2D 2D-2D

REGISTRATION WITH 3D MEDICAL IMAGE

REGISTRATION WITH 3D MEDICAL IMAGE

SLICE-TO-SLICE REGISTRATION WITH MEDICAL IMAGE PLANE 

SLICE-TO-VOLUME REGISTRATION WITH 3D MEDICAL IMAGE 

manual
2D-2D

linear

2D-2D—2D-2D

2D-2D 2D-2D (histo-MR) registration

3D-3D 3D-3D registration

2D-3D registration2D-3D

tissue sections

Sec$on	5.1.(1-2)
Slice-based	
approaches	

Sec$on	5.1.3
Volume-based	
approaches

Sec$on	5.1.4
Hybrid	
approaches

           linear non-linear

Step	2 Step	3

non-linear

Step	3

iterative process

Step	2

linear

Identifying the 
corresponding 
medical image 

slice

linear     linear      non-linear
—

histological 
reconstruction

Step	1

histological 
reconstruction

Step	1

—
non-linear

2D-2D 3D-3D —

2D-2D2D-2D3D-3D —
3D-3D 2D-2D 2D-2D —

3D-3D 3D-3D—
3D-3D 2D-2D 2D-2D

REGISTRATION WITH 3D MEDICAL IMAGE

REGISTRATION WITH 3D MEDICAL IMAGE

SLICE-TO-SLICE REGISTRATION WITH MEDICAL IMAGE PLANE 

SLICE-TO-VOLUME REGISTRATION WITH 3D MEDICAL IMAGE 

linear

2D-2D—2D-2D

registration between 
in and ex vivo

extra	step

(*)

non-linear

Identifying an 
initial location

2D-2D 2D-3D
2D-3D —

2D-3D—

Figure 3: Strategies to register histology with volumetric medical imaging (ex or in vivo alone). The three main approaches (slice-based,
volume-based and iterative) are presented. (*) In cases where ex vivo imaging is used as an intermediate modality, correspondences between ex vivo
and histology are achieved through steps 2 and 3, and the mapping between histology and in vivo is completed via registration between ex and in
vivo scans (extra step).

between grey and white matter. Then, a forward non-linear
moving least squares transformation (Goshtasby, 1988) was
applied to register the histological section with the MRI slice.

Automated selection of corresponding slices can be achieved
via the optimisation of a similarity measure between each
histological slice and every slice of the 3D medical image. This
assumes that the maximum similarity is obtained when actual
corresponding slices are compared. However, Xiao et al. (2011)
showed that both visual and automated approaches failed to
reliably determine slice correspondences mostly due to the
alteration of the tissue during the histology preparation i.e.,
direct comparison of images from different modalities is a
non-trivial task which is prone to errors. Xiao et al. proposed to
compare the set of histological slices with all possible subsets
of equal number of in vivo MR slices using mutual information.
These subsets were ranked based on cumulated similarity. A
group of top-ranked MRI subsets was retained and their lists
of correspondences were averaged. The final list was used for
2D affine registrations between slices from both modalities
followed by 3D affine registration.

Slice-to-slice approaches seem to be favoured in the clinical
literature for the visual control they allow but many works
address the problem only partly (Harkins et al., 2015; Kilsdonk
et al., 2016; Hammelrath et al., 2016). Lopez Gonzalez et al.
(2016) performed linear registrations between ex vivo MR slices
and histological images and these were then visually matched
to the closest (in vivo) 3T MR slice. Harteveld et al. (2016)
and Van Der Kolk et al. (2015) manually matched histological

sections to their corresponding MR planes using the marked
locations with the fiducials in the MR images, the ink markings
in the histologic sections, and gross morphologic features.
Nakagawa et al. (2016) identified the histological sections that
were morphologically close to the T1ρ mapping image and
only stained those. Koh et al. (2016) performed side-by-side
comparison between the tissue sections of the largest cut surface
of the tumour and MR imaging.

State of the art data analyses therefore rely on loose assump-
tions: (i) the histological cutting plane is not necessarily consis-
tently parallel to the scan acquisition plane and (ii) the sampling
is different within and across modalities, all the more due to un-
even cutting. In addition, the accuracy of the registration highly
depends on the MR slice thickness. On that matter, apparatus
have been developed to help cutting the specimen at the same
interval and orientation as the MR images, as proposed by Drew
et al. (2010); Trivedi et al. (2012) in the context of prostatec-
tomy, or by means of 3D-printed brain holders (Absinta et al.,
2014; Guy et al., 2016). The error made when selecting the
closest MR slice was considered in Steenbergen et al. (2015),
and the consequences of differences in sampling were noted in
Martel et al. (2016) in the specific case of vascular trees from
the femoral trochlea. By disregarding such approximations, one
needs to be aware that wrong correspondences are very likely to
be established and this directly affects, for example, statistical
analyses. Similarly, Meyer et al. (2013) described these chal-
lenges and listed numerous erroneous assumptions made during
the process of alignment in the case of prostate cancer.
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5.1.2. Slice-to-volume approaches (2D-3D)
They extend those presented in Section 5.1.1 by considering

that nothing ensures that the cutting plane of histological slices
is parallel to the 3D medical image acquisition plane. Likewise,
there is no guarantee that the histological slices are parallel to
each other. This means that structures belonging to a tissue
slice may extend over several 3D medical image slices, or in
other words, a histological slice may lie obliquely in the medical
image volume. This in turn suggests that the corresponding 3D
medical image slice can only be found through a slice-to-volume
(2D-3D) registration. Reviews on slice-to-volume registration
can be found in Markelj et al. (2012) and Ferrante and Paragios
(2017).

Khimchenko et al. (2016) rigidly registered a histological
section with a µCT volume using a density-driven RANSAC
for plane fitting (Chicherova et al., 2014). The landmarks were
SURF points detected in both histological and each µCT slices.
The resulting 3D point cloud had an increased density of matches
at the correct location of the histology section, and this was used
as a criterion to filter out incorrect pairs. The random sampling of
RANSAC plane fitting was thereby biased towards those points
that were close to the µCT plane of interest. The alignment
between the interpolated plane and histology was further refined
using 2D Demon registration tool9 (Kroon and Slump, 2009).

Nir et al. (2014) formulated the problem as finding the poses
of all the histological slices such that the transformed segmented
histology slices optimally matched the corresponding re-sliced
images of the 3D medical image. They made use of particle
filtering to model pose uncertainty, where each particle repre-
sents a combination of histological slices in various 3D poses,
and derived optimal affine registration parameters in a Bayesian
approach. The admissible space of 3D poses was constrained
such that the transformed slices do not intersect.

Osechinskiy and Kruggel (2010) computed a geometric trans-
formation that combined a rigid alignment with a 3D deforma-
tion field parametrised by various classes of spline functions,
various similarity measures, different optimisation algorithms
and different optimisation strategies.

Gibson et al. (2012) utilised well-arranged strand-shaped fidu-
cial markers that allowed for the determination of the location
and orientation of each section. First, a 2D-3D affine transforma-
tion that mapped a fiducial histological slice to its corresponding
points on the MR image was found by minimisation of the
residuals. Then, a 2D-2D affine transformation mapping each
histology slice to its counterpart in the MR was computed us-
ing spatial information from all fiducial markers. Finally, the
fiducial correspondences were refined using a local optimisation
and one last affine transformation was computed initialised with
the affine transformation computed at the previous step. Using
non-anatomical fiducials was argued to provide robustness to
variations in the appearance of the prostate on MR and histology
images.

Gefen et al. (2008) proposed a non-linear registration method
to align histological brain sections with a volumetric brain at-
las. They started with an image to planar surface matching,

9Code is available on MathWorks File Exchange.

during which sections were linearly matched with an oblique
slice automatically extracted from the atlas. An image-to-curved
surface matching was then performed, during which each sec-
tion was matched with its corresponding image overlaid on a
curved-surface within the atlas. Specifically, a PDE-based regis-
tration technique was developed that was driven by a local NMI
similarity.

Kim et al. (2000) used polynomial transformations to warp
an initial in vivo MRI slice that produced minimum error (when
compared with all the histological slices). The parameters of
a low-order polynomial transformation between the MRI slice
and the histological section were optimised by minimisation of
the SSD and the correlation coefficient. This method was reused
in Zarow et al. (2004); Singh et al. (2008).

