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DynG2G: An Efficient Stochastic Graph Embedding
Method for Temporal Graphs

Mengjia Xu , Apoorva Vikram Singh, and George Em Karniadakis

Abstract— Dynamic graph embedding has gained great atten-
tion recently due to its capability of learning low-dimensional
and meaningful graph representations for complex temporal
graphs with high accuracy. However, recent advances mostly
focus on learning node embeddings as deterministic “vectors”
for static graphs, hence disregarding the key graph temporal
dynamics and the evolving uncertainties associated with node
embedding in the latent space. In this work, we propose an
efficient stochastic dynamic graph embedding method (DynG2G)
that applies an inductive feedforward encoder trained with node
triplet energy-based ranking loss. Every node per timestamp is
encoded as a time-dependent probabilistic multivariate Gaussian
distribution in the latent space, and, hence, we are able to
quantify the node embedding uncertainty on-the-fly. We have
considered eight different benchmarks that represent diversity in
size (from 96 nodes to 87 626 and from 13 398 edges to 4 870 863)
as well as diversity in dynamics, from slowly changing temporal
evolution to rapidly varying multirate dynamics. We demonstrate
through extensive experiments based on these eight dynamic
graph benchmarks that DynG2G achieves new state-of-the-
art performance in capturing the underlying temporal node
embeddings. We also demonstrate that DynG2G can simulta-
neously predict the evolving node embedding uncertainty, which
plays a crucial role in quantifying the intrinsic dimensionality
of the dynamical system over time. In particular, we obtain
a “universal” relation of the optimal embedding dimension,
Lo, versus the effective dimensionality of uncertainty, Du, and
infer that Lo = Du for all cases. This, in turn, implies that the
uncertainty quantification approach we employ in the DynG2G
algorithm correctly captures the intrinsic dimensionality of the
dynamics of such evolving graphs despite the diverse nature and
composition of the graphs at each timestamp. In addition, this
L0 − Du correlation provides a clear path to selecting adaptively
the optimum embedding size at each timestamp by setting
L ≥ Du.

Index Terms— Dynamic graph, graph embedding, multivariate
Gaussian distribution, uncertainty quantification.
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I. INTRODUCTION

NUMEROUS real-world systems encompassing complex
behavior and interaction among entities can be naturally

modeled as “graphs” [1]. Recently, deep neural network-based
graph embedding techniques have proven very promising and
effective in learning highly informative graph representations
for various graph analytics problems in diverse fields [2], e.g.,
social network analysis [3], protein–protein interaction predic-
tion [4], functional brain network analysis [5], [6], electronic
health record data analysis [7], molecular property prediction
in chemistry [8], tumor microenvironment staging for prog-
nosis prediction of the gastric cancer [9], and high-energy
physics data analysis [10]. Specifically, by leveraging neural
networks, such as SkipGram [11], autoencoder [12], and
graph convolutional networks (GCNs) [13], high-dimensional
graphs can be effectively transformed into low-dimensional
latent space as continuous vectors (i.e., node embeddings),
while the original graph topological properties are maximally
preserved. Moreover, the node embedding distances in the
latent space can be utilized to approximate the node similarity
in the original irregular space. To this end, the obtained
graph embeddings can benefit a variety of downstream graph
analysis tasks, e.g., node classification, link prediction, anom-
aly detection, and recommender systems. Nevertheless, many
of the aforementioned high-dimensional graphs in different
applications exhibit heterogeneous evolving topologies and
varying features at the temporal scale. Hence, temporal graph
embedding methods have surged to become a hot topic due
to their key advantages in capturing graph representations at
both spatial and temporal scales. However, how to efficiently
embed the dynamic graphs still remains quite challenging
requiring to address the following three main questions.

1) How to stabilize the graph embedding training caused
by heterogeneous graph dynamics in both topology and
feature occurred in the temporal graphs?

2) How to estimate the uncertainty for node embeddings so
that it provides robustness for fine-grained quantification
of node properties in the latent space?

3) How to reduce computational cost and enhance scala-
bility for graphs.

To tackle the aforementioned issues, we present a new
stochastic graph embedding method (DynG2G) for learn-
ing probabilistic temporal graph representations and enabling
node uncertainty quantification. The proposed DynG2G model
follows the four main steps: 1) sampling node triplets
based on the k-hop neighborhood incorporating edge weights;
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2) developing an adaptive feedforward encoder to learn graph
embeddings for temporal graphs with varying node numbers
in different graph snapshots1; 3) initializing the deep encoder
for the current timestamp with the learned hyperparameters
from the previous graph snapshots; and 4) training and opti-
mizing the neural network with a triplet energy-based square-
exponential contrastive loss.

To demonstrate the effectiveness of DynG2G, we test it
for temporal link prediction on eight different benchmarks,
varying in size of nodes and edges but also varying in the
intrinsic dynamics from very stable graphs to rapidly changing
graphs as a function of time. Comparisons with baselines,
when available, demonstrate that DynG2G can achieve favor-
able predictive performance and high efficiency in temporal
link prediction on different benchmarks by using the obtained
dynamic probabilistic node embeddings (i.e., multivariate
Gaussian distribution in terms of mean and variance vectors).
In addition, DynG2G provides an important capability of
uncertainty quantification for the node embedding, which
allows us to produce more reliable and quantitative graph
representations in the latent space for various downstream
tasks. Moreover, it reveals the (possibly evolving) effective
dimensionality of the complex dynamical system that we
represent as we demonstrate in our experiments for all eight
benchmarks. This, in turn, relates to the optimum embedding
size, which for problems with highly transient dynamics may
be changing over time.

The main contributions of this article are given as follows.

1) We developed a stochastic graph embedding model
(DynG2G) that projects temporal graphs from irregular
domain to low-dimensional “function” space, which
allows to capture node embedding uncertainty.

