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Summary
Our brains at rest spontaneously replay recently acquired information, but how this process is orchestrated
to avoid interference with ongoing cognition is an open question. Here we investigated whether replay coin-
cided with spontaneous patterns of whole-brain activity. We found, in two separate datasets, that replay se-
quences were packaged into transient bursts occurring selectively during activation of the default mode
network (DMN) and parietal alpha networks. These networks are believed to support inwardly oriented
attention and inhibit bottom-up sensory processing and were characterized by widespread synchronized
oscillations coupled to increases in high frequency power, mechanisms thought to coordinate information
flow between disparate cortical areas. Our data reveal a tight correspondence between two widely studied
phenomena in neural physiology and suggest that the DMN may coordinate replay bursts in a manner that
minimizes interference with ongoing cognition.
Introduction

A key mechanism by which the brain forms and stores new

knowledge is neural replay, where the patterns of neural activity

associated with specific items are spontaneously reinstated in

structured sweeps (Wilson and McNaughton, 1994). These

sweeps project to widespread regions of the cortex (Ji and Wil-

son, 2007; Qin et al., 1997), with physiological signatures known

as sharp wave ripples that have been described as themost syn-

chronous events in the mammalian brain (Buzsáki, 2015). Such

spatially dispersed patterns of activity are often initiated during

specific states, such as slow-wave sleep, presumably to pre-

clude interference with ongoing wakeful processes. Replay

was originally discovered during sleep but is now known to

also occur during wakefulness, particularly within periods of

immobility and rest (Carr et al., 2011; Foster, 2017; Kudrimoti

et al., 1999). An unanswered question in neuroscience is how

the brain orchestrates these structured events in a manner that

minimizes interference with ongoing cognition.

Neuroimaging studies have long highlighted that, during

wakeful rest, the brain displays an intrinsic activity structure,

cycling through a series of canonical resting-state networks

(RSNs) (Biswal et al., 1995; Brookes et al., 2011; Fox and

Raichle, 2007). One network that has drawn particular attention
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is the default mode network (DMN), a disparate set of brain re-

gions that coactivate during ‘‘offline’’ periods, such as between

trials in the absence of specific tasks as well as during sleep (Fu-

kunaga et al., 2006; Raichle et al., 2001). The DMN has since

been identified as correlating with a number of introspective

cognitive states, such as episodic memory and future-oriented

thought, suggesting a functional role during wakeful rest in medi-

ating internally generated cognition and inhibiting bottom-up

sensory processing (de Pasquale et al., 2010). Magnetoenceph-

alography (MEG) resting-state studies have likewise detected

DMN activation (along with that of many other networks) with

millisecond temporal resolution, demonstrating that these net-

works activate transiently within specific spectrally defined

modes (Baker et al., 2014; Brookes et al., 2011; de Pasquale

et al., 2010; Vidaurre et al., 2018). An ability to measure sponta-

neous replay noninvasively in humans has now been demon-

strated (Kurth-Nelson et al., 2016; Liu et al., 2019, 2020), and

this allowed us to investigate a potential link between replay

and resting brain network activity.

Replay during slow-wave sleep is associated with specific

electrophysiological patterns; low-frequency oscillations

synchronize widespread regions of the cortex, whereas high-

frequency sharp wave ripples propagate between the

hippocampus and cortical areas (Buzsáki, 2015; Chrobak and
2, March 3, 2021 ª 2020 The Authors. Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Task outline

The online task required participants to learn and remember a sequence of items. During the offline resting period, subjects were recorded passively with

no immediate task; they were later tested for correct recall of the item sequence. The data from the offline resting period were analyzed in two ways. The

first analysis detected replay using the methods of Liu et al. (2019), using classifiers trained on the task items and identifying periods when they are

reactivated in the specific sequence required by the task. The second analysis identified when specific RSNs were activated by using an established

model (Vidaurre et al., 2018) to detect spontaneous patterns of spatial and spectral activity in the data. The objective was to determine whether the two

measures were linked.
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Buzsáki, 1996). These widespread patterns appear to be integral

for effective function of replay in consolidating memories (Buz-

sáki, 1998). In contrast, the wakeful brain displays a markedly

different profile, with transient periods of synchronous activity

interspersed with widespread desynchronization associated

with distributed processing of parallel cognitive tasks (Brookes

et al., 2011; Vidaurre et al., 2018). Here we wanted to find out

whether replay events as detected by Liu et al. (2019) are linked

to specific changes in whole-brain neural activity, changes that

might explain how wakeful replay could reinstate distributed

cortical patterns from memory without interference from

competing cognitive demands.

Results

Spontaneous replay coincides with activation of the
default mode and parietal alpha networks
We investigated whether the human replay events discovered by

Liu et al. (2019), each representing rapid serial reactivation of

learned stimulus representations (Figure 1), coincided with spe-

cific macro patterns of resting-brain network activity studied

widely in the literature (Baker et al., 2014; Brookes et al., 2011;

de Pasquale et al., 2010; Vidaurre et al., 2018). The focus of

our analysis was the same MEG scan data of Liu et al. (2019),

collected during resting periods of their experiment.

We first repeated the analysis of Liu et al. (2019) to identify spe-

cific moments when replay occurred within these resting-state

data. Briefly, we trained multivariate classifiers to recognize

each experimental stimulus, applied these classifiers to the
2 Neuron 109, 1–12, March 3, 2021
resting data, and found that the times when classifiers detected

stimulus representations played out in rapid sequences in an or-

der defined by the task (STAR methods; Liu et al., 2020).

Next, in the same data, we determinedwhich of a set of canon-

ical RSN states were active at each point in time (STARmethods;

Figure 1). We inferred 12 RSN states in a data-driven way using

an established hidden Markov model framework (STAR

methods; Vidaurre et al., 2018). These RSN states were labeled

according to multidimensional scaling of their distances from

each other (STAR methods; Figure S1); thus, RSN states 1 and

12 represented opposing extremes of a single major axis of dif-

ferentiation between networks. We then conducted an evoked

response analysis to find out whether activation of the RSN

states was modulated around replay events.

As shown in Figure 2A, a strong relationship emerged between

replay onset and two RSN states in particular: RSN states 1

and 2. This relationship peaked at around t = 0, the exact time

of replay onset, but exhibited a decay at either side of this

time, with a statistically significant association up to 0.5 s before

and after each estimated replay onset time (non-parametric clus-

ter significance test, p < 2e�4 for both RSN states). In addition, a

weaker relationship was also evident between RSN states 3 and

4 and the observed replay times (p < 2e�4 for both RSN states).