Ali and Cohen (1998) approached registration as a contour
matching problem. This means representing images in their
most elementary form: a line (describing the shape of the main
object). Most importantly, the multimodal registration prob-
lem thereby becomes monomodal. The contour curves were
described by means of sets of affine invariants constructed from
the sequence of area patches bounded by the contour and the
line connecting two consecutive inflections. The affine transfor-
mation was estimated from matching vertices using least square
error estimation method.

5.1.3. Volume-based approaches (3D-3D)
The main drawback of slice-based (2D-3D) approaches is

their sensitivity to initialisation as the landscape of any cost
function is full of local minima. Other challenges involve the
cost function selection, the convergence behaviour and the
optimisation strategy (Osechinskiy and Kruggel, 2010). The
information from a single histological slice is used alone and
its content may be hard to handle by itself (see Sections 2 and
3) in a multi-modal registration problem: the performance
of slice-to-volume registration shows greater dependence on
the input images than 3D-3D registration (Osechinskiy and
Kruggel, 2010). Considering histological slices altogether i.e.,
the histological dataset as a whole, allows overcoming such
issue. Volume-based approaches follow Procedure 1.

Procedure 1 Volume-based approaches (3D-3D)

Input: M, ex or in vivo 3D MRI and
{
Hi

}
, a set of 2D histolog-

ical slices.
Output: histological volume H f aligned with M.

1: H0 ← Reconstruct histological volume from
{
Hi

}
. Step 1

2: H1 ← Linearly register M and H . Step 2
3: H f ← Non-linearly register M and H1 . opt. Step 3

Initial histological reconstruction (Step 1) can be achieved
in several ways and the reader is referred to Section 4 for a
more complete list of methods dedicated to that purpose. Simple
stacking by alignment of centres of mass was used in Goubran
et al. (2013). The most common way however consists of serial
pairwise linear registrations and provides roughly aligned though
satisfactory enough initial volumes (Delzescaux et al., 2003;
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Malandain et al., 2004; Li et al., 2009; Ou and Davatzikos, 2009;
Ceritoglu et al., 2010; Alic et al., 2011; Yang et al., 2012; Stille
et al., 2013). In particular, Ceritoglu et al. (2010) registered
every slice to its successor starting from the bottom of the stack
and repeated the process starting from the top of the resultant
stack. In contrast, Stille et al. (2013) started from the middle
of the stack (they manually selected the most central slice with
minimum artefacts) and performed registration between pairs
of adjacent slices after aligning the centres of mass of masked
images. Maximisation of mutual information was used in Ou
and Davatzikos (2009), and block-matching in Malandain et al.
(2004) and Yang et al. (2012). Initial reconstruction may also
be achieved by use of fiduciary rods, such as in Humm et al.
(2003), for which the Euclidean distance between corresponding
segmented holes from pairs of adjacent slices was minimised.

Other reconstruction methods consider neighbourhoods of
slices (as opposed to a single neighbouring slice) in order to
improve the consistency of the resulting volume. Chakravarty
et al. (2006) registered every slice with both its successor and
its predecessor and applied the average transformation to the
original slice so that the transformed slices match both their
neighbours simultaneously. A similar strategy was used in Rusu
et al. (2015). Yushkevich et al. (2006) extended the size of the
neighbouring up to five slices away. A weighted graph was
built, with slices as vertices, edges symbolised registrations,
and weights were given by an information- and distance-based
measure. The shortest path from every vertex in the graph to a
specific reference slice was found using Dijkstra’s algorithm,
and incidentally favoured slices that registered well (hence
bypassing those that registered poorly). The concatenation
of rigid transformations yielded a reconstructed histological
volume. Such reconstruction method was reused in Adler
et al. (2014) with different edge weights. Later, however,
Yushkevich et al. (2016) and Adler et al. (2016) relied on manual
histological reconstructions using HistoloZee. While much
more labor-intensive, they found that manual reconstructions
led to better histological reconstructions especially when slices
were torn or poorly stained.

Once an initial histological volume is available, a coarse,
linear alignment of the geometries of both medical image and
histological volumes is performed (Step 2), which may then
be refined by non-linear registration (Step 3). This can be
achieved using standard inter-modality registration techniques
implemented in packages such as AIR (Woods et al., 1998a)
followed by Diffeomap (LDDMM) (Li and Mori, 2001) in
Ceritoglu et al. (2010), landmark-based registration followed
by ANIMAL (Collins and Evans, 1997) in Chakravarty et al.
(2006), or maximisation of mutual information (Wells et al.,
1996) followed by free-form deformations (Rueckert et al.,
1999) and a pyramidal approach with gradually increasing
number of control points in Delzescaux et al. (2003). Only
global linear registration was performed in Stille et al. (2013).

A variation of Procedure 1 consists of complementing Step 2
with the registration of every slice from the globally aligned
histological volume with its 2D counterpart in the medical image

volume. Such variation is the cornerstone of hybrid approaches
described in Section 5.1.4. Li et al. (2009) aligned the centres
of mass of each histological slice and its corresponding in vivo
MR plane (although this is not a registration per se) after 3D
rigid registration between both volumes. This was refined by
3D non-rigid registration using the adaptive bases algorithm
(ABA) Rohde et al. (2003). Yushkevich et al. (2006) deformed
each histological slice of the 3D aligned histological volume
towards the average of its immediate neighbours (predecessor
and successor) and the corresponding MR slice. Some of their
methods have been included in the framework developed by
Majka and Wójcik (2015)10. In Humm et al. (2003), only
linear registration between every histological slice and its 2D
counterpart in the MR was performed.

Ex vivo correspondences can be further carried to in vivo space
by an extra registration between both image volumes. Given
the registration between histology and ex vivo, concatenating
transformations relates histology and in vivo medical imaging.
As such, Alic et al. (2011) performed 3D linear (rigid, affine)
and elastic registration between histological and ex vivo MR
volumes, followed by 3D rigid, affine and elastic registration
between ex vivo and in vivo MR volumes. All registrations were
performed using Elastix (Klein et al., 2010). Rusu et al. (2015)
performed affine registration, also using Elastix, between the
reconstructed histological and ex vivo volumes. Ex vivo and
in vivo medical images were affinely registered, yielding linear
alignment between histology and in vivo. Finally, non-rigid
registration between histological and in vivo volumes refined the
alignment of both modalities using free-form deformations in a
multiscale setting.

5.1.4. Hybrid methods
We call hybrid methods those similar to Procedure 1 except

both the serial arrangement of the histological volume (its re-
construction) and its alignment relative to the medical image
volume are jointly refined (Procedure 2). Both processes hence
benefit from each other as changing one affects the other.

Initial histological reconstruction follows methods presented
in Section 5.1.3.

Step 2 consists of iterating over two registrations: (i) a 3D-3D
registration, which updates the global alignment between the
current estimate of the histological volume and the 3D medi-
cal image, and (ii) 2D-2D registrations, which affect the serial
arrangement of slices relative to each other by aligning them
with their (current) corresponding slice in the medical image
volume used. This in turn provides a new histological volume
which is used at the next iteration. This process is repeated
until convergence. In general linear registrations are used in
the iterative process to avoid creating wrong correspondences
through non-rigid registration. In particular, Malandain et al.
(2004) used block-matching, Adler et al. (2014) used the ANTs

10http://www.3dbar.org/wiki/barPosSupp. The source code is avail-
able for download at https://github.com/pmajka/poSSum.
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Procedure 2 Hybrid methods

Input: M, ex or in vivo 3D MRI and
{
Hi

}
, a set of 2D histolog-

ical slices
Parameter: N, number of iterations after convergence
Output: histological volume H f aligned with M

1: H0 ← Reconstruct histological volume from
{
Hi

}
. Step1

2: k = 0
3: repeat . Step 2
4: Linearly register Hk and M
5: for all slices do
6: Hk

i ← Linearly register Hk
i and Mi

7: end for
8: Hk+1 ←

{
Hk

i

}
9: k = k + 1

10: until convergence
11: H f ← Non-linearly register HN and M . opt. Step 3

toolkit with NMI and Yang et al. (2012) used maximisation of
MI. The latter addressed the specific case of separate pieces
of tissue by using 2D piecewise local registration. They also
addressed the challenging case of automatically initialising the
location of a tissue block that is a sub-volume of the tissue MR.
Yang et al. identified the locations of the first and last slices of
the histological block in the MR as those maximising NMI after
2D rigid registrations.