2) DynG2G produces more informative node embeddings
that achieve superior performance in temporal link
prediction task, for all benchmarks and especially for
the highly dynamic benchmarks, e.g., UC Irvine Mes-
sages (UCI) and Bitcoin-OTC (Bit-OTC) datasets, see
details in Section IV-B.

3) We discovered a “universal relation,” a correlation that
connects the optimum embedding dimension with the
effective dimension of the dynamic system, hence iden-
tifying a clear way to select the optimum embedding
dimension using uncertainty quantification.

We have posted our DynG2G code2 on GitHub so that the
interested reader can reproduce the results.

II. RELATED WORK

Dynamic graph embedding is a key and prerequisite step for
temporal graph machine learning. It has attracted an increasing
interest in dynamic graph embedding studies recently due to
its superiority in learning latent graph representations for many
different tasks. There are four main types of approaches.

1The number of the hidden units in our DynG2G encoder can be adaptively
assigned based on the changing node numbers in different graph snapshots.

2https://github.com/GraceXu182/DynG2G

A. Matrix Factorization-Based Models

For this approach, Zhu et al. [14] proposed the DHPE
model that mainly applies the eigendecomposition to con-
struct the high-order proximity matrix of the network and
then dynamically updates the node embedding of the next
snapshot via the matrix perturbation approach [15]. However,
matrix factorization-based models usually suffer from high
computational complexity for large-scale temporal graphs;
moreover, the incremental matrix decomposition procedure
is prone to error accumulation. Zhang et al. [16] proposed
another more advanced TIMERS model, which effectively
reduces the error accumulation problem by using an error
bound-based constraint during node embedding updating over
time.

B. SkipGram-Based Models

The SkipGram model (also known as word2vec) was
originally developed as a random walk-based language
embedding approach, and it has been very successfully
applied in diverse static graph embedding models, e.g.,
node2vec [17] and deepwalk [18]. The majority of dynamic
graph embedding approaches focus on leveraging the conven-
tional static graph embedding models incorporating temporal
information [19]–[22]. In dynnode2vec, Mahdavi et al. [20]
adopted the learned parameters in the previous snapshot for
network initialization in the next snapshot. They trained the
new evolving random walks and updated the node embedding
for the evolving nodes at each time step. Hence, dynnode2vec
can take advantage of the previously learned mappings to
incorporate the important temporal dependencies features to
predict the links in the next time step t ; dynnode2vec [20]
outperforms the conventional static graph embedding model
(i.e., node2vec [17]) for anomaly detection. In addition
to learning embeddings for discrete graph snapshots using
conventional static graph embedding models, the CTDNE
model [23] employs a continuous-time dynamic graph embed-
ding approach, which enables learning of the time-preserving
graph embeddings using the SkipGram model with valid tem-
poral walks (WT ) dynamic graph streams (a scale of seconds
or milliseconds).

C. Autoencoder-Based Models

The unsupervised learning-based deep autoencoder has
shown great effectiveness in learning static graph embeddings
and is particularly applicable to graph reconstruction problems.
Goyal et al. [24] proposed a “semisupervised” dynamically
expansion autoencoder model (DynGEM) for discrete-time
growing graph embedding. To achieve the optimal graph
embeddings over time, it optimizes the parameters of deep
autoencoder for each snapshot through minimizing a weighted
combination loss built by the embedding loss and the graph
reconstruction loss, which can help to preserve both local
and global graph structure properties. However, DynGEM
only considers temporal patterns spanning in two consecutive
time snapshots. Moreover, it assumes that the graph dynamic
changes are smooth and use regularization terms to disallow
rapid changes. To address these problems, Goyal et al. [25]
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further proposed a dyngraph2vec model, including three
variants (dyngraphAE, dyngraphRNN, and dyngraphAERNN)
for learning dynamic graph series embeddings over long
sequences of previous snapshots. The main goal of dyn-
graph2vec [25] is to predict the graph embedding for the future
snapshot incrementally using the past snapshots. A recur-
rent neural network (RNN) layer was added to learn the
temporal dynamics across different graph snapshots. Hence,
dyngraph2vec [25] adopted a lookback parameter (l = 1, 2,
and 3) to specify the number of lookback time steps for
predicting the next snapshot. However, the model is large and
computationally expensive.

D. GNN-Based Models

With the great success of graph neural networks (GNNs)
in static graph representation learning, a few recent studies
proposed time-dependent GNN models integrating GNN and
RNN [or long short-term memory (LSTM)] for learning
temporal graph sequence representations in different graph
snapshots, e.g., TDGNN [26] and EvolveGCN [27]. More
recently, Sankar et al. [28] and Rossi et al. [29] adopted
the self-attention mechanism to jointly encode the struc-
tural and temporal dynamics for temporal graph sequences.
The self-attention mechanism helps to effectively capture
long-range dependencies and draw most relevant context from
all past graph snapshots to adaptively assign interpretable
weights for previous time steps. Moreover, there are also a
few works modeling the dynamic graphs as temporal point
processes in conjunction with the attention mechanism, e.g.,
DynamicTriad [30], HTNE [31], and DyRep [32]. More
dynamic graph embedding literature can be found in the
surveys [2], [33]–[35].

Nevertheless, the majority of existing dynamic graph
embedding models are “deterministic,” hence disregarding the
important “uncertainty information” for the graph embeddings
in the latent space. As we will demonstrate here, the uncer-
tainty quantification is ultimately related to the embedding
dimension of the system, with the effective dimension of the
uncertainty being a lower bound for the optimum embedding
dimension. This is a key finding of our work and is verified
for all eight diverse benchmarks we consider in our current
study.