The remaining RSN states display a pattern of decreasing activa-

tion that appears approximately in ordinal sequence. Given that

the RSN state labels were based on the transition matrix (STAR

methods; Figure S1), we then correlated the strength of each

RSN state’s replay association with its probability of activation

immediately following RSN state 2 (the state most strongly



Figure 2. Replay coincides with activation of specific RSNs

(A) Mean ± SEM of the change in RSN state probability around replay events. A strong correlation exists between the replay times identified by Liu et al. (2019) and

resting network activity; namely, RSN states 1 and 2. This association peaks at t = 0, representing the exact time of replay onset, but remains significant up to 0.5 s

to either side of each event, showing that activity in either of these RSN states is broadly predictive of replay. Significance bars show clusters where p < 1e�3.

Inset: result of the replication study on the second dataset.

(B) The broadband power and coherence networks that characterize each state identify RSN states 1 and 2 as the parietal alpha network and DMN, respectively.

RSN states 3 and 4 correspond to activity in the visual and frontal areas, respectively. Power maps were thresholded at 50%, and phase-locking networks were

thresholded with a Gaussian mixture model (STAR methods).

(legend continued on next page)
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associated with replay) and found a very strong relationship

(Pearson’s Rho = 0.77, p = 5.1e�3). Thus, the probability of

any RSN state activating at the time of replay is determined by

that state’s probability of proceeding fromRSN state 2.

Each RSN state can be described by its distinct spectral po-

wer and phase-locking profile; these profiles are summarized

by averaging over frequency bands in Figure 2B for RSN states

1–4. This highlights that RSN state 1 was associated with activity

over the parietal cortex; the equivalent network in simultaneous

electroencephalogram (EEG)-fMRI studies has been shown to

be anticorrelated with the dorsal attention network (DAN) (Man-

tini et al., 2007; Sitnikova et al., 2020); thus, activation of RSN

state 1 corresponds to the DAN switching off. RSN state 2 com-

bines high-power signals in frontal and temporal regions with

coherent oscillations in the lateral parietal cortex, regions that

comprise the DMN. RSN state 3 can be interpreted as activation

of the visual cortex, and RSN state 4 can be interpreted as acti-

vation of frontal cortical regions. The profiles of the remaining

RSN states are shown in Figure S1.

The alignment of replay with specific RSN states would not be

surprising if some of these networks simply reflected the pat-

terns of activity present during the original stimulus encoding in

the functional localizer data. Because our methods are based

on linear classifiers, we expect the instantaneous patterns be-

tween stimulus encoding and replay to reflect activity in roughly

the same visual areas (and show that this is indeed the case in

Figure S2E); but it is not clear whether whole-brain network pat-

terns of activity would be the same. Figure 2C shows that they

are not; if we take the same canonical RSN states, hold them

fixed, and fit them to the original functional localizer data on

which the classifiers were trained, then we identify a markedly

different relationship with the RSN states compared with replay.

No significant increase was observed to RSN state 1 (p = 0.88 at

t = 0.2 s), and RSN state 2 showed a mild increase that was not

significant after Bonferroni correction (p = 0.006 at t = 0.2 s).

Directly comparing the distribution of RSN states evoked by

replay and by stimulus identified a clear differential distribution

with highly significant increases in RSN states 1 and 2 (Figure 2D;

one-sided t test, p = 8.9e–7 for RSN state 1 and p = 1.9e�4 for

RSN state 2). Although RSN states 3 and 4 do show a significant

association with replay, this is only in the sense that they

replicate patterns of activity associated with the original stim-

ulus-encoding data. Thus, we conclude that brain-wide patterns

of resting RSN state activity that are associated with replay

encompass both common and unique patterns of activity with

respect to the original stimulus-encoding data. Patterns unique

to spontaneous replay are better characterized by activation of

the default mode and parietal alpha RSN states.

To ensure replicability of these results, we conducted the

same analysis in a second independent study that examined

replay data in MEG using a very similar but slightly amended

paradigm (Liu et al., 2019). We replicated the exact findings,

showing that RSN states 1 and 2 had a strong association
(C) Fitting the same fixed RSN states to the original stimulus data on which the

different from that of the spontaneous replay events. Significance bars show clust

(D) Directly comparing the mean ± SEM of the evoked state distribution at rep

significantly increased during spontaneous replay (multiple paired t tests). *p < 0
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with replay (Figure 2A, inset; Figure S2; p < 2e�4 for RSN states

1–4; inflexible direct cluster comparison, p < 0.05 for RSN state 1

and RSN state 2). Neither RSN state 1 nor RSN state 2 displayed

a significant increase in relation to the functional localizer

data (p = 0.67 for RSN state 1 and p = 0.14 for RSN state 2).

A paired t test also confirmed that these RSN states were

more strongly associated with replay than with the original

training data (p = 5.4e�3 for RSN state 1 and p = 9.1e�3 for

RSN state 2).

Transient replay bursts coincide with clusters of DMN
and parietal alpha network activity
The correlation between replay and the RSN states shown in Fig-

ure 2B was maintained for over 0.5 s either side of each replay

event. This is difficult to immediately reconcile with the highly

transient nature of MEG RSN states, which typically activate

for less than 100 ms but also display dispersive long-term tem-

poral statistics (Figure 3B). Replicating previous findings (Baker

et al., 2014; Vidaurre et al., 2018), we found that RSN states 1

and 2 displayed longer average lifetimes than any other RSN

states and also quiesced for longer periods than any other

RSN states (Figure 3B). A qualitative assessment suggested

that neither replay nor RSN state activations were distributed

evenly over long timescales, with clusters of heightened DMN

and parietal alpha network activity in particular coinciding with

bursts of replay events (Figure 3A).

To test whether replay events were concentrated into transient

bursts, as suggested by Liu et al. (2019), we first computed the

Fano factor over the time course of replay events; Fano factors

equal to 1 correspond to a regular, non-bursting process,

whereas Fano factors greater than 1 correspond to increasingly

irregular bursting. As shown in Figure 3D, the observed replay

Fano factor increased as a function of window size and ex-

ceeded 1 for all window sizes tested, showing that the occur-

rence of replay events was increasingly irregular over longer

time periods. The bursting nature of replay events was further

supported by rejection of a broader null hypothesis that intervals

between replay events were independent and identically distrib-

uted (p < 1e�3; STAR methods). For further characterization of

the time course of replay and spectral properties of the classifier

outputs, see Figures S3A–S3C.