Once the iterative process has converged, a final step may
consist of a non-rigid registration to refine the matching (Step 3).
Adler et al. reused the 2D diffeomorphic registration from
Yushkevich et al. (2006), while Yang et al. used cubic B-spline
parametrisation for 3D non-rigid registration and NCC similarity
measure.

A variation of Step 2 of procedure 2 was proposed by Ou
and Davatzikos (2009). They iterated over: (i) a 3D affine reg-
istration between the current histological and MR volumes, by
maximisation of the correlation coefficient and (ii) a 2D rigid
registration between every histological slice and the central his-
tological slice. Subsequent steps jointly addressed the segmen-
tation and the refinement of the registration of prostate cancer
images and also consisted of an iterative process.

Another variation was proposed by Goubran et al. (2013),
who embedded the non-rigid registration of Step 3 in the
iterative process of Step 2. The pipeline thus consisted of
iterating over: (i) a 3D rigid registration of the current estimate
between the current histological volume with the MR, (ii)
2D rigid registrations between every histological slice and
its currently corresponding MR plane, and (iii) 2D non-rigid
registrations between every histological slice and its currently
corresponding MR plane using FFD.

Correspondences between histology and ex vivo can be fur-
ther carried to in vivo space similarly to Section 5.1.3. As such,
Goubran et al. (2015a) extended previous work (Goubran et al.,
2013) in order to relate histology and in vivo scans. They started
with translating the ex vivo MR to match the in vivo MR space

in order to facilitate the placement of landmarks in subsequent
steps. Then, they performed 3D linear (rigid+scaling) landmark-
based registration in vivo and ex vivo MRs using manually picked
landmarks. This was refined by 3D non-rigid registration be-
tween both 3D MRIs using landmark-based registration and a
symmetric implementation of FFD, respectively for hippocam-
pal and neocortical specimen.

5.2. Histology ↔ 3D medical imaging using blockface pho-
tographs

Blockface photographs provide structural information of the
tissue face prior to cutting and therefore allow correcting for sub-
sequent tissue deformations (mainly induced by cutting, floating
and mounting).

In theory, blockface photographs should be inherently aligned
by virtue of the set-up: it consists of a camera on e.g., a tripod—
or mounted on the microtome itself—oriented towards the face
of the tissue block secured on the microtome, and which imag-
ing plane is parallel to the block face. Though, it is common
to affinely register them with each other in order to account for
small displacements (Annese et al., 2006; Yelnik et al., 2007;
Groen et al., 2010) but this not robust to perspective distortions
(the camera imaging plane is never and can not remain truly
parallel to the block face). Eiben et al. (2010) considered that
each time the microtome cuts a section out of the tissue block, its
face lies in a slightly different plane (due to small mechanical im-
precisions or due to the expansion of the tissue when a new face
is exposed). This leads to a perspective error, which may hinder
the consistency of the reconstructed volume. Their method pro-
vided a way to correct for scaling variations and displacements
of the sample that may occur from one acquisition to the next.
However, they did not take into account the camera motion (as
small as it may be). Breen et al. (2005b) assessed the camera
lens for image distortion by ensuring that lines from manually
selected points (including edges of the image) remained straight.
They also ensured those lines were not blurred in any region of
the image. Casero et al. (2017) corrected the perspective error of
the blockface photograph aquisition by computing a projective
transformation using manually extracted landmarks. Casero et
al. also corrected “scratched” photographs (which occur when
using a poor quality knife blade during microtomy). They first
rotated the images to make the scratches horizontal/vertical us-
ing the wax block sides. The image rows/columns intensities
were then scaled so that their median values equaled the wax
median value.

There are three main types of pipelines that relate histology
to volumetric medical imaging according to how they exploit
blockface photographs as an intermediate modality (Figure 4),
namely for histological reconstruction or for alignment with
medical imaging (Section 5.2.1: resp. BF for histoRec, and BF
for MedIm alignment) and for both (Section 5.2.2: BF2).

5.2.1. Unary use of blockface photographs
These pipelines follow Procedure 3.
In Step 1, Alegro et al. (2016) affinely registered each

histological image to its corresponding blockface photograph
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Procedure 3 BF for histoRec

Input: M, ex or in vivo 3D MRI,
{
Hi

}
, a set of 2D histological

slices, B =
{
Bi

}
, a set of 2D blockface photographs.

Output: histological volume H aligned with M
1: for all slices do . Step 1
2: H0

i ← Register Hi and Bi

3: end for
4: H0 ←

{
H0

i

}
5: H1 ← Register H0 and M . Step 2
6: H f ← Non-linearly register H1 and M . opt. Step 3

by optimisation of mutual information as defined by Mattes
et al. (2003). Schormann and Zilles (1998) first reconstructed
the blockface volume by least square minimisation between
corresponding pairs of landmarks in adjacent photographs
(Schormann et al., 1995) and then registered each histological
section with its corresponding blockface photographs using
an extension of principal axes theory generalised to affine
transformations (in order to be able to account for shearing
artefacts introduced during the tissue preparation). Johnson
et al. (2010) used 2D moments-based rigid alignment for some
brains, refined using AIR software. For other brains, Johnson
and colleagues used the method from Thevenaz et al. (1998)
between corresponding images with manual refinement. This
protocol was reused in (Johnson et al., 2012).

In Step 2, Alegro et al. (2016) used symmetric diffeomorphic
3D registration, SyN (Avants et al., 2008) to align the recon-
structed histological and the MRI volumes. Johnson et al. (2010)
first linearly aligned the reconstructed histological and MR vol-

umes using a quaternion transform followed by an affine trans-
form. Then, they refined the alignment using a multi-resolution
diffeomorphic registration algorithm (Avants et al., 2008). Schor-
mann and Zilles (1998) started with a 3D affine registration be-
tween the histological and the MR volume, followed by a 2D
non-linear registration between every histological sections and
its corresponding MR plane using a 3D elastic full-multigrid
technique (Stüben and Trottenberg, 1982) restricted to 2D (Rohr
et al., 1996). It was initialised with a 2D linear registration
driven by the analysis of Rayleigh-Bessel statistics, which de-
scribe the probability density of local non-linear deformations
in histological sections (Schormann et al., 1995).

A variation of Step 2 consists of considering slices instead
of volumes: after reconstructing the histological volume,
Bürgel et al. (1999), based on the methodology developed in
Schormann et al. (1993, 1995) warped every histological slice
to its corresponding ex vivo MR plane.

A variation of Procedure 3, BF for MedIm alignment, was
proposed in Amunts et al. (2013) and relied on the registration
between the blockface volume and the 3D medical image. Then,
using the direct, known 2D correspondences between histology
and blockface, every histological slice was registered with its
corresponding MR plane.

5.2.2. Binary use of blockface photographs
Such works use blockface photographs for both histological

reconstruction and matching with 3D medical images. They are
to be the most frequent way to address the problem and follow
Procedure 4.

The choice of aligning every histological slice to its corre-
sponding blockface photograph (Step 1) using linear registration
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Procedure 4 BF2

Input: M, ex or in vivo 3D MRI,
{
Hi

}
, a set of 2D histological

slices, B =
{
Bi

}
, a set of 2D blockface photographs.

Output: histological volume H f aligned with M
1: for all slices do . Step 1
2: H0

i ← Register Hi and Bi

3: end for
4: H0 ←

{
H0

i

}
5: Register B and M . Step 2
6: Non-linearly register B and M . opt. Step 3

(as opposed to non-linear) may stem from the poor content
that the unstained tissue face exhibits. Blockface photographs
provide little structural information apart from the tissue borders
(higher contrast with the surrounding embedding medium),
which could lead to erroneous deformations of the inside of
the tissue. Linearly registering every pair of corresponding
images may suffice to restore a globally consistent arrangement
of histological slices, which will be refined locally when
matched with the medical image volume. Lebenberg et al.
(2010) rigidly aligned every histological section with its
corresponding blockface photograph and every autoradiograph
(see “Cerebral function” in Section 6 for a brief definition) was
then rigidly registered with its histological slice counterpart,
both using block-matching (Ourselin et al., 2000). This was
reused in Vandenberghe et al. (2016). Yelnik et al. (2007)
started with reconstructing the blockface volumes using iterative
closest point (Besl and McKay, 1992) i.e., by registering every
photograph to its immediate neighbour (binary images of
segmented rivets) and then performed 2D rigid registration
between every histological section and its cryo-blockface
counterpart. In order to refine the histological volume, 3D
regions of interest centred around the basal ganglia were
extracted using Yav++ software (Delingette et al., 2001) in
both histological and blockface volumes and 2D hierarchical
registration (rigid, homothetic and affine) was performed be-
tween corresponding 2D images. Dauguet et al. (2007b) aligned
every histological section with its corresponding blockface
photograph using a “hemi-rigid” method, which accounted for
the independent spreading of the hemispheres on the glass slides.