III. METHODOLOGY

A. Notation

We model a dynamic graph as a series of T graph snapshots
G = {G1, G2, . . . , GT }, see an example in Fig. 1(a). The
graph snapshot Gt at timestamp t consists of a vertex set
Vt = {v1, v2, . . . , v|Vt |} of |Vt | nodes and an edge set Et =
{ei, j |i, j ∈ |Vt |}, where each edge ei, j in the graph connects
two vertices vi and v j . At represents the corresponding
adjacent matrix of graph snapshot Gt , which can be either
weighted or unweighted, directed or undirected. The node
features are denoted by Xt ∈ R

Vt×D, where D is the dimen-
sionality of the node attributes. The main goal of stochastic
temporal graph embedding is to learn time-dependent graph
mappings (F = { f1, f2, . . . , fT }) for different graph snapshots

such that each graph node can be represented as a sequence
of low-dimensional multivariate Gaussian distributions.

B. Problem Formulation

Here, motivated by the previous work “Graph-2-Gauss
(G2G)” [37] that only focuses on learning graph Gaussian
embeddings for static graphs, we propose an efficient and
scalable graph Gaussian embedding framework (“DynG2G”)
for more complex time-evolving graphs. The main goal
of our work is to learn temporal graph embeddings as
low-dimensional statistical distributions by incorporating the
important graph evolutionary information from the previous
graph sequences. In particular, the proposed DynG2G is
capable of projecting a temporal graph from a non-Euclidean
space to low-dimensional time-dependent “function” space
(unlike the conventional “deterministic vector” space intro-
duced in most existing studies [24], [25], [27], [38]) via
a series of stochastic mappings (F � = { f �1, f �2, . . . , f �T }) as
shown in Fig. 1(b). Each graph mapping f �t transforms the
graph snapshot (Gt ) at timestamp t to a low-dimensional
multivariate Gaussian distributions Ht = {hi

t |i ∈ |Vt |}, where
each node can be represented as a joint normal distribution
hi

t = N (μi ,�i ) in terms of a mean vector μi ∈ R
L and

a covariance matrix �i ∈ R
L×L (L is the embedding size).

Finally, both spatial graph structure properties and temporal
graph dynamics can be maximally preserved in the latent
space.

C. DynG2G: A Stochastic Temporal Graph Embedding
Framework With Uncertainty Quantification

The main workflow of the DynG2G is shown in Fig. 1,
involving four key phases: 1) generation of node triplet based
on weighted k-hop sampling for every graph snapshot as
shown in Fig. 1(a); 2) building a snapshot-level stochastic
graph embedding model based on a simplified nonlinear feed-
forward neural network encoder ( f �) with one “ hidden layer”
followed by two separate projection layers (pmu and pvar)
for outputting the final low-dimensional multivariate Gaussian
distributions, i.e., mean and variance vectors, respectively;
3) training recurrently the DynG2G model for the graph
snapshot Gt+1 at timestamp t + 1 by transferring the pre-
trained parameters from Gt at the previous timestamp t; and
4) optimization of the model with the node triplet-based
contrastive ranking loss.

1) Generation of Node Triplet Based on k-Hop Neighboring
Sampling Approach: In order to preserve graph topological
properties in the latent space, we first sample the node
neighbors based on different k (k = 1, 2, 3, . . . , K ) hops,
e.g., Nik denotes the k-hop node neighbors of node vi . The
K node hops (“node context”) sampled for each node in the
graph snapshot are then used to generate the corresponding
node triplet set (Tt = {(vi , v

+
i , v−i )|vi ∈ Vt}), where vi is

the anchor node and v+i and v−i are its positive nodes and
negative nodes, respectively. The shortest path (sp(.)) between
positive node pair (vi and v+i ) and the shortest path between
the negative node pairs (vi and v−i ) follow the constraint:
sp(vi , v

+
i ) < sp(vi , v

−
i ). In other words, positive nodes (v+i )
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Fig. 1. Schematic of our proposed DynG2G framework for stochastic temporal graph embedding. (a) Dynamic graph G is composed of T graph snapshots.
To learn the latent graph representations for G = {G1, G2, . . . , GT } over T timestamps (vertices and links in red are the new added ones), we first generate
for each node a set of node triplets (T1) based on the k-hop node neighbor sets computed from the adjacency matrix A1 of G1. (b) Attribute matrix X1

(“one-hot encoding” of the nodes if a nonattributed graph) at the first timestamp is input to an encoder f �1(·) with parameters θ1 and two separate projection

layers (pmu and pvar), yielding the snapshot-level graph node embeddings in terms of mean vector μi
1 ∈ R

L and diagonal covariance matrix �i
1 ∈ R

L×L for
each node vi (L is the embedding size). For the next snapshot training, we employ an extension of the Net2WiderNet approach [36] to adaptively expand
the network hidden layer size based on the number of changing nodes in the next snapshot. (c) To effectively capture the temporal graph dynamics across
different graph snapshots, we train the encoder f2(·)� in the second timestamp with the hyperparameters (θ2) transferred from the pretrained model for the
first graph snapshot. We trained the model with a time-dependent node triplet-based contrastive loss L(Tt , θt ,N (μt , �t )).

are much closer (i.e., within smaller hops) to the anchor node
vi than the negative nodes v−i . In order to achieve multiscale
graph structure property preservation in the latent space,
we ultimately rank the Kullback–Leibler (KL)-divergence dis-
similarity between the latent node Gaussian embeddings over
the sampled different K -hops for each node. The detailed
node pair energy ranking formulas are shown in the following
equation:
E(Pi , Pk1) < E(Pi , Pk2 ) < E(Pi , Pk3) · · · < E(Pi , PkK )

∀k1 ∈ Ni1, k2 ∈ Ni2, . . . , kK ∈ Ni K . (1)

2) Stochastic Temporal Contrastive Graph Embedding
Learning: In comparison with the previous works that trans-
form temporal graphs as deterministic “low-dimensional” vec-
tors, in our work, we propose a stochastic temporal contrastive
graph embedding learning method, which can transform each
node of a graph snapshot into a density-based function space
in terms of a multivariate Gaussian distribution via a nonlinear
feedforward neural network ( f �t with one hidden layer of
512 units) and two separate projection heads ( pmu and pvar),
which share the same parameters (θt) as the encoder f �t ) to first
learn the hidden representation for each graph node and then
output the final stochastic graph node Gaussian embeddings
(Nt(μt ,�t )) at timestamp t in terms of the mean vector
(μt ∈ R

L ) and the covariance matrix (�t ∈ R
L×L ) (the diago-

nal elements are the “variances”), with L the node embedding

size. More details about the snapshot-level encoding procedure
can be seen from the first column of Fig. 1.