We conducted the same analysis on the time courses of RSN

state occurrences (Figure 3E). Aswith replay events, this showed

that visits to different RSN states were also increasingly irregular

over longer time periods but displayed a degree of irregularity

that was not uniform over the different RSN states (one-way

ANOVA, p < 2e�8 for all window sizes tested; this was significant

after multiple comparison correction for RSN states and number

of windows). This was particularly pronounced for RSN states 1

and 2 (two-sample t test, p < 6.4e�9 for RSN state 1 and p < 0.01

for RSN state 2), the DMN and parietal alpha RSN states that

were most strongly correlated with replay. Thus, the RSN states

that were most inclined to cluster together into periods of
replay classifiers were trained identifies an overall network profile markedly

ers where p < 1e�3. Inset: result of the replication study on the second dataset.

lay time and at the classifier training time identifies RSN states 1 and 2 as

.05, **p < 1e�3. Inset: result of the replication study on the second dataset.



Figure 3. Replay and RSNs share a common long-term temporal structure

(A) Example data from one subject of the replay event times (top) and 1-s moving average RSN state probabilities (bottom), suggesting that replay and RSN state

visits are not distributed evenly over long timescales.

(B) RSN state visit temporal statistics and distribution plots showing the RSN state visit lifetimes (left) and interval times (right) alongwith a schematic showing how

these are derived from multiple RSN state visits that may cluster around replay events (center). RSN states 1 and 2 have the longest interval times between

successive RSN state visits.

(C) Temporal irregularity can be quantified by looking at the Fano factor (mean over subjects ± SEM) as a function of window size. Replay events show that this

irregularity measure increases over longer timescales, displaying maximum temporal irregularity over windows of 10 s or more. Dotted line indicates p < 1e-3

permutation threshold for intervals being independent and identically distributed (STAR Methods).

(legend continued on next page)
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increased intensity over long timescales were similarly the most

correlated with replay.

We have shown evidence that the replay events and RSN state

visits display bursty behavior, resulting in clusters of intense ac-

tivity interspersed with long periods of quiescence. In addition,

we have evidence that replay events and RSN state occurrence

temporally coincide (cf. Figure 2A). However, this alone does not

necessarily mean that the bursting itself temporally coincides. To

test whether this was the case, we computed the inter-replay in-

terval time conditioned upon the active RSN state at that time.

We found that the interval to the next replay event was signifi-

cantly determined by the currently active RSN state (one-way

ANOVA, p = 2e�9) so that, when RSN states 1 and 2were active,

there were shorter intervals between replay events (p = 2.6e�3

and p = 5e�4, respectively). This suggests that replay events

are packaged into bursts that occur selectively during clusters

of intense DMN and parietal alpha RSN state activity (for further

evidence of RSN state clustering around replay events, see

Figure S3G).

To assess reproducibility, we again replicated all results re-

ported here on a second dataset of 22 subjects (Liu et al.,

2019; STAR methods). As shown in Figure S3, replay Fano

factors again exceeded 1, increased with window size, and

exceeded non-parametric permutation test thresholds (p <

1e�3). Visits to RSN states displayed a similar bursty profile,

the degree of which was RSN state dependent (p < 1.5e�8,

one-way ANOVA) with the parietal alpha and DMN RSN states

displaying the highest amount (two-sample t test, p < 7e�6 for

RSN state 1, p < 1.1e�4 for RSN state 2). Inter-replay intervals

were again significantly determined by active RSN state (p =

0.01, one-way ANOVA). RSN state 1 was significantly associated

with shorter intervals (p = 6e�3), and RSN state 2 was trending in

the same direction but not statistically significant (p = 0.07).
Replay coincides with distinct patterns of brain-wide
highly synchronous activity
Having established a strong temporal association between

replay and specific RSN state activation, we next sought to

characterize the nature of the brain-wide activity in the replay-

associated RSN states. For each RSN state, we calculated the

spatial patterns of oscillatory power over all brain regions and

the degree of synchronization (coherence) between all brain

regions (according to Vidaurre et al., 2018; STAR methods).

Figure 4A plots a wide-band summary measure of power and

coherence per region of interest (ROI) and RSN state, showing

that the replay-associated RSN states (RSN states 1 and 2

and, to a lesser extent, RSN states 3 and 4) were associated

with widespread increases in the power and coherence of oscil-

latory activity compared with the other RSN states (one way
(D) This structure is replicated by the RSN state activations, with RSN states 1 and 2 (mean Fano factor over subjects ± SEM) displaying the most irregular

patterns at long timescales.

(E) This temporal structure is not just common but coincides; replay events that occur during RSN state 1 or 2 have significantly shorter intervals,

reflecting rapid bursty behavior during the infrequent state visits and long periods of quiescence outside of these. Significant deviation from the mean at

*p < 0.05.
ANOVA for group-wise variation, p < 1e�50 for power and
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coherence; two-sample t tests, p < 1e�50 for RSN states 1–4

for power and coherence).

This wide-band summary measure aggregates over fre-

quencies and may therefore be comprised of multiple narrow-

band modes in different spatial regions. To better characterize

the spatial distribution of activity in distinct frequency bands,

we decomposed the spectral activity patterns using non-nega-

tive matrix factorization (Vidaurre et al., 2018). This identified

three prominent frequency modes reflecting activity in canonical

frequency bands of delta/theta, alpha, and beta bands, respec-

tively (Figure 4B). RSN state 2, the DMN, showed a prominent

elevation in network coherence across all three frequency bands

compared with all other RSN states, whereas RSN state 1, the

parietal alpha network, showed increased coherence in the

alpha band compared with the other frequency bands. The two

other replay-associated RSN states were associated with activ-

ity concentrated in the alpha band (RSN state 3) and delta/theta

band (RSN state 4).

We also used the RSN state description of the resting state

data to calculate the brain-wide patterns of oscillatory power

and synchronization occurring specifically around replay events.