Other authors have chosen to refine this step with a non-rigid
registration. For instance, Choe et al. (2011) performed 2D
linear followed by 2D non-linear registration between light
micrographs and corresponding blockface photographs using
respectively maximisation of MI and ABA (Rohde et al.,
2003). Breen et al. (2005b) performed 2D non-rigid registration
of a histological section with its corresponding blockface
photograph using TPS and corresponding landmarks: interior
ink fiducials and anatomical landmarks, such as blood vessels,
and corresponding points along the external tissue boundary
using “live-wire” semi-automated algorithm (Falcão et al., 1998;
Mortensen et al., 1992). Meyer et al. (2006) also used TPS
with 7 control points; six control points were used in Piert et al.
(2009) and Park et al. (2008). Groen et al. (2010) performed

2D rigid, followed by 2D non-rigid FFD-based registrations
(Rueckert et al., 1999).

In Steps 2 and 3—consisting of registering blockface and med-
ical imaging—pipelines start with 3D linear registration (Groen
et al., 2010). Dauguet et al. (2007b) performed 3D rigid registra-
tion between the blockface volume and the in vivo T1 MRI by
maximisation of mutual information (Viola and Wells III, 1997).
3D non-rigid registration between the blockface volume and the
MRI was performed using free form deformations (Rueckert
et al., 1999), as in Groen et al. (2010), and the composition of
the two previous transformations was applied to the “hemi-rigid”
transformed histological volume. The same sequence was ap-
plied in Lebenberg et al. (2010). This was also found in Choe
et al. (2011) except that the last non-rigid registration between
blockface and ex vivo T2w MR volumes made use of ABA. The
composition of the transformations between blockface and the
medical image volume, and between histology and blockface
volume was applied to the T2w image in order to resample it in
the histological space. The 3D non-rigid registration between
blockface and ex vivo MR volumes was performed using TPS
with 6 control points in Meyer et al. (2006); 18 control points
were used in Piert et al. (2009) and Park et al. (2008).

Other applications of Procedure 4—without the non-rigid
refinement of Step 3—include Yelnik et al. (2007), who
performed 3D rigid registration between blockface and ex vivo
T1w MR volumes one hemisphere at a time (Prima et al., 2002).
The alignment was refined by a 3D hierarchical registration
between 3D regions of interest centred around the basal ganglia
and propagated to the full volumes. Breen et al. (2005b)
performed 3D linear (rigid+scaling) registration between the
blockface volume (stack of 3mm-thick slice faces) and the MR
volume, in which the centres of the needle paths were manually
segmented. The global transformation was optimised using
the iterative closest point algorithm (Besl and McKay, 1992).
Non-rigid refinement was not performed and the method was
validated in Lazebnik et al. (2003).

A variation of Procedure 4 was proposed by Uberti et al.
(2009) and consists, as in Section 5.2.1, of considering slices
instead of volumes. After reconstructing the histological
volume according to Step 1, they performed 2D non-registration
between every blockface photograph and the corresponding
in vivo MR planes. Registrations were based on moving
landmarks sampled on curves generated from the contours of
corresponding anatomical features. Once landmarks locations
were optimised for matching through minimisation of a cost
function based on the local curvature of the curves and limited
to small displacements, TPS interpolation (Bookstein, 1989) for
point-based registration was performed.

As in Sections 5.1.3 and 5.1.4, ex vivo correspondences can
be further carried to in vivo space through an extra registration
between ex and in vivo medical image volumes in order to relate
histology to in vivo imaging. As such, in Groen et al. (2010)
the ex vivo µCT and the in vivo CTA were rigidly (point-based)
registered using manually selected landmarks (e.g., calcium
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spots, lumen, bifurcation position are clearly visible in both
medical imaging modalities). Meyer et al. (2006) performed a
3D non-rigid registration between the ex vivo and in vivo MRs
using 3D TPS with 14 control points, and it was used as an
initialisation for a last non-rigid registration between in vivo
volume and the blockface image by optimising the position of
7 control points and using mutual information as the objective
function. Piert et al. (2009) used the methodology presented in
Park et al. (2008) and non-rigidly registered the ex vivo MR and
in vivo T2 MR volumes using TPS with 7 control points. The T2
MRI was chosen as the reference space. Additionally, in vivo T2
and CT volumes were non-rigidly registered using TPS with 7
control points and PET and CT volumes were rigidly registered.

6. Validation methods

We hereafter detail the ways authors have validated the ac-
curacy and the precision of image registration, as defined by
Maintz and Viergever (1998), in the context of mono- or mul-
timodal histological reconstruction (with or without medical
imaging).

Visual assessment. It may be the most intuitive way of validat-
ing the registration accuracy but must be carried out by experts
and does not provide with any quantitative measure. In the
case of histological volume reconstruction, criteria used to tell
whether registrations are successful encompass improved repre-
sentations of small structures (subcortical nuclei, cortical areas)
and smooth inner and outer borders (Wirtz et al., 2004). Wirtz
and colleagues used three classes of neuroanatomical structures
that are recognisable after registration when examining whole
rat brains: subcortical nuclei, ventricles, certain cerebral and
cerebellar cytoarchitectonic layers. Smoothness was explicitly
used a criterion for reconstruction in Cifor et al. (2011). Ju et al.
(2006) compared the reconstructed volume to real histology sec-
tions from Paxinos Atlas (Paxinos et al., 2000) at similar sagittal
and horizontal locations.

Visual assessment can also be used when comparing one
method against others (assuming that the same data have been
used). Gaffling et al. (2011) compared the reconstruction against
that obtained through standard non-registration scheme (without
landmarks) using histological data from Ju et al. (2006) and
artificial data. Ju et al. (2006) compared their reconstruction
against that obtained from the method described in Guest and
Baldock (1995).

In the case of multi-modal alignment, visual assessment can
be performed by (i) cross-section comparison. Malandain et al.
(2004) used two synchronised 3D viewers to display the two
volumes in the same geometry. This allowed showing same
cross-sections (axial, sagittal and coronal) as well as a cursor
at corresponding positions. In Alic et al. (2011), the alignment
between 3D in vivo T2 and histological volumes was qualita-
tively evaluated by two observers using visual inspection with
a moving quadrant view; or by (ii) superposition of adjacent
sections (Li et al., 2009; Choe et al., 2011). Dauguet et al.
(2007b) superimposed the external and internal borders of the

MRI brain—extracted using Deriche filter (Deriche, 1987)—
registered onto the blockface volume. A similar methodology
was used in Lebenberg et al. (2010). Malandain et al. (2004)
superimposed both volumes while adjusting colour maps and
transparency. This can also be used when assessing the quality
of the histological reconstruction (Colchester et al., 2000).