Subsequently, aiming to make our DynG2G model encode
temporal graph patterns from the previous graph snapshot
(Gt−1) to the next one Gt , we first input the weights to
the Net2WiderNet model [36] and widen the encoder input
layer size according to the increasing number of nodes in
the Gt . Following [36], we assume that graph snapshots Gt−1

and Gt have node numbers Vt−1 and Vt , respectively, where
Vt > Vt−1. After training the G2G encoder f �t−1(·) for Gt−1,
we need to widen the input layer size of the encoder f �t (·) for
the next timestamp based on the increased number of nodes
(Vt−Vt−1); then, θt−1 is replaced by θt . If Gt−1 has Vt−1 inputs
and 512 outputs, and timestamp t has Vt inputs, then θt−1 ∈
RVt−1×512 and θt ∈ RVt×512. Net2WiderNet enables the encoder
to increase the layer size that has Vt inputs, with Vt > Vt−1.
By defining a random mapping function g : {1, 2, . . . , Vt } �→
{1, 2, . . . , Vt−1} that satisfies g(i) = j if j ≤ Vt−1 and else
g(i) = random sample from {1, 2, . . . , Vt−1}, then we define
a new weight matrix Ut−1 and Ut representing the weights
for these new layers. Hence, the new weights in the next
timestamp are obtained by

U j
t−1 = θ

g( j)
t−1 , U j

t = 1

|{x |g(x) = g( j)}|θ
g( j)
t (2)

where the first Vt−1 columns of θ(t−1) are copied directly
into Ut−1. Columns Vt−1+1 through Vt of Ut−1 are created by
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choosing a random mapping as defined in g by replacement.
Specifically, each column of θt−1 may be copied multiple
times. Regarding the weights in Ut , we could account for
the multiplicity by dividing the weight by a factor given by
(1/|{x |g(x) = g( j)}|).

Therefore, the DynG2G architecture transfers the pretrained
encoder’s parameters in the previous timestamp for the initial-
ization of the encoder’s parameters at the current timestamp,
which allows for more efficient and stable training and effec-
tively captures the intersnapshot evolving patterns. Finally,
with the obtained graph node Gaussian distribution embed-
dings in the latent space, we can build the objective function
as a form of “triplet-based contrastive loss” [see (3)]. In the
latent representation space, we use the KL-divergence measure
to quantify the difference between two nodes’ Gaussian distri-
butions. The loss function contains two main terms: one is the
positive pairs’ energy term measuring the “KL-divergence”
dissimilarity between the positive node pairs sampled from
each graph snapshot; the other one is the negative pairs’ energy
term for measuring the “KL-divergence” dissimilarity between
the negative node pairs. The detailed formulas are shown
in (4). Note that a distinct property of our DynG2G method
is that the obtained node embedding variance allows us to
quantify important uncertainty information for temporal graph
node embeddings in the latent space. Hence, our proposed
DynG2G framework enables us to quantitatively analyze the
time-dependent dynamics as well as the transition complexity
of the dynamic system over time.

3) Model Optimization With Node Triplet-Based Contrastive
Loss: In order to optimize the DynG2G model and achieve the
optimal stochastic graph embeddings for dynamic graph G,
we implement the DynG2G model in PyTorch and apply
the Adam optimizer to minimize the time-dependent “node
triplet-based” contrastive loss such that the positive node pairs’
energy (i.e., “KL-divergence”) are minimized and the negative
node pairs’ embedding energy can be maximized. Hence, the
positive node pairs’ embeddings are more similar, while the
negative pairs’ embeddings are more dissimilar in the latent
space

Lt =
∑

(vi ,v
+
i ,v−i )∈Tt

[
E

2
(vi ,v

+
i )
+ e
−E

(vi ,v
−
i )

]
(3)

where E(vi ,v
+
i ) and E(vi ,v

−
i ) refer to the KL-divergence [see (4)]

between the multivariate Gaussian embeddings of positive
node pairs and negative node pairs in the node triplet set (Tt ),
respectively. Tt is generated by sampling each node’s neigh-
bors by k-hop neighborhood introduced in step 1) [37]

DK L(Ni (μ
i ,�i )||N j(μ

j ,� j ))

= 1

2

[
tr(� j−1

�i )+ (μ j − μi)T � j−1
(μ j − μi )− L

+ log
|� j |
|�i |

]
(4)

where tr(·) denotes the trace of a matrix and L corresponds to
the dimensionality of the node’s Gaussian embeddings in the
latent space.

The details of the DynG2G algorithm are presented in
Algorithm 1.

Algorithm 1: DynG2G
Input: Weights θt−1 of the network at previous

timestamp, Attribute matrix Xt , Number of
vertices of current timestamp Vt and previous
timestamp Vt−1, node triplet set Tt .

Output: Time-dependent probabilistic embeddings Ht =
{N (μi

t ,�
i
t )|i ∈ R

Vt }, where μi
t ∈ R

Vt×L ,
�i

t ∈ R
Vt×L×L .