Figure 5 shows this first as time-frequency plots of power

(Figure 5A) and coherence (Figure 5B) averaged over all brain

regions, again highlighting a strong increase in power and coher-

ence associated with each replay event. Figure 5C shows the

brain-wide patterns of oscillatory power (left) and synchroniza-

tion (right) that occurred at the time of onset of the replay events.

This highlights activity across the frontal and parietal regions of

the DMN, with activity in each brain region dissociated into two

distinct frequency bands. Frontal nodes of the DMN, including

the medial prefrontal cortex and temporal poles, were associ-

ated with coherent oscillations in a low delta/theta frequency

band; parietal nodes, taken to include the posterior cingulate

and lateral parietal cortex, were associated with coherent oscil-

lations in the alpha band.

Again, in the interests of replicability, all of these results were

replicated on a second dataset of 22 subjects (Liu et al., 2019;

STAR methods), where all activation maps and spectro-spatial

profiles were remarkably consistent (Figure S4).
High-frequency power bursts linked exclusively to
activation of the DMN
Liu et al. (2019) found an association between the onset of replay

and increases in high frequency (>100Hz) power, consistent with

a model of sharp wave ripple activity that coincides with the

detected replay events. Given the strong association

between replay events and activity in DMN and parietal alpha

networks in our work, we wanted to find out whether power in

higher-frequency bands might correlate more generally with ac-
tivity in these networks. Crucially, our approach for estimating



Figure 4. Replay-associated RSN states display specific spectral

patterns of power and coherence

(A) Scatterplot of the subject-averaged power spectral density (PSD) and

coherence per RSN state, summarizing the overall frequency spectra with a

single wide-band average (STAR methods); each point represents one ROI

(PSD is computed directly per ROI; coherence is taken as the sum of coher-
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the RSN states applied a low-pass filter to the data with a 45-Hz

cutoff frequency; thus, any correlation with power spectra above

this cutoff can be interpreted as entirely independent of the orig-

inal RSN state estimation.

Figure 6A plots the average high-frequency power spectra

over all periods when a given RSN state is active. This demon-

strates a significantly elevated power spectral density across

all frequencies between 50 and 150 Hz associated exclusively

with the DMN RSN state (one-way ANOVA, p < 2.5e�6 for

each frequency band between 52 and 148 Hz; p > 0.05 when

ANOVA excludes the DMN). This relationship mimics that

observed in the power spectral density averaged over 30-ms

windows around replay events (Figure 6B) while accentuating

the power increase in much higher frequencies. Plotting the

spatial distribution of this high-frequency power in the DMN

RSN state (Figure 6C) identifies a concentration of power in tem-

poral regions, areas that encompass the hippocampus and

neocortical regions known to couple to ripple activity (Axmacher

et al., 2008; Vaz et al., 2019).

Notwithstanding the broadband nature of this signal and the

limitations of MEG in imaging deep sources, our results suggest

a relationship betweenRSN state activity and the high-frequency

bursts associated with sharp wave ripples, with such bursts

occurring exclusively during activation of the DMN RSN state.

Figure S5 demonstrates replication of these results on a sec-

ond dataset of 22 subjects (Vidaurre et al., 2018; STARmethods)

where the DMN was found to be significantly associated with

elevated high-frequency power (one-way ANOVA; p < 2.4e�6

for all frequencies between 52 Hz and 148 Hz; p > 0.05 when

the DMN state was omitted), with a spatial distribution of power

concentrated over temporal cortices.
Discussion

These results bridge two quite separate fields of enquiry in

neuroscience. The study of replay has been predominantly char-

acterized at the level of cellular connections and Local Field Po-

tential (LFP) oscillations in animals, whereas the study of resting

brain networks has largely been the preserve of human neuroi-

maging. Therefore, the link we now establish between these

has the potential to extend not only our understanding of replay

but also our understanding of the functional role played by hu-

man resting brain networks.

The DMN and parietal alpha activity have parallel histories in

the scientific literature, initially interpreted as reflecting idling or

default patterns of activity and only subsequently understood

to have functional roles supporting attention and cognition

(Raichle, 2015; Ray and Cole, 1985). The DMN in particular has

since been linked to a role broadly defined as internally oriented
ence values between that ROI and all others). This identifies RSN states 1 and

2 by their prominently elevated overall coherence.

(B) The data support a frequency decomposition into three modes that

correspond to canonical delta/theta, alpha, and beta bands (STAR methods).

Scatterplots of each RSN state’s PSD and coherence highlight that RSN state

2 displays higher coherent activity across multiple frequency bands compared

with all other RSN states, whereas RSN state 1 is more concentrated in the

alpha band.
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Figure 5. Replay-associated brain activity is characterized by independent spatially and spectrally defined modes

(A and B) Using the replay-evoked RSN state probabilities (bottom panel; mean ± SEM over subjects) as weights for the spectral information unique to each RSN

state (left panel; displays average over all ROIs; mean ± SEM over subjects) allows a reconstructed time-frequency estimate of PSD (A) and coherence (B) around

replay events, revealing a prominent peak in the alpha and delta/theta bands.

(C) Plotting the spatial distribution of activity in the defined frequency modes at the time of replay identifies independent modes of coherent activity: a low-

frequencymode (top panel) comprising the frontal DMNand temporal areas and an alpha frequencymode (center panel) comprising parietal DMN regions and the

visual cortex. Additionally, some weaker levels of activity in the beta band are observed over motor areas, but network coherence patterns in this frequency band

are not significant (bottom panel).
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cognition, encompassing functions such as episodic memory

and future-oriented thought (Andrews-Hanna et al., 2010;

Raichle, 2015). But in the same way that the brain uses sleep
8 Neuron 109, 1–12, March 3, 2021
to replay past experience and consolidate memories, our results

suggest that healthy waking brain activity may undergo periods

of heightened DMN and alpha activity to perform the same



Figure 6. Replay and the DMN coincide with high-frequency power increases in temporal areas

(A) Although the RSN state model was originally fit to data filtered at 1–45 Hz, we can still analyze whether the state timings correlate with specific patterns in

frequency bands outside of this range in the original data. This reveals a very strong association between RSN state 2 and power in high frequencies (mean ± SEM

over subjects) despite these high frequencies not having been included originally in the model.

(B) Similarly, the onset of replay is associatedwith an increase in high-frequency power relative to the global average (mean ± SEM over subjects). Replay-evoked

power was computed by taking 100-ms windows of data around identified replay events; for baseline, see STAR methods.