Landmark-based validation. It is the most widespread method,
used for example in Nir et al. (2014); Gibson et al. (2012); Liu
et al. (2012); Ward et al. (2012); Yang et al. (2012); Ou and
Davatzikos (2009). It consists of computing the Euclidean norm
between corresponding tie points extracted in two images (also
referred to as target registration error, TRE). This measure might
not be not appropriate for the validation of histological recon-
struction from 2D sections only (Ju et al., 2006): a minimum
distance does not mean the true shape has been recovered. It is
however very relevant in the case of multi-modal registration.
Those landmarks can be (i) needle tracks, such as in Colchester
et al. (2000); Lazebnik et al. (2003); Breen et al. (2003); or
(ii) manually identified anatomical landmarks, that are visually
tractable across modalities. Kim et al. (2000) used the anterior
commissure, the pillars of fornix, perivascular spaces and optic
chiasm. Osechinskiy and Kruggel (2010) used sulcal lines of
maximal depth (sulcal fundi or sulcal bottom lines), which were
automatically extracted in 3D by the procedure described in
Lohmann (1998). Nir et al. (2014) included the urethra, nodules,
scars (from previous biopsies), calcifications, and “other general
distinguished anatomical features” with the help of a radiologist.
Goubran et al. (2013, 2015a) computed the target registration
error based on 128 manually identified corresponding intrinsic
landmarks on MR images and histological slices. Adler et al.
(2014) calculated the boundary displacement error between two
manually drawn boundary curves in the MRI and the histol-
ogy. When such (manually extracted) landmarks are used for
registration, reliability of their locations is usually assessed by
looking at intra- and inter-user variability. For example, Gan-
golli et al. (2017) dealt with the former by asking a user to
perform landmark selection twice, five days apart, and compared
registered voxels shifts. The latter was dealt with by asking
two different users to perform the previous procedure. In addi-
tion, artificial perturbation of an established set of landmarks
in histology was performed in order to test the robustness of
the registration method to such changes. Landmark points may
also be (iii) anatomical artefacts. Singh et al. (2008) used the
centroids of manually segmented lesions to evaluate and validate
the registration accuracy. Alic et al. (2011) used characteristic
features in the tumour and on its contour. (iv) Ink marks were
used for example in Breen et al. (2005b).

Measures of overlap. They rely on regions of interest (RoIs)
manually delineated by an expert in two images. The Dice score
or the Jaccard index are two measures that can be computed to
quantify the amount of overlap between the two regions. Dice
score was used for instance in Alegro et al. (2016); Li et al.
(2009); Beare et al. (2008); Hess et al. (1998); Baheerathan
et al. (1998). Specifically, Lebenberg et al. (2010) manually
delineated the hippocampus, cortex, and striatum, as well as the

23



corpus callosum and substantia nigra, for comparison between
different reconstructed histological volumes. The hippocampus
was also manually delineated in every histological atlas in Palm
et al. (2010). In Mazaheri et al. (2010), the whole prostate, the
peripheral zone, and the transition zone were outlined by an
experienced radiologist in MR and histology images. Nir et al.
(2014) compared the registered histological slices with the corre-
sponding re-sliced images of the MR volume. For each slice, its
histological segmentation was compared with the corresponding
cross-section of the prostate surface, as obtained from a manual
segmentation of the volumetric image by a radiologist. The Dice
score was shown to be a reliable indicator of registration accu-
racy only for small and localised RoIs (which approximate point
landmarks) in several locations in the image space (Rohlfing,
2012).

Texture-based methods. Grey-level co-occurrence matrices
(GLCM) were presented in Haralick (1979) and were used to
assess the alignment quality of the histological reconstruction
in Baheerathan et al. (1998) and Cifor et al. (2011). Such ma-
trices were computed by calculating how often the pair made
of a pixel of interest with a certain intensity and its immediate
neighbour in the direction going across slices (orthogonal to the
cutting plane) occurs. Cifor et al. (2011) computed GLCMs in
the neighbourhood around the boundaries of the tissue rather
than the whole volume in order to quantify the smoothness of
the reconstruction.

Artificial perturbation of a ground truth. Artificially perturb-
ing a ground truth allows having access to the original align-
ment, against which the resulting alignment is compared. It is
done by taking a volumetric image which original alignment is
known (e.g., a 3D medical image) and applying random, smooth
transformations to each of its slice independently (as well as
e.g., including artefacts that simulate holes/tears, ignoring some
slices etc.). The error made after reconstruction is then com-
puted. It was used in Cifor et al. (2011); Nikou et al. (2003); Ju
et al. (2006); Braumann et al. (2005); Majka and Wójcik (2015);
Bagci and Bai (2010). Synthetic datasets (e.g., phantom models)
were used in Schwier et al. (2013); Ou and Davatzikos (2009);
Arganda-Carreras et al. (2010). Comparison against manually
realigned stack (by an expert physician researcher) was done
in Krinidis et al. (2003a); Groen et al. (2010). Robustness to
holes and tears was tested in Cifor et al. (2011), and the effect of
missing sections was assessed in Arganda-Carreras et al. (2010).
Both were addressed in Nikou et al. (2003).

7. Applications

We underline three main areas of applications within which
the covered literature falls into: (i) examining structures with
respect to their environment in 3D (Section 7.1) with or with-
out the help of 3D medical imaging; (ii) the correlation of data
(Section 7.2), which benefits from the access to the underlying
microbiology to improve the characterisation/discrimination of
signals in non-invasive imaging; and (iii) the creation of digital

atlases (Section 7.3), which allows for easy 2D and 3D visu-
alisations as well as quantitative measures of anatomy when
independent data from different subjects are included.

7.1. Examining functions and relationships in 3D
This section includes works for histological reconstruction

with or without the help of 3D medical imaging.
Mice brains were reconstructed in Gaffling et al. (2011, 2015)

and Müller et al. (2014). Gaffling et al. reconstructed Nissl-
stained cryosections of an adult mouse brain, available from Ju
et al. (2006). Other organs, such as rat liver tissue were studied
in Schwier et al. (2013), who proposed a registration method for
the reconstruction of histological whole slide images that exhibit
vessel structures. Human liver tissues were studied in Song et al.
(2013) and Roberts et al. (2012). Chen et al. (2003) described
the 3D configuration of extravascular matrix patterns in archival
human uveal melanoma tissue. Mice lungs was studied in Rusu
et al. (2015), and the heart, in Magee et al. (2015) and Mansoori
et al. (2007).

Tumours were studied in Braumann et al. (2005) and
Wentzensen et al. (2007). Braumann et al. analysed the 3D
structure of tumoural invasion fronts of carcinoma of the uterine
cervix to understand their architectural-functional relationship,
while Wentzensen et al. analysed the spatial organisation of a
cervical cancer.

Vasculature was investigated in Xu et al. (2015), who studied
the microvascular structure of the mouse hind-limb. Due to the
3D rearrangement of the microvessel networks during pathology,
a reconstruction is critical in understanding the dysfunction of
organs during disease. Ulrich et al. (2014) reconstructed the 3D
vascular network from immunostained sections of the human
spleen.

Cerebral function is dependant on neurological organisation
and metabolic activity (Hibbard et al., 1987). Autoradiography
allows looking in great details at, among others, the cerebral
metabolic rate of glucose utilisation in response to physiologic
activation of the visual, auditory, somatosensory, and motor
systems, and in pathologic conditions. Rat brains were looked
at in Hibbard and Hawkins (1984, 1988); Zhao et al. (1993);
Kim et al. (1997, 1995); Bronchti et al. (2002); Nikou et al.
(2003); Lee et al. (2005); Dubois et al. (2007). Bronchti et al.
(2002) studied the auditory activation of visual cortical areas in
the blind mole rat. Lee et al. (2005) looked into the cerebral
glucose metabolism in the rat cortical deafness model using 3D
voxel-based statistical analysis of autoradiographic data. They
observed a significant decrease in the glucose metabolism in
the bilateral auditory cortices. Dubois et al. (2007) combined
histology and autoradiography and studied interhemespheric
differences through voxel-wise statistical analyses. Hess et al.
(1998) studied the metabolism and function of gerbil brains. Au-
toradiographic volumes from 2-DG autoradiographs of primates
were reconstructed using 3D MRI in Rangarajan et al. (1997)
and Malandain et al. (2004).

7.2. Characterising 3D medical imaging signals
In the context of neurological diseases, Colchester et al. (2000)

proposed a method for 3D reconstruction from 2D histological
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sections using fiducial markers with the aim of registering these
post mortem volumes with MR images. This provides a 3D map-
ping of pathological changes throughout the brain, with applica-
tion to Creutzfeld-Jacob disease. Goubran et al. (2013, 2015a)
addressed the identification and delineation of lesions in MRI
to improve the surgical treatment of epilepsy. Lockwood-Estrin
et al. (2012) investigated whether specific semi-quantitative 3T
MRI parameters are associated with particular histological fea-
tures in temporal lobe specimens in epilepsy surgery patients
whose conventional MRI scan appeared normal.