1 for t ← 1 : T do
2 for each epoch do
3 Create a G2G Encoder model f �t (·) with initialized

weights θt

4 if t = 1 then
5 Initialize θt with random weights
6 else
7 θt = θt−1

8 end
9 if Vt > Vt−1 then

10 f �t (·)← Net2Wider( f �t−1(·))
11 end
12 μt ← pmu( f �t , θt )
13 �t ← pvar( f �t , θt)
14 Loss = L(Tt , θt ,N (μt ,�t ))
15 Backpropogate the loss
16 end
17 end
18 Return Ht

We first train the encoder using the graph at the first
timestamp G1 with random initialization of model parame-
ters θ1. The subsequent timestamps are trained using the
encoder with the condition that its initialization will be
done using the parameters from the previous timestamp
encoder θt−1. In order to handle the growing graphs, the
encoder is “widened” if the number of nodes increases in the
graphs of subsequent timestamps. The “widening” of encoder
allows us to increase the number of neuron units in the input
layer of the encoder while preserving the weights of the
network from the earlier timestamps of the training. We handle
the widening of the encoder by adopting and expanding the
Net2WiderNet algorithm [36]. Once the network is trained for
the (t − 1)th timestamp, the network weights are first input to
Net2WiderNet that widens the hidden layer size of the encoder
on the basis of the number of “new nodes” [in red in Fig. 1(a)]
added to graph snapshot. The output from the Net2WiderNet
gives us the network weights to initialize the encoder at the
next timestamp t . To this end, using the network parameters
from the previous timestamp results in transferring temporal
information from f �t−1 to f �t effectively and achieves faster
convergence of the training for subsequent timestamps.

IV. EXPERIMENTS AND ANALYSIS

A. Dataset Description

We evaluated our DynG2G model on eight different
benchmarks with different temporal dynamics. The specific
graph dataset statistics are shown in Table I. Fig. 2 shows
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Fig. 2. Visualization of the evolving dynamics of two temporal graphs for two of our eight benchmarks: synthetic SBM dataset (left) and Digg (right). Top
row: snapshots of the two datasets at different timestamps (indicated by the number in each image). Bottom row: growth rate of edges as a function of time.
SBM (small set) exhibits stable dynamics, whereas Digg (large set) exhibits rapidly changing dynamics. Similar visualizations of the dynamics of the other
six benchmarks are shown in Fig. 5.

TABLE I

EXPERIMENT DATASET DESCRIPTION

two temporal graph examples for the typical snapshots in the
stochastic block model (SBM) and Digg datasets.

1) Autonomous System (AS) Dataset 3: It consists of a
communication network of who-talks-to-whom from the
border gateway protocol (BGP) logs. The dataset can be
used for predicting message exchange in the future. The
AS dataset used in our experiment contains 6474 nodes
and 13 895 edges with 100 timestamps in total.

2) SBM Dataset 4: It is generated using the SBM model.
The first snapshot of the dynamic graph is generated to
have three equal-sized communities with in-block prob-
ability 0.2 and cross-block probability 0.01. To generate
subsequent graphs, it randomly picks 10–20 nodes at
each time step and moves them to another commu-
nity. The final generated synthetic SBM graph contains
1000 nodes, 4 870 863 edges, and 50 timestamps.

3) Bit-OTC Dataset 5: It is who-trusts-whom network of
people who trade using Bitcoin on a platform called Bit-
coin OTC. The Bit-OTC dataset contains 5881 nodes and
35 588 edges across 137 timestamps (weighted directed
graph). This dataset exhibits highly transient dynamics.

3https://Snap.stanford.edu/Data/as-allstats.html
4https://Github.com/IBM/EvolveGCN/Tree/Master/data
5http://Snap.stanford.edu/Data/soc-sign-bitcoin-otc.html

4) UCI Dataset 6: It contains sent messages between the
users of the online student community at the Univer-
sity of California, Irvine. The UCI dataset contains
1899 nodes and 59 835 edges across 88 timestamps
(directed graph). This dataset too exhibits highly tran-
sient dynamics.

5) Slashdot Dataset 7: It is a large-scale social reply net-
work for the technology website Slashdot. Nodes repre-
sent users and edges correspond to the replies of users.
The edges are directed and start from the responding
user. Edges are annotated with the timestamp of the
reply. The Slashdot dataset contains 50 824 nodes and
42 968 edges across 12 timestamps.

6) Facebook Dataset 8: It is a large-scale Facebook wall
post dynamic network, where each node is a user and a
temporal directed edge represents a post from one user
on another user’s wall at a given timestamp. The entire
temporal graph contains 46 873 nodes and 857 815 edges
over 30 timestamps sampled monthly from October 14,
2004 to January 21, 2009.

7) Reality Mining Dataset 9: The network contains human
contact data among 100 students of the Massachusetts
Institute of Technology (MIT); the data were collected
with 100 mobile phones over nine months in 2004.
Each node represents a student; an edge denotes the
physical contact between two nodes. In our experiment,
the dataset contains 96 nodes and 1 086 403 undirected
edges across 90 timestamps.

8) Digg Dataset 10: It is a large-scale dynamic reply net-
work of the social news website Digg. Nodes represent
the users of the Digg website, while edges are used

6http://Konect.cc/Networks/opsahl-ucsocial/
7http://Konect.cc/Networks/slashdot-threads/
8https://Data.mendeley.com/Datasets/4dwzvcdsv3/2
9http://Realitycommons.media.mit.edu/realitymining.html
10http://Konect.cc/Networks/munmun_digg_reply/
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to describe the replied message actions between users.
It contains 87 626 nodes and 30 398 directed edges over
90 timestamps.

B. Performance Evaluation for Temporal Link Prediction

1) Evaluation Metrics: To evaluate our DynG2G model and
demonstrate its effectiveness, we adopt two standard metrics.