(C) The spatial distribution of high-frequency (102–148 Hz) power in the DMN state; activity in this RSN state and in this frequency band source localizes to the

temporal cortex.
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function alongside ongoing cognition. Given our more refined

mechanistic understanding of the role of replay, our new findings

could extend our interpretation of the functional relevance of the

DMN. Replay itself is fundamentally understood as amechanism

for memory consolidation but has also been proposed to have

more expansive roles in building cognitive maps, preparing neu-

ral structures for learning (preplay), and transferring knowledge

from the hippocampus to the cortex (Dragoi and Tonegawa,

2011; Foster, 2017). This suggests a more expansive role of

the DMN in executive control, with the regular transient activa-

tions of the DMN associated with building andmaintaining stable

representations of recently acquired information.

Replay occurs at highest intensity during slow-wave sleep,

when large-scale synchronized oscillations provide an environ-

ment conducive to large-scale propagation of sharp wave rip-

ples (Sirota et al., 2003). Notably, the RSN states that correlate

with replay in our study are characterized by large increases in

oscillatory coherence, itself hypothesized to support integration

of signals from disparate regions of the cortex. The DMN itself

appears to be preserved at least into light sleep stages (Greicius
et al., 2008; Larson-Prior et al., 2009; S€amann et al., 2011), with

further evidence showing that the DMN correlates directly with

sharp wave ripples under light anesthesia (Kaplan et al., 2016).

Our findings appear to reflect both of these phenomena, low-fre-

quency coherent oscillations coupled to high-frequency power

bursts, coinciding directly with estimated replay events during

an awake state. Such high-frequency power bursts are taken

to reflect increased aggregate rates of action potential discharge

(Miller et al., 2009), which may or may not coincide with sharp

wave ripples. Importantly, the high-frequency band power in-

creases we see alongside DMN activation appear to be much

more broadband than what has been established by studies of

human sharp wave ripple activity using invasive methods. We

do not have a good explanation for this at present, but it is

notable that comparable broadband spectra have been de-

tected by studies analyzing ripple band activity in neocortical

areas locked to hippocampal ripple events (Axmacher et al.,

2008; Helfrich et al., 2019; Jiang et al., 2017; Norman et al.,

2019; Vaz et al., 2019). Furthermore, the replay-evoked spec-

trum in higher frequencies appears to be more narrowband
Neuron 109, 1–12, March 3, 2021 9
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when baseline correction is applied, indicating that this narrow-

band/broadband distinction may be sensitive to such methodo-

logical choices (Figure S5).

The role of the parietal alpha network is perhaps more

readily understood through the unique requirements of

awake-state replay. Our results are based on spontaneous

replay of visual stimulus representations, raising the problem

of how the brain could reinstate these items without interfer-

ence from ongoing perception. Alpha oscillations are widely

interpreted as an inhibitory signal that acts to gate irrelevant

stimuli from active processing (Foxe and Snyder, 2011; Jen-

sen and Mazaheri, 2010; Rihs et al., 2007). One possibility is

that strong alpha activity may combine with DMN activation

to inhibit bottom-up sensory perception during inward-ori-

ented attention, supporting replay of items from memory.

This could provide a crucial mechanism for how replay plays

out without interference from competing sensory inputs during

the awake state.

We have focused on sequential reactivations consistent with

task sequence, but similar analyses work when we simply

consider all reactivations (Figure S6). It has been established in

these datasets that reactivations are more likely to occur in

relevant sequences than in control sequences (Liu et al., 2019).

However, because reactivations are bursty, we cannot make

selective claims about sequential reactivations here. Increases

in the density of sequential reactivations coincide with increases

in the density of all reactivations, and these times align with pe-

riods of DMN and parietal alpha activity.

In our work, we have drawn a clear distinction between spon-

taneous replay and cued reactivations but acknowledge that it is

not clear how important this distinction might be in general.

Notably, a number of MEG and EEG studies that have defined

replay differently in the context of cuedmemory recall paradigms

(Jafarpour et al., 2013; Kerrén et al., 2018; Michelmann et al.,

2016, 2019) or event boundary analyses (Sols et al., 2017) have

reported findings that appear to overlap with our own; in partic-

ular, finding strong dependencies on neural dynamics in the

theta/alpha frequency range (Kerrén et al., 2018; Michelmann

et al., 2016, 2019). In the broader context of our findings, this

might suggest common neural mechanisms for cued memory

recall and spontaneous replay, mechanisms that may be a

core function of the DMN.

The temporal profile of replay activation that we have charac-

terized may also explain replay-related signals across different

recording modalities. In particular, fMRI studies have shown

reliable behavioral correlations between the reinstatement of

blood-oxygen-level-dependent (BOLD) traces associated with

experimental stimuli and subsequent task performance

(Deuker et al., 2013; Momennejad et al., 2018; Tambini and

Davachi, 2019). This has supported an interpretation of the

BOLD signal as a reflection of cellular replay despite the

disparity of timescales between cellular replay events (known

to be temporally compressed on the order of milliseconds)

and the hemodynamic response (assumed to reflect sustained

activations on the order of seconds). However, our results char-

acterize replay as occurring in transient bursts of high intensity

interspersed with long periods of quiescence. Such a temporal

profilemay bridge this disparity of timescales and explain how a
10 Neuron 109, 1–12, March 3, 2021
hemodynamic signal could arise from clusters of replay bursts

in quick succession.

Furthermore, our results can help to bridge the understanding

of RSNs studied in electrophysiology and fMRI. A long-standing

challenge in unifying findings across modalities has been to un-

derstand how the BOLD response relates to activity in canonical

frequency bands. Activity in the gamma band (>30 Hz) has

consistently shown a strong correlation with a subsequent

BOLD signal (Niessing et al., 2005; Nir et al., 2007); however, a

more complex relationship emerges between the BOLD signal

and activity in lower-frequency bands, in which electrophysio-

logical RSNs are largely defined (Brookes et al., 2011; Mantini

et al., 2007). It has now been shown that different RSN states

show markedly different hemodynamic profiles; in particular,

the DMN and DAN evoke BOLD signals that are opposed in po-

larity and distinct in their temporal decay profile (Sitnikova et al.,

2020). If the DMN state visits cluster together in time while being

linked to high-frequency power increases, as our results indi-

cate, then this may explain these distinct profiles and provide a

key bridge between the understanding of RSNs recorded across

distinct modalities.