Stroke was studied in Li et al. (2006), who correlated signal
changes observed in T1-weighted images acquired during brain
ischemia in small animal models to molecular features obtained
from histology. A similar effort was followed in Stille et al.
(2013), who registered “abnormal” images from a rat model of
stroke with 3D in vivo T2w MR images to study neurobiological
correlates of the variations in MRI signal intensities.

Another important application relates to cancer, for which
histopathologic examination can be related to in vivo—or ex
vivo (Gibson et al., 2012), MR imaging with the aim of im-
proving prostate cancer detection rate (Nir et al., 2014; Ward
et al., 2012; Alic et al., 2011; Chappelow et al., 2011a; Samavati
et al., 2011; Xiao et al., 2011; Mazaheri et al., 2010; Ou and
Davatzikos, 2009; Zhan et al., 2007). Le Nobin et al. (2015)
compared prostate tumour boundaries on MRI and histology
in order to define an optimal treatment margin for achieving
complete tumour destruction during image guided focal abla-
tion. Edwards et al. (2005) used histology to identify the tumour
boundaries in oral cancer patients with better accuracy in or-
der to enable precise PET-guided resection. Jiang et al. (2013)
combined in vivo MRI/MRSI, ex vivo brightfield/fluorescence
microscopic imaging, and histology to study human breast can-
cer. Seeley et al. (2014) studied secondary breast cancer in
the bone. They used diffusion weighted MRI, Matrix-Assisted
Laser Desorption/Ionisation Imaging Mass Spectrometry and
histology to observe changes caused by tumour cells in the bone
at the protein level. The mapping between histology and 3D
whole specimen imaging along with whole mastectomy volume
reconstruction from radiographs were studied in Mertzanidou
et al. (2017) and Mertzanidou et al. (2016). Breen et al. (2005b)
correlated in vivo MR thermal lesion images in rabbit thighs
with histological tissue damage. Humm et al. (2003) developed
a stereotactic fiduciary marker system for hypopharyngeal tu-
mour xenografts in rodents to co-register MRI, PET, histology,
autoradiography, and measurements from physiologic probes.

Vascular lesions can be seen in human MRI but are only
detected reliably in histology. Singh et al. (2008) registered
lesions microscopical features with their corresponding locations
in the in vivo MR images in order to understand better their
MRI signatures. Coombs et al. (2001) correlated MR signal
characteristics with carotid atherosclerosis plaque components
to define resolution and other requirements for future clinical
carotid MRI. Groen et al. (2010) studied the relationship between
biomechanical parameters and atherosclerotic tissue components
in the carotid using histology, in vivo CT angiography and ex
vivo MRI and CT imaging.

7.3. Combined MRI-histology atlases

Atlases provide detailed segmentations and classifications of
certain regions and sub-regions in a common anatomical refer-
ence framework. They stem from the need for accurate maps
of architectonic areas with reference to MRI images. The main
rationale is to help understanding the localisation of functional
activity in different regions (Brett et al., 2002) but they are also
of great importance in segmentation (Aljabar et al., 2009) or can
be used to improve preoperative planning Goerres et al. (2017)
and post-operative follow-up.

There exist three types of atlases: (i) MRI-based atlases
(Kovačević et al., 2005; Dorr et al., 2008). They are useful for
measuring volumes and analysing large morphological features
but suffer from imprecise delineations due to low resolutions. (ii)
Histology-based atlases (Ju et al., 2006). Most of them derive
from rodent brains but are limited: Ma et al. (2005) reported that
distortions during tissue preparation and the lack of structural
ground-truth in 3D make it hard to extract spatial cues or to
derive quantitative group variations. Annese et al. (2006) pro-
posed a high-resolution 3D reconstruction of blockface-imaged,
Methylene blue perfused primate brain tissue as the basis for
detailed stereotaxic anatomical atlases. The use of blockface
images bypasses the tedious correction and alignment of histo-
logical sections without external information. (iii) Combined
MRI and histology atlases (Saleem and Logothetis, 2012). They
combine accurate anatomical delineations in histology for prop-
agation in the 3D medical image, with ground truth 3D shape
for improved histological reconstructions. We emphasize the
last type of atlases as it involves multimodal image registration.

In human brain, Ourselin et al. (2001a) worked on the creation
of a brain atlas of the human basal ganglia based on histological
images and MR images. Chakravarty et al. (2006) proposed
another brain atlas of the basal ganglia and the thalamus derived
from serial histological data. Then, Yelnik et al. (2007)—and
Bardinet et al. (2009) later—both described the construction of
new atlases of the human basal ganglia based on immunohisto-
chemical and MRI data.

In the context of animal studies, Johnson et al. (2007, 2010)
presented an atlas of the C57BL/6 mouse brain based on MRI
and conventional Nissl histology. Lebenberg et al. (2010) pro-
posed to match an MRI-based 3D digital atlas derived from
C57Bi/6J mouse brain with 3D reconstructed post-mortem data
to automatically in order to evaluate morphology and function
in mouse brain structures in the context of Alzheimer’s disease.
Mailly et al. (2010) reported a procedure for the construction
of a 3D digital model of the primate and rodent basal ganglia.
Yushkevich et al. (2006) used an average MRI of 30 in vivo scans
of 10 mice in order to build a 3D reference histological atlas
of the mouse brain from Nissl-stained sections. Ali and Cohen
(1998) contributed to brain mapping by combining histological
sections of rat brain with a 3D brain atlas. Gefen et al. (2008)
followed the same effort and aligned Nissl-stained histological
sections with a volumetric mouse brain atlas for the segmenta-
tion of hippocampal complex. Dauguet et al. (2007b) proposed
a pipeline for the reconstruction of a histological volume from
whole baboon brain Nissl-stained sections using in vivo MRI.
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Amunts et al. (2013) created an ultrahigh-resolution 3D model
of a human brain at nearly cellular resolution of 20 micrometers.

Finally, histology-MRI atlases have also been used by Burton
et al. (2006), who combined MRI and Trichrome-stained histo-
logical sections in order to construct histo-anatomically detailed
models of cardiac 3D structure and function at a high resolution.

8. Discussion and perspectives

This section covers four topics: (i) some methodological com-
ments on pipelines (Section 8.1), their differences, advantages
and drawbacks; (ii) some of the remaining challenges (Sec-
tion 8.2); and (iii) concluding remarks on the importance of
cross-disciplinary knowledge in solving the biological question
associated with histology-MRI registration (Section 8.3).

8.1. Methodological comments
On hybrid pipelines. To start with, volume-based approaches
(Section 5.1.3) rely on a single round of registration between
histology and medical image volumes. In that respect, changing
the input (another reconstructed histological volume) results
in a different global alignment and thereby establishes differ-
ent correspondences between both modalities. In contrary, hy-
brid pipelines (Section 5.1.4) rely on the principle that global
alignment between both volumes is optimal only when the ar-
rangement of histological slices relative to each other is optimal,
and vice versa. In other words, should it be 3D-3D or 2D-
2D registration, one conditions the performance of the other.
This strategy offers a robust way to achieving accurate recon-
structions (Adler et al., 2014; Goubran et al., 2015b). While
Adler et al. performed 2D non-rigid registrations between his-
tology and medical imaging only after an iterative process had
converged—consisting of 2D and 3D multimodal linear regis-
trations, Goubran et al. proposed to include 2D non-rigid reg-
istrations of every histological slice with its corresponding MR
slice into the above-mentioned iterative process. Non-rigidly
deforming histological slices iteratively may however create
wrong correspondences and thus potentially lead to erroneous
global alignment with medical imaging if the initialisation is not
already good.

In view of Figure 9 in Adler et al. (2014), the gain from
complex methods for initial histological reconstructions is
also, in general, unclear in multimodal registration pipelines
(compared to pairwise registrations or simple stacking).
Furthermore, whereas consistency and accuracy of the initial
reconstruction would matter in the case of volume-based
approaches, hybrid pipelines allow to relax that constraint as
they account for it by design. Manual reconstructions using
open-source softwares represent another attractive solution
(Yushkevich et al., 2016; Adler et al., 2016).

On the use of intermediate modalities. Mapping histology with
medical imaging is challenging due to the alteration of the tissue
between the starting (in or ex vivo) and the end (histological
images) points of its handling. Not using any proxy may com-
plicate the path to solution.