1) Mean Average Precision (MAP): We rank all the predic-
tions of node q in a decreasing order of the probabilities.
Then, we calculate the average precision (AP) for each
node with the formula shown in (5), where m is the
number of connections predicted by our model for a
particular node q , n is the maximum number of con-
nections to be considered, P(k) denotes the precision at
the kth node, and rel(k) = 1 if kth node is connected
to node q and otherwise 0. MAP can be computed by
averaging the AP values of all the nodes Q (see the
following equation):

MAP = 1

Q

Q∑
q

AP(q)

AP(q) = 1

m

n∑
k=1

[P(k)× rel(k)]. (5)

2) Mean Reciprocal Rank (MRR): To calculate the MRR,
we rank all the predictions of node q in decreasing order
of the probabilities, and then calculate the reciprocal
rank (1/kq) of node q after finding the rank position (kq)
of the first relevant linked node for the query node q .
Finally, we take the average reciprocal rank of all nodes
as the MRR value, see the detailed formula in (6). Note
that since MRR only considers the single highest ranked
relevant node, MRR can give a general measure of
quality for link prediction task; however, MAP considers
whether all of the relevant nodes tend to get ranked
highly

MRR = 1

Q

∑
q∈Q

1

kq
. (6)

2) Implementation Details: Our implementation is based
on the PyTorch framework, and all experiments were con-
ducted on the NVIDIA Quadro RTX 6000 GPU (two 2.4-GHz
32 Core Processors; 1024-GB DDR4 3200-MHz Memory).
We applied the Adam algorithm with hyperparameters
(learning rate = 1e−3, tolerance = 100, one hidden layer of
size 512, and epochs = 700) to minimize the triplet-based
square and exponential loss for different embedding sizes
(L = 16, 32, 64, 128, and 256). For the link prediction, the
MLP model contains only one hidden layer with the same
size as the node embedding size (L), and the learning rate
is 1e−4.

With the aforementioned two metrics, we evaluate our
DynG2G model using the temporal link prediction task on
eight benchmarks described in Section IV-A. The main pur-
pose of temporal link prediction is to predict the links at
timestamp T + 1 using the transformed graph sequence
embeddings up to timestamp T . Specifically, we first utilize

the DynG2G model to obtain node embeddings (ht
i ) with

k-hop neighbor factor (K = 2) for all timestamps of each
benchmark. The timestamps in each benchmark were first split
into train/validation/test by ratios of 70%, 10%, and 20% for
link prediction, respectively; the specific timestamp numbers
can be seen in Table I. Before training the MLP model for the
link prediction, we performed “positive link” and “negative
link” sampling similar to [37] for each timestamp in the train-
ing dataset. After that, each link feature was constructed as
a 1-D vector, i.e., concatenate its nodes’ embedding vectors as
a single vector. Similarly, the validation and test link datasets
were also built by the same procedure. Finally, we trained an
MLP model with weighted cross-entropy loss for predicting
the link probability in the test timestamps. We evaluate the
temporal link prediction performance with different graph
embedding sizes (L ∈ [16, 32, 64, 128, 256]).

We have carried out experiments for eight temporal
benchmarks and performed comparisons with other baseline
methods, including DynGEM [24], EvolveGCN [27], dyn-
graph2vecAE, and dyngraph2vecAERNN [25] when possible.
We list the final results on temporal link predictions of
MAP and MRR in Table II. The MAP values of DynG2G are
based on the best means computed over five initializations and
over time; the best means correspond to different embedding
dimensions L, which here we call it the optimum embedding
dimension Lo. For the MRR values, we report the values for
that embedding dimension, which may not be necessarily the
best values. DynG2G shows substantially better performance
in terms of both metrics (MAP and MRR) for temporal link
prediction compared to all other baseline methods, especially
for the highly dynamic Bit-OTC dataset and UCI dataset.
We note that for the UCI benchmark, the highest value
obtained with DynG2G is 0.0347 = 0.0209+ 0.0138, which
is much higher than the second best 0.0270 obtained by
EvolveGCN. For the last four benchmarks, there are no
published results in the literature, so we could not make
direct comparisons with respect to the accuracy. However,
we managed to run EvolveGCN for two benchmarks only,
as shown in Table II.

These eight benchmarks have different temporal dynamics
whose complexity varies with time. In order to gain some
insight into their dynamics, we plot the MAP metric for
different embedding sizes L as a function of time for the
testing period for one initialization for the SBM and Digg
datasets in Fig. 3; many more detailed results are shown in
Fig. 7, where we carry out five runs for each benchmark cor-
responding to different initializations. As we see, the value of
MAP depends on the embedding dimension L and it is rather
stable as a function of time for the SBM benchmark. However,
for the highly transient Digg dataset, the MAP metric varies
significantly in time, and different embedding sizes yield the
best MAP value depending on the specific timestamp. The
best embedding size, L, may vary for different initializations
(see Fig. 7), so in Fig. 3 (bottom row), we present the MAP
statistical results over five runs and over all timestamps. From
these plots, we see that the best L = 64 for both the SBM
and the Digg benchmarks, which is not possible to infer from
a single initialization. Overall, this behavior is consistent with
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Fig. 3. MAP results for the temporal link prediction tasks with DynG2G (first row) on synthetic SBM dataset (left) and Digg dataset (right) for different
embedding sizes (L = 16, 32, 64, 128, and 256). These results correspond to one specific initialization. In the second row, we show the MAP statistical results
over five runs and over all timestamps. Results for the three other benchmarks are shown in Fig. 6, while details of the five initialization runs are shown in
Fig. 7. The SBM graph evolves smoothly across different snapshots, and however, the Digg graph exhibits highly transitional dynamics across snapshots at
different timestamps, as shown in Fig. 2.

TABLE II

COMPARISON RESULTS OF TEMPORAL LINK PREDICTION TASK FOR
EIGHT DIFFERENT BENCHMARKS. DYNG2G MAP VALUES

CORRESPOND TO THE BEST MEAN VALUES (AVERAGED

OVER FIVE INTIALIZATIONS AND OVER TIME) SELECTED

OVER ALL EMBEDDING DIMENSIONS. MRR VALUES
CORRESPOND TO THE SAME EMBEDDING DIMENSION,
WHICH WE CALL OPTIMUM Lo HERE, SEE TABLE III

the insights provided by the uncertainty quantification analysis
as we explain in Section IV-C.