Finally, our results suggest measures that could potentially

serve as non-invasive proxy measures of replay, potentially

opening the door to a broader set of replay experimental para-

digms. Until very recently, replay has been predominantly stud-

ied in animal models using spatial navigation paradigms

because of the necessity of highly invasive electrophysiology

to detect replay and the sophisticated understanding of the

entorhinal-hippocampal spatial navigation systems. The devel-

opment of methods to detect spontaneous reactivation (Tambini

and Davachi, 2019) and replay (Kurth-Nelson et al., 2016; Liu

et al., 2019; Schuck and Niv, 2019) in humans noninvasively

has enabled experiments that test how these theories generalize

to non-spatial domains and other abstract cognitive tasks that

are unique to human neuroscience. However, these methods

require demanding experimental designs and cognitive para-

digms. Our results further broaden the range of tools, providing

additional non-invasivemeasures that could provide an estimate

of aggregate replay activity under simple experimental condi-

tions (rest) that can be potentially be studied in large populations

or patient groups.

Overall, our results highlight an important link between two

influential domains of research in modern neuroscience, the

study of replay and the study of RSNs, and provide a potential

connection between noninvasive human imaging studies and

invasive cellular physiology.
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Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for

episodic memory and planning. Hippocampus 25, 1073–1188.

Carr, M.F., Jadhav, S.P., and Frank, L.M. (2011). Hippocampal replay in the

awake state: a potential substrate for memory consolidation and retrieval.

Nat. Neurosci. 14, 147–153.
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tween neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad.

Sci. USA 100, 2065–2069.

Sitnikova, T., Hughes, J.W., Howard, C.M., Stephens, K.A., Woolrich, M., and

Salat, D.H. (2020). Spontaneous activity changes in large-scale cortical net-

works in older adults couple to distinct hemodynamic morphology. bioRxiv.

https://doi.org/10.1101/2020.05.05.079749.

Sols, I., DuBrow, S., Davachi, L., and Fuentemilla, L. (2017). Event Boundaries

Trigger Rapid Memory Reinstatement of the Prior Events to Promote Their

Representation in Long-Term Memory. Curr. Biol. 27, 3499–3504.e4.

Tambini, A., and Davachi, L. (2019). Awake reactivation of prior experiences

consolidates memories and biases cognition. Trends Cogn. Sci. 23, 876–890.

Teich, M.C., Turcott, R.G., and Siegel, R.M. (1996). Temporal correlation in cat

striate-cortex neural spike trains. IEEE Eng. Med. Biol. Mag. 15, 79–87.

Vaz, A.P., Inati, S.K., Brunel, N., and Zaghloul, K.A. (2019). Coupled ripple os-

cillations between the medial temporal lobe and neocortex retrieve human

memory. Science 363, 975–978.

Vidaurre, D., Quinn, A.J., Baker, A.P., Dupret, D., Tejero-Cantero, A., and

Woolrich, M.W. (2016). Spectrally resolved fast transient brain states in elec-

trophysiological data. Neuroimage 126, 81–95.

Vidaurre, D., Hunt, L.T., Quinn, A.J., Hunt, B.A.E., Brookes, M.J., Nobre, A.C.,

andWoolrich, M.W. (2018). Spontaneous cortical activity transiently organises

into frequency specific phase-coupling networks. Nat. Commun. 9, 2987.

Wilson, M.A., and McNaughton, B.L. (1994). Reactivation of hippocampal

ensemble memories during sleep. Science 265, 676–679.

Woolrich, M., Hunt, L., Groves, A., and Barnes, G. (2011). MEG beamforming

using Bayesian PCA for adaptive data covariance matrix regularization.

Neuroimage 57, 1466–1479.

http://refhub.elsevier.com/S0896-6273(20)30966-1/sref19
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref19
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref19
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref19
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref20
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref20
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref20
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref20
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref21
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref21
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref21
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref22
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref22
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref22
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref22
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref23
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref23
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref23
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref24
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref24
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref25
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref25
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref26
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref26
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref26
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref26
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref27
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref27
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref27
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref28
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref28
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref28
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref29
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref29
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref29
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref30
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref30
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref31
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref31
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref31
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref32
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref32
https://doi.org/10.1101/2020.04.30.066407
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref34
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref34
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref34
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref35
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref35
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref35
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref36
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref36
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref36
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref37
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref37
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref38
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref38
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref39
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref39
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref39
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref40
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref40
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref40
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref41
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref41
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref41
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref42
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref42
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref42
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref43
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref43
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref43
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref44
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref44
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref45
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref45
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref45
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref46
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref46
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref46
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref47
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref47
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref47
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref48
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref48
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref48
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref48
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref48
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref49
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref49
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref50
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref50
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref50
https://doi.org/10.1101/2020.05.05.079749
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref52
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref52
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref52
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref53
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref53
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref54
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref54
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref55
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref55
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref55
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref56
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref56
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref56
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref57
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref57
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref57
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref58
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref58
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref59
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref59
http://refhub.elsevier.com/S0896-6273(20)30966-1/sref59


ll
OPEN ACCESSArticle

Please cite this article in press as: Higgins et al., Replay bursts in humans coincide with activation of the default mode and parietal alpha networks,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.12.007
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

HMM-MAR toolbox Vidaurre et. al., 2018 https://github.com/OHBA-analysis/HMM-MAR

OHBA Software Library Woolrich et. al., 2011 https://ohba-analysis.github.io/osl-docs/pages/overview/

download.html

Custom code for this paper N/A https://github.com/OHBA-analysis/Higgins2020_Neuron
Resource availability

Lead contact
Further information and requests for resources should be directed to Cameron.Higgins@ohba.ox.ac.uk.

Materials availability
This study did not generate any new reagents.