Figure 5: Working with blockface photographs. Left: camera fixed on
a tripod, standing behind the histopathologist collecting tissue sections
from an automated microtome (bottom right). Top right: one blockface
photograph is shown.

Similarly to longitudinal image analysis, the more snapshots
during tissue preparation, the easier it is to track and correct
deformations between in vivo imaging and sectioned histology
(of the same specimen). This is where blockface photographs
are of great value (Figure 5). Using in addition fixed ex vivo
medical images allows accounting for the non-uniform shrinkage
that happens when extracting the sample. Besides, the main
rationale for also using fresh ex vivo scans may be the study
of the influence of fixation on tissues magnetic properties (see
Section 8.3). The right balance should however be found when
using intermediate modalities as this not only calls for more
resources (time, space, study goals etc.), but also impacts the
accuracy of the histological reconstruction: (i) none (Adler et al.,
2014); (ii) ex vivo medical images (Goubran et al., 2013); (iii)
fresh + fixed ex vivo and blockface photographs (Samavati et al.,
2011).

Another advantage of intermediate modalities lies in that they
offer additional levels of resolutions between that of in vivo and
histology. This naturally results in pyramidal schemes, in which
the optimisation of the transformation parameters is less likely
to get trapped in local optima.

8.2. Remaining challenges in histological reconstruction

Preprocessing. Tears and folds may be the most challenging
artefacts to account for and frequently result in discarding the
damaged section. The correction of tears requires to ascertain
that no tissue material has been lost. Assuming this is possible
to tell automatically, the problem is to recover in-plane conti-
nuity between separated structures. The problem of tears can
be extended to purposeful cuts when for example, whole mount
histology is to be studied and the tissue slice needs to be cut into
several pieces. Mosaicing/stitching is extensively studied in the
general computer vision literature (Brown and Lowe, 2007) and
may also be approached as Jigsaw puzzle solving (Gallagher,
2012; Noroozi and Favaro, 2016). So far, detection of folds has
relied on rather simplistic assumptions about the colour bright-
ness properties of an image and could benefit from the addition
of geometrical considerations. It is challenging to know how
many layers a single fold is made of. Assuming it is possible
to know that number, the correction of a fold still requires the
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Figure 6: Part-to-whole registration. One T2 slice from a slab of a
whole brain is shown in the image on the right. It was then cut into
blocks, each of which was put in separate cassettes and processed for
histology. A GFAP-stained section from one of these blocks (delineated
in red) is shown in the image on the left.

separation of structures belonging to each of the layers that
compose it. It also necessitates the rearrangement of the entire
piece of tissue according to its configuration prior to folding (i.e.,
unfolding), which may be approximated from adjacent sections.

Other fields are involved in similar problems and give poten-
tial to exciting parallels. They include computational geometry
(Demaine and O’Rourke, 2005) and computer vision with e.g.,
the simulation and visualisation of realistic tearing and cracking
of thin sheets (Pfaff et al., 2014); material science with e.g.,
the study of mechanical instabilities of certain materials during
compression (Kim et al., 2011; Pocivavsek et al., 2008); statis-
tical physics with e.g., the modeling of folding of thin sheets
(Deboeuf et al., 2013; Adda-Bedia et al., 2010); or even geology
with e.g. the study of orogeny (Ramsay, 1962). As a matter
of fact, Dempster (1942) gave extensive information about the
nature of tissue distortions during microtomy.

Image analysis. The extraction and manipulation of meaningful
information from histology and medical images is a very compli-
cated task. Thus, attention has been directed towards simplifying
them, that is classically, using the shape and the edges.

Such simplification is not trivial (Marr, 1982) and it cannot be
achieved by only looking at intensity changes (Guichard et al.,
2004): many unwanted edges are produced in the process, and
not only texture and noise are responsible for it (e.g., tears and
cuts in histological images). The reduction of images to their
main features thus relies on smoothing, which has become a
commonplace to separate “true edges” from noise. However,
what smoothing to use in multi-scale approaches—as in how to
actually build a scale space? (Morel and Yu, 2011), remains an
important matter to guarantee reliable and tractable detections.

In the monomodal case, feature-based based methods were
successfully applied to the registration of histological slices but
investigations such as the study of factors that influence keypoint
stability in scale space (Rey-Otero et al., 2015), or the derivation
of criteria for detectors comparison (Rey-Otero and Delbracio,
2015) may be of great benefit to the field: in general, little de-
tails are given about the consistency and reliability of detections.
Besides, a common drawback in their use for histopathological
image analysis is the large amount of features that may be gener-

Figure 7: The block of tissue (left) being too thick for histology pro-
cessing, was cut into sub-blocks, re-scanned (middle) and individually
processed. Nissl-stained reconstructed and rearranged histological sub-
blocks are shown (right). Image reproduced with permission from Adler
et al. (2014).

ated; this is due to the rich content of images, which can quickly
turn into “biological noise”.

In the multimodal case, histology and medical imaging have,
by nature, their own contrast and there does not always exist a
mapping between their constituents—incidentally, the latter is
one reason why intensity-based methods tend to get trapped in
local optima. As a matter of fact, classical feature description
methods, such as SIFT (Lowe, 1999), will also fail to match
features (Toews et al., 2013) especially due to non-linear local
intensity mappings (letting aside the lack of counterpart, which
could be handled with suitable descriptions). Alternative meth-
ods are necessary and rethinking descriptions may be required
(Heinrich et al., 2012). Note that manual extraction of anatomi-
cal landmarks in histology and medical imaging still remains a
safe way to establish correspondences (Gangolli et al., 2017).

Lastly, shape—as defined by Attneave (1954), can become a
valuable asset (see Figure 6), and multimodal registration may
be obtained as a result of shape recognition (Lisani et al., 2003).

Gutiérrez-Becker et al. (2016) tackled the aforementioned
limitations about description in a multimodal setting by learn-
ing correspondences between context-aware Haar-like features
from intravascular ultrasound and histology, and inferring dis-
placements by means of a regression forest. Such approach
naturally brings the promising tracks related to convolutional
neural networks (Greenspan et al., 2016) in the medical domain.
The alignment problem could directly benefit from the compu-
tational power of such methods for learning correspondences
between two different modalities. For example, Miao et al.
(2016) developed a method for real-time 2D-3D registration of
tools images with 3D CT. A survey on deep learning in medical
image analysis can be found in Litjens et al. (2017).

Part-to-whole. It is not uncommon for histopathology laborato-
ries to receive tissue samples that are (P1) too wide (Figure 6)
or (P2) too thick (Figure 7) to be processed as they are. The
sample is therefore cut into separate sub-blocks, each of which
is processed individually. If no scan of each sub-block is avail-
able, one has to keep track on which part of the sample each
sub-block corresponds to and use that knowledge to initialise
the registration of histological slices with the clinical image, or
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manually align them. As for problem (P2), attempts at using
similarity measures have been made to initialise registrations,
but those are ambiguous and rely on absolute measures rather
than relative ones (Yang et al., 2012). On that matter, Xiao et al.
(2011) showed that direct comparison of images from different
modalities is non-trivial, and fails to reliably determine slice
correspondences. To the best of our knowledge, no automatic
method to address (P1) has been proposed in the literature.

Fusion. To the best of our knowledge, Van de Plas et al. (2015)
made the first true attempt at drawing mutual enrichment from
separate modalities (mass spectrometry and microscopy). This
seems reasonable to think that one goal of combining informa-
tion could also be to actually do so through fusion (as opposed
to only overlay images), and thereby for example, increase the
spatial resolution as well as augment the informative power of
3D medical imaging.

8.3. Concluding remarks
The problem of histological reconstruction using medical

imaging involves at least four experts: a histopathologist, a
physicist, a computer scientist and a physician in order to an-
swer a single biological question. Interdisciplinary collabo-
rations are essential and communication on the object to be
delivered/handled at every stage, time constraints and resources
is critical (what?, how?, when?). This allows avoiding compro-
mises, thinking backward and instead appropriately (re)defining
a problem (Cristancho et al., 2017). For the sake of illustration,
such a timeline is presented in Figure 2 of the Supplementary
Methods 1 from Hawrylycz et al. (2012). Cross-field aware-
ness is crucial as data analyses rely on the assumption that the
object remains similar enough through time and stages to be
reliably compared across modalities. Improvements are consis-
tently being made to minimise alterations of tissue and towards
understanding the causes and effects of such variations.