C. Uncertainty Quantification for Node Embeddings

The existing temporal graph embedding methods are deter-
ministic and they transform the temporal graph nodes as fixed
points in the latent space, hence ignoring important infor-
mation associated with node uncertainty. However, DynG2G
is based on G2G static graph embedding method [37] and
can provide uncertainty quantification, which is important for
downstream analytics tasks. Specifically, G2G learns graph
embeddings as multivariate Gaussian distributions, including
the mean (“position”) and variance (“uncertainty”) vectors
assigned to each node; the variance plays a key role in mea-
suring the uncertainty of graph node representation. Moreover,
as shown in [37] and also in [2], DynG2G can track the stable
and unstable dimensions in time and hence obtain the effective
dimensionality of the system, which is related to the required
embedding size L. For temporally evolving graphs, this dimen-
sionality may be changing in time, but DynG2G can capture
in a quantified manner the transient dynamics of the evolving
system. Hence, it is not surprising that the different datasets in
the eight benchmarks exhibit different accuracies for different
embedding sizes L as a function of time (e.g., Digg, Bit-OTC,
and UCI benchmarks), whereas the benchmarks with smoother
transient dynamics exhibit a more stable pattern in time with
respect to L.

Correspondingly, the total variance as a function of time,
plotted in Fig. 4, shows a similar dependence on the embed-
ding size L. Interestingly, for the SBM benchmark, there is a
clear separation of the values of variance for L < 64 but good
convergence with respect to L for L > 64, and therefore, the
effective dimensionality of the SBM system is L = 64, which
does not change in time. The smooth and slow variation of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Harvard Library. Downloaded on June 14,2023 at 01:32:00 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: DynG2G: EFFICIENT STOCHASTIC GRAPH EMBEDDING METHOD FOR TEMPORAL GRAPHS 9

Fig. 4. Uncertainty versus time for temporal node embeddings with DynG2G for the eight benchmarks with embedding size (L = 16, 32, 64, 128, and 256).
The X-axis represents the timestamps for each benchmark, while the Y -axis refers to the averaged standard deviations computed by the variances predicted
by DynG2G for all nodes at different timestamps. These results correspond to a single initialization but more detailed results for all five initializations are
shown in Fig. 8.

TABLE III

CORRELATION BETWEEN THE OPTIMAL EMBEDDING SIZE (Lo) AND THE

EFFECTIVE DIMENSIONALITY OF UNCERTAINTY (Du ) FOR ALL EIGHT

BENCHMARKS. THIS CORRELATION IS BASED ON AVERAGING THE
RESULTS OVER ALL TIMESTAMPS AND OVER FIVE DIFFERENT

RUNS CORRESPONDING TO DIFFERENT INITIALIZATIONS.
THESE RESULTS SUGGEST A CLEAR PATH

TO SELECTING THE GRAPH OPTIMUM
EMBEDDING DIMENSION BY

CHOOSING Lo ≥ Du

uncertainty versus time for SBM is consistent with the stable
results on MAP versus time shown in Fig. 3(a). We have
observed similar trends for the AS benchmark, and here, the
effective embedding size is L = 64 and does not change in
time, consistent with the trends of the variance (uncertainty)
versus time in Fig. 4. In contrast with the UCI and Bit-
OTC benchmarks, we see that the variance exhibits a different

pattern and seems to converge for L ≥ 128 for the UCI
and L = 256 for the OTC. In fact, for the latter, the
variance increases exponentially at longer times. This, in turn,
reveals that both the UCI and Bit-OTC are high-dimensional
systems with highly transient dynamics, so it is not surprising
that the MAP accuracy varies also in time as a function of
different embedding sizes. Finally, we note that the results
presented in Fig. 4 are only for one initialization and a more
systematic study is needed, as we present in the Appendix for
different initializations (Fig. 8), to infer the proper value of the
effective uncertainty dimensionality, which we denote as Du ,
corresponding to the smallest uncertainty. It is interesting to
note that the curves of uncertainty versus time look similar for
different initialization runs as shown in the Appendix (Fig. 8),
unlike the MAP versus times curves for different values of L.

V. CONCLUSION

We proposed an efficient stochastic dynamic graph embed-
ding method (DynG2G), which enables us to automatically
learn dynamic graph representations in low-dimensional “func-
tion” space with high efficiency. The learned graph embedding
can be used for diverse downstream graph learning tasks,
e.g., recommendation, fraud detection, and search. The current
methods mostly rely on large autoencoder models (DynGEM
and dyngraph2vecAE) or memory-based architectures that
use RNN/LSTM for memory in addition to encoder–decoder
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Fig. 5. Visualizations of the evolving dynamics of the remaining six temporal graphs in our benchmarks. (a) Slashdot, (b) Bit-OTC, (c) Facebook, (d) Reality
Mining, (e) AS, and (f) UCI. In each subfigure, the top row shows four random snapshots of the temporal graph at different timestamps (indicated by the
number in each image); the bottom row shows the growth rate of edges as a function of time in each benchmark. (a), (c), and (e) exhibit stable dynamics,
whereas (b), (d), and (f) exhibit rapidly changing dynamics.

Fig. 6. MAP results for the temporal link prediction tasks with DynG2G for three other benchmarks (left column: Facebook, middle column: UCI, and right
column: Slashdot) with different embedding size (L = 16, 32, 64, 128, and 256). In the first row, we show the MAP results for the link prediction versus
different timestamps for one initialization. In the second row, we show the MAP statistical results over five runs (corresponding to different initializations)
and over all timestamps for Facebook, UCI, and Slashdot datasets.

networks (dyngraph2vecAERNN). EvolveGCN makes use of
GCNs along with GRU and LSTM, and it consists of stacked

layers of convolutional networks. DynG2G, in comparison,
uses a single-layer neural network and at different time steps
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Fig. 7. MAP results using DynG2G method for temporal link prediction tasks for five different benchmarks with different embedding sizes (L =
16, 32, 64, 128, and 256). (a)–(e) Digg, Facebook, UCI, Slashdot, and SBM benchmark, respectively. For each benchmark, we performed the temporal
link prediction task with five different random initializations, as shown in the five different rows.