Data and code availability
The code used to run the analyses in this paper is publicly available at the following GitHub repository: https://github.com/OHBA-

analysis/Higgins2020_Neuron

This paper analyses data from three separate datasets, referred to as Dataset A, B and C (see STARmethods). Dataset A and Bwill

be freely available upon request (subject to participant consent) to yunzhe.liu.16@ucl.ac.uk. Dataset C was collected and held by the

MEG UK Partnership, and access to this data can be requested at https://meguk.ac.uk/contact

Experimental model and subject details

We make reference throughout this publication to three separate datasets; we will refer to these as Dataset A, the replay data

collected by Liu et al. (2019) that forms the main focus of analysis in this paper; Dataset B, a secondary replay dataset that was

used to prove replication of the analysis conducted on dataset A, which is referred to throughout the paper and is the focus of Figures

S2–S5; and Dataset C, an established, larger dataset comprising resting state MEG data that we used to train the canonical resting

state networks.

Dataset A, the primary replay dataset, was acquired from 25 participants (aged 19-34, mean age 24.89; eleven male, two left-

handed); four subjects were then excluded due to large motion artifacts or missing trigger information, leaving 21 subjects for the

analysis conducted. All participants signed written consent in advance; ethical approval for the experiment was obtained from the

Research Ethics Committee at University College London under ethics number 9929/002.

Dataset B, the replication dataset, was acquired from26 participants (aged 19-34,mean age 25.48; tenmale, two left-handed); four

participants were later excluded due tomotion artifacts or failure to complete the task, leaving 22 subjects for the analysis conducted.

All participants signed written consent in advance; ethical approval for the experiment was obtained from the Research Ethics Com-

mittee at University College London under ethics number 9929/002.

Dataset C, the RSN-state training dataset, comprised resting state MEG data from a larger group of subjects that has previously

been used to characterize MEG resting state network dynamics (Hunt et al., 2016; Vidaurre et al., 2018). This study acquired resting

state MEG scans and structural MRI scans for 55 participants (mean age 26.5 years, maximum age 48 years, minimum age 18 years;

35 males). All participants gave written informed consent and ethical approval was granted by the University of Nottingham Medical

School Research Ethics Committee.

METHOD DETAILS

Replay Experimental protocol
For full details of the experimental protocol, readers are directed to Liu et. al. 2019; key details only are summarized here. In Dataset

A, each participant attended two days, the first for learning the structure of the task and the second for completing the task while

undergoing MEG scanning. The task was based around 8 visual stimuli, and participant’s objective was to correctly unshuffle these
Neuron 109, 1–12.e1–e7, March 3, 2021 e1

mailto:Cameron.Higgins@ohba.ox.ac.uk
https://github.com/OHBA-analysis/Higgins2020_Neuron
https://github.com/OHBA-analysis/Higgins2020_Neuron
mailto:yunzhe.liu.16@ucl.ac.uk
https://meguk.ac.uk/contact
https://github.com/OHBA-analysis/HMM-MAR
https://ohba-analysis.github.io/osl-docs/pages/overview/download.html
https://ohba-analysis.github.io/osl-docs/pages/overview/download.html
https://github.com/OHBA-analysis/Higgins2020_Neuron


ll
OPEN ACCESS Article

Please cite this article in press as: Higgins et al., Replay bursts in humans coincide with activation of the default mode and parietal alpha networks,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.12.007
into the two correct four item-long sequences (eg, A- > B- >C- >D and A’ - > B’ - >C’ - > D’), using a set of unshuffling rules learned on

the first day of the experiment. Once in the scanner, participants observed multiple presentations of the novel visual stimuli in a ran-

domized order to act as training data for the multivariate classifiers (the Functional Localizer data. They were then presented with the

visual stimuli in the shuffled order from which they could infer the correct sequence. Participants then underwent the first 5 minute

resting state scan; one of the two four-item sequences was paired with a reward; participants underwent a second resting state scan,

and were tested on their correct recall of the item sequences. All analysis in this paper focuses only on the data from the two resting

state scans within this overall experiment. Dataset B used a very similar but slightly amended paradigm; the shuffling rule that par-

ticipants learned was different, as was the ordering of individual blocks (see Liu et. al. 2019).

Replay Detection
This paper builds on the results of Liu et al. (2019), using their computed replay onset timings. For clarity we outline their methods to

detect replay here, but direct readers to the original publication for further details. For each of the eight visual stimuli, sparse logistic

regression classifiers were trained using L1 regularization on the functional localizer data to identify the neural patterns associated

with each visual stimulus. To select an appropriate time point on which to train the classifiers, the authors used cross validation over

the functional localizer data to plot the overall classification accuracy; this identified the time point 200msec following stimulus pre-

sentation to be the time point corresponding to the highest classification accuracy averaged over all stimuli, trials and subjects. The

trained classifiers associated with this time point were then fit to the resting state data, producing eight time series that represented

the probability of reinstatement of the activity patterns associated with each visual stimulus:

At = sðXtbAÞ
Bt = sðXtbBÞ
Where Xt is the recorded resting state data at time t; bi is the sparse classifier coefficients associated with the ith visual stimulus; At is

the probability of reinstatement of the patterns associated with stimulus A at time t in the resting state scan; and sðxÞ denotes the

logistic sigmoid transform which maps from the real number plane to a probability on the interval [0,1].

The authors analyzed the temporal cross-correlation of these scores and found significant evidence for the reinstatement of stim-

ulus patterns in specific sequence ordering that matched the task structure; that is, scores followed in the patterns A- > B- > C- > D

and A’- > B’- > C’- > D’ (see Figure 1B). This patterning was strongest for a time lag of t = 40msec, indicating very rapid serial rein-

statement of visual stimulus representations. Finally, the authors estimated a single overall time course of replay Rt using the

following logical operation:

Rt = P

� ðAtXBt + tÞWðBtXCt + tÞWðCtXDt + tÞ
W
�
At

0XBt + t
0�W�

Bt
0XCt + t

0�W�
Ct

0XDt + t
0��

WhereX denotes the logical AND operation, andW denotes the logical OR operation. Consequently, the replay time course,Rt, rep-

resents the probability of any task-relevant two item sequence occurring with the specified time lag t = 40msec. This probabilistic

output was thresholded at the 99th percentile to provide the estimated replay event times used throughout this paper.

Resting State Network Modeling
The RSN-states referred to in Figure 1 and throughout this paper use an established Hidden Markov Model with Time Delay Embed-

ding (HMM-TDE) approach outlined in detail in Vidaurre et al. (2018). We outline the approach here and direct readers to the original

publication for further details.