Let us consider the case of ex vivo MRI, which is commonly
applied in neuroscience for a better understanding of the con-
trast mechanisms of disease-induced tissue changes. Its use
supposes that the tissue has been preserved (fixed/frozen). As
a matter of fact, the effect of time and storage conditions on
the magnetic properties of post mortem tissue is important for
correct interpretation of in vivo clinical results based upon ex
vivo measurements.

According to Fischer et al. (1989) and more recently to Kaye
et al. (2010), quick deep freezing is a satisfactory method of stor-
age for tissue samples (e.g. brain, heart) which does not affect
T1 or T2 significantly. However, this method is not applicable
to liver and muscle tissues (Duck, 2013).

In contrast, chemical fixation (aldehydes, and commonly for-
malin) causes reduction in tissue T1 and increase in T2 relaxation
times for human tissue (Duck, 2013), as well as a significant
decrease of mean water diffusivity in e.g. nervous tissue. Little
is known about how fixative solutions alter the tissue microstruc-
tures responsible for its MRI properties: while some effects
may be reversible, others may be irreversible (Purea and Webb,
2006; Shepherd et al., 2009). Conducting such investigations
may require the imaging of the fresh specimen (fixative-free) as

well as examinations of the effects of different fixation protocols
(Shepherd et al., 2009).

Lastly, detailing data acquisition protocols goes beyond the
scope of this review but it still seems relevant to stress out the
importance of generating standard data. As far as image reg-
istration is concerned, it is simply a tool designed to achieve
accurate and reproducible correspondences between separate
images. However, improving it becomes vain if similar attention
is not also directed towards ensuring consistent, quality input
data within and across institutions (Lin and Shi, 2015; Milidonis
et al., 2015; Traboulsee et al., 2016). Standardising protocols is
not easy and immediate, and although the importance of such
undertaking is acknowledged by many, so is the amount of work
that remains to be done. At the other end, since quantitative
measurements are to be extracted from those images and inter-
preted by clinicians/physicians, a comparable amount awaits
computational imaging scientists dealing with such variations
(Madabhushi and Lee, 2016).
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Delzescaux, T., Dauguet, J., Condé, F., Maroy, R., Frouin, V., 2003. Using 3d
non rigid ffd-based method to register post mortem 3d histological data and
in vivo mri of a baboon brain. In: Medical Image Computing and Computer-
Assisted Intervention-MICCAI 2003. Springer, pp. 965–966. 18, 19

Demaine, E. D., O’Rourke, J., 2005. A survey of folding and unfolding in
computational geometry. Combinatorial and computational geometry 52,
167–211. 27

Dempster, W. T., 1942. The mechanics of paraffin sectioning by the microtome.
The Anatomical Record 84 (3), 241–267. 27

Denk, W., Horstmann, H., 2004. Serial block-face scanning electron microscopy
to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2 (11), e329.
5

Deriche, R., 1987. Using canny’s criteria to derive a recursively implemented
optimal edge detector. International journal of computer vision 1 (2), 167–187.
23
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Paku, S., 2012. Structural analysis of oval-cell–mediated liver regeneration
in rats. Hepatology 56 (4), 1457–1467. 10

Ding, S.-L., Royall, J. J., Sunkin, S. M., Ng, L., Facer, B. A., Lesnar, P.,
Guillozet-Bongaarts, A., McMurray, B., Szafer, A., Dolbeare, T. A., et al.,
2016. Comprehensive cellular-resolution atlas of the adult human brain.
Journal of Comparative Neurology 524 (16), 3127–3481. 2

Dorr, A., Lerch, J. P., Spring, S., Kabani, N., Henkelman, R. M., 2008. High
resolution three-dimensional brain atlas using an average magnetic resonance
image of 40 adult c57bl/6j mice. Neuroimage 42 (1), 60–69. 25

Drew, B., Jones, E. C., Reinsberg, S., Yung, A. C., Goldenberg, S. L., Kozlowski,
P., 2010. Device for sectioning prostatectomy specimens to facilitate com-
parison between histology and in vivo mri. Journal of Magnetic Resonance
Imaging 32 (4), 992–996. 17

Dubois, A., Dauguet, J., Herard, A.-S., Besret, L., Duchesnay, E., Frouin,
V., Hantraye, P., Bonvento, G., Delzescaux, T., 2007. Automated three-
dimensional analysis of histological and autoradiographic rat brain sec-
tions: application to an activation study. Journal of Cerebral Blood Flow
& Metabolism 27 (10), 1742–1755. 3, 5, 8, 10, 14, 24

Duck, F. A., 2013. Physical properties of tissues: a comprehensive reference
book. Academic press. 28

Edwards, P. J., Nijmeh, A. D., McGurk, M., Odell, E., Fenlon, M. R., Mars-
den, P. K., Hawkes, D. J., 2005. Validation of pet imaging by alignment

to histology slices. In: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2005. Springer, pp. 968–975. 25

Eiben, B., Palm, C., Pietrzyk, U., Amunts, K., Davatzikos, C., 2010. Perspective
error correction using registration for blockface volume reconstruction of
serial histological sections of the human brain. In: Bildverarbeitung für die
Medizin. Citeseer, pp. 301–305. 20

Emmenlauer, M., Ronneberger, O., Ponti, A., Schwarb, P., Griffa, A., Filippi,
A., Nitschke, R., Driever, W., Burkhardt, H., 2009. Xuvtools: free, fast and
reliable stitching of large 3d datasets. Journal of microscopy 233 (1), 42–60.
9

Falcão, A. X., Udupa, J. K., Samarasekera, S., Sharma, S., Hirsch, B. E., Lotufo,
R. d. A., 1998. User-steered image segmentation paradigms: Live wire and
live lane. Graphical models and image processing 60 (4), 233–260. 8, 22

Fernandez-Gonzalez, R., Deschamps, T., Idica, A., Malladi, R., de Solorzano,
C. O., 2004. Automatic segmentation of histological structures in mammary
gland tissue sections. Journal of biomedical optics 9 (3), 444–453. 8

Ferrante, E., Paragios, N., 2017. Slice-to-volume medical image registration: A
survey. Medical Image Analysis 39, 101–123. 18

Feuerstein, M., Heibel, H., Gardiazabal, J., Navab, N., Groher, M., 2011. Recon-
struction of 3-d histology images by simultaneous deformable registration. In:
Medical Image Computing and Computer-Assisted Intervention–MICCAI
2011. Springer, pp. 582–589. 10, 15

Fiala, J. C., 2005. Reconstruct: a free editor for serial section microscopy.
Journal of microscopy 218 (1), 52–61. 10

Filippi, M., Rocca, M. A., Barkhof, F., Brück, W., Chen, J. T., Comi, G., DeLuca,
G., De Stefano, N., Erickson, B. J., Evangelou, N., et al., 2012. Association
between pathological and mri findings in multiple sclerosis. The Lancet
Neurology 11 (4), 349–360. 2

Fischer, B., Modersitzki, J., 2003. Curvature based image registration. Journal
of Mathematical Imaging and Vision 18 (1), 81–85. 14, 15

Fischer, H. W., Van Haverbeke, Y., Rinck, P. A., Schmitz-Feuerhake, I., Muller,
R. N., 1989. The effect of aging and storage conditions on excised tissues as
monitored by longitudinal relaxation dispersion profiles. Magnetic resonance
in medicine 9 (3), 315–324. 28

Fischl, B., 2013. Estimating the location of brodmann areas from cortical folding
patterns using histology and ex vivo mri. In: Microstructural Parcellation of
the Human Cerebral Cortex. Springer, pp. 129–156. 2

Fischler, M. A., Bolles, R. C., 1981. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM 24 (6), 381–395. 13

Fónyad, L., Shinoda, K., Farkash, E. A., Groher, M., Sebastian, D. P., Szász,
A. M., Colvin, R. B., Yagi, Y., 2015. 3-dimensional digital reconstruction of
the murine coronary system for the evaluation of chronic allograft vasculopa-
thy. Diagnostic pathology 10 (1), 16. 10
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