Fig. 8. Uncertainty (standard deviation) versus time for five runs (corresponding to different initializations) for temporal link prediction tasks with DynG2G
for five different benchmarks with different embedding sizes (L = 16, 32, 64, 128, and 256). (a)–(e) Digg, Facebook, UCI, Slashdot, and SBM benchmark,
respectively. For each benchmark, we performed the temporal link prediction task with five different random initializations, as shown in the five different
rows. The uncertainty is independent of the initialization and the variation is relatively smooth for each L except for the UCI benchmark that exhibits highly
irregular dynamics.

of the graph, and we use the learned weights from the previous
time step, which enables the model to converge faster by
transferring temporal information.

We computed all eight benchmarks in about 0.6–60 s per
epoch on a single GPU (see Table 1V for detailed compu-
tational costs of different embedding sizes and Fig. 10 for
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Fig. 9. MRR results using DynG2G method for temporal link prediction tasks on eight different benchmarks: (a) SBM, (b) Digg, (c) Bit-OTC, (d) AS,
(e) Facebook, (f) Slashdot, (g) UCI, and (h) Reality Mining.

Fig. 10. GPU memory footprint plots for the proposed DynG2G model trained with two different sizes of dynamic graph benchmarks (Digg and Reality
Mining). (a) and (b) Amount of main memory that DynG2G code uses for learning graph embeddings for the Reality Mining dataset and Digg dataset,
respectively. Reality Mining uses 1.6-GB maximum, while Digg uses ∼5-GB maximum, but it is persistent usage.

the GPU memory footprint for two of the benchmarks. More-
over, we computed the computational cost for the benchmark
“Reality Mining” using EvolveGCN and we found that it
takes about 3.40 s per epoch versus 0.698 s for DynG2G
for embedding size L = 16. We obtained experimental
results based on a range of graphs from 96 to 87 626 nodes
with both slowly varying and rapidly changing dynamics
in order to test DynG2G for diverse applications with the
corresponding graphs characterized by multirate temporal
dynamics. For example, we focused on the SBM and Digg
benchmarks as the former has only 1000 nodes but close
to 4.9 million edges, while the latter has 87 626 nodes and
only 30 398 edges. Moreover, SBM exhibits stable dynamics,

whereas Digg exhibits rapidly evolving dynamics. The other
six benchmarks shown in the Appendix have characteristics
that fall between these two benchmarks. We have demonstrated
that our DynG2G model outperforms other baseline methods
(for available benchmark metrics) and effectively learns highly
informative graph embeddings for even graphs with rapidly
changing dynamics (i.e., Digg, Facebook, Reality Mining, Bit-
OTC, and UCI benchmarks).

The novelty of our approach is that DynG2G in addi-
tion to the mean values; it can simultaneously predict the
node embedding uncertainty, which plays a crucial role in
quantifying the evolving uncertainty and complexity of
dynamical systems over time. In particular, we obtained a
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TABLE IV

AVERAGE AND STANDARD DEVIATION OF THE EPOCHWISE COMPUTATIONAL COST (IN SECONDS) CORRESPONDING TO DIFFERENT
EMBEDDING SIZES (L = 16, 32, 64, 128, AND 256) FOR DYNG2G OVER FIVE RUNS ON THE NVIDIA QUADRO RTX 6000 GPU

(TWO 2.4-GHZ 32 CORE PROCESSORS AND 1024-GB DDR4 3200-MHZ MEMORY)

“universal” relation of the optimal embedding dimension, Lo,
versus the effective dimensionality of uncertainty, Du , and
we found that L0 = Du for all cases. To the best of our
knowledge, this is the first time that such a relation is obtained
for graph embedding of temporal graphs of arbitrary size,
and it reveals that the uncertainty quantification approach
we employ in the DynG2G algorithm correctly captures the
intrinsic dimensionality of the dynamics of such evolving
graphs despite the diverse nature and composition of the
graphs at each timestamp.

A current limitation of DynG2G is that it employs a
fixed embedding dimension, which is predefined by the user.
However, based on our finding that a different embedding size
is optimal at different timestamps, a new adaptive strategy
combined with self-attention mechanism can be designed in
future work to allow variable embedding size as the temporal
dynamics of the systems evolves, especially for systems such
as the Digg, UCI, and Bit-OTC benchmarks. Using the newly
discovered Lo−Du correlation, we can develop a new criterion
on how to select the optimum graph embedding dimension
Lo on-the-fly by quantifying the effective dimensionality of
corresponding node uncertainty Du . We expect that this will
lead to increasing both accuracy and efficiency of DynG2G.
Another limitation of the model that is still very challenging to
deal with is the missing timestamp data problem for real-world
datasets, e.g., electronic healthcare record database. To this
end, DynG2G has to be combined with state-of-the-art data
imputation techniques in future work. Moreover, adopting a
loss function such as the one from TransE [39] could extend
our DynG2G to heterogeneous graphs. Finally, it will be inter-
esting to develop a similar method but based on hyperbolic
embeddings and examine whether the dimensionality reduction
is even greater.

APPENDIX

We present additional results for all benchmarks to supple-
ment the results in the main text in Figs. 5–8. We present
results for the MRR metric in Fig. 9. In addition, we present
the specific epochwise computational cost (in seconds)
in Table IV corresponding to different embedding sizes
(L = 16, 32, 64, 128, and 256) for DynG2G over five runs.
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