This model makes use of the Hidden Markov Modeling framework, a generative modeling approach that describes the data Xt at

each time point t as being generated from a latent state variable Zt˛½1;2;.K�. That is, the latent state at any point in time is an integer

between 1 and K, where K is a parameter controlling the total number of states. Therefore, the DMN state being active at time twould

be denoted by Zt = 2, with the DMN corresponding to RSN-state 2 in this case (Figure 2B).

To complete themodel specification, wemust define the observation model – that is, the probabilistic model relating the activation

of a particular latent state to the underlying data. As in Vidaurre et al. (2018), we make use of a temporal embedding with a Gaussian

observation model:

PðvecðXt�l:t + lÞ jZt = kÞ � Nð0;SkÞ
In this notation, the vec operator performs the temporal embedding; that is, we take a ½W3P�matrix of points Xt�l:t + l centered on the

time point t, where P is the number of data dimensions and W = 2l + 1 is the length of the temporal embedding - and stack it into a

½WP31� vector with the vec operator. We then model this vector of datapoints with a Gaussian distribution, with zero mean and a

½WP3WP� covariancematrix determined by the active state. Crucially, each RSN-state is now parameterized by a unique covariance

matrix which reflects the autocovariance on each channel, as well as the cross covariance across channels. As outlined in Vidaurre

et al. (2018), this is an efficient parameterization of the power spectrum and the cross power spectrum respectively. Consequently,

each distinct RSN-state corresponds to a distinct distribution of power on each channel and coherence between channels.
e2 Neuron 109, 1–12.e1–e7, March 3, 2021



ll
OPEN ACCESSArticle

Please cite this article in press as: Higgins et al., Replay bursts in humans coincide with activation of the default mode and parietal alpha networks,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.12.007
Quantification and statistical analysis

MEG Data Acquisition
In both Dataset A and B, MEG scans were acquired at 600 samples/second on a 275 channel CTFMEG system. For Dataset C, MEG

data was acquired at 1200Hz using a 275 channel CTFMEG system operating at third order synthetic gradiometry configuration; MRI

data were acquired using a Phillips Achieva 7T system. MRI data, used only for the purpose of MEG coregistration, were acquired

using a Philips Achieva 7T scanner.

Data Preprocessing
Across the three datasets and the two analysis pipelines of Figure 1B we sought to minimize differences in preprocessing however

minor deviations were necessary. The replay identification conducted by Liu et al. (2019) (Figure 1) filtered sensor spaceMEG data to

a pass band of 0.5 to 50 Hz; data were downsampled to 100 samples / second. All analysis reported by Liu et al. (2019) in this paper

was conducted in sensor space; for further details see Liu et al. (2019). The Resting State Network analysis pipeline filtered sensor

space data to a pass band of 1 to 45 Hz and downsampled data to 250 samples / second. This slightly amended filter passband was

to ensure RSN-state dynamics were not driven by low frequency sensor drift effects or mainline power noise effects, which the HMM

modeling approach is more sensitive to compared to the replay identification methods introduced by Liu et al. (2019). Similarly,

the higher sampling rate was to ensure sufficient resolution of the time embedding to ensure good estimation of spectral content

for each RSN-state definition. The only exception to this was for the final analysis of spectral content in higher frequencies (Figure 6),

for which we returned to the raw data to utilize the highest frequency information available; this data had been acquired at

600 samples / second and low pass filtered with cutoff frequency 160Hz.

Source Space Reconstruction
One of the motivations for using Dataset C to train the resting state networks was to ensure the highest possible confidence and

replicability of the anatomical distributions of activity unique to each RSN-state. Given the limited spatial resolution of MEG, confi-

dence can be increased through the use of larger datasets which have been coregistered using MRI acquired structural scans. MRI

scans were not acquired for either dataset A or dataset B, motivating our focus on dataset C to determine high confidence spatial

topographies of each RSN-state.

Dataset Cwas coregistered toMRI structural information using amultiple local sphere forwardmodel (Huang et al., 1999). Datasets

A and B, which did not have associated MRI structural information, were coregistered using fiducial markers. All data then followed a

common pipeline of analysis thereafter, with source space reconstruction performed using an LCM-V beamformer projecting to an

8mm MNI grid. This grid was then parcellated into 38 anatomically defined Regions of Interest (ROIs) derived from an independent

component analysis of fMRI resting state data from the Human Connectome Project (Colclough et al., 2016). Source leakage was

then corrected for by orthogonalization as outlined in (Colclough et al., 2015).

Model inference
The full model outlined above is amenable to variational Bayesian methods, which support fast scalable inference for large datasets.

The datasets we have used are moderately large – the full model was trained on dataset C, comprising 5 minutes of resting state

scans from 55 subjects at 250samples/second, totaling 3.9 million unique data samples. This defined our set of canonical RSN-

states, which we then fixed and subsequently fit to datasets A and B, each comprising a total of 10 minutes of resting state scans

from 21 and 22 subjects respectively, totaling 3.2 million unique samples and 3.7 million unique samples, respectively. To enable

scaleable inference over such datasets, we utilized stochastic gradient variational Bayes methods that iteratively learn a full model

through batch training (Vidaurre et al., 2018). Furthermore, we use PCA dimensionality reduction steps as outlined in Vidaurre et al.

(2018) when training the model; to avoid potential misrepresentation of the data, the dimensionality reduced data is only used for

model training, all spectral features plotted in figures are based on a multitaper fit back to the original, full dimensional data. Finally,

hierarchical models fit with variational methods can be sensitive to local minima. To ensure good convergence, the full model infer-

ence was run five times; only the model with the lowest final free energy was kept, the others were discarded.

Model Parameter Selection
As a guiding principle we havemaintained the same parameter choice as that previously used in (Vidaurre et al., 2018). The parameter

K controls the total number of RSN-states and therefore the granularity of the solution; we set this to K = 12, consistent with previous

publications; the same results can be broadly reproduced with other choices of K.

RSN-state labeling
The HMM-TDEmodel infers a set of mutually exclusive latent states, which we number from 1 to 12 for ease of reference throughout.

The RSN-state numbers themselves are arbitrary, however for ease of interpretation we assign labels using a data-driven approach

that minimizes a distance metric between ordinal states. This can be visualized as in Figure S1, and has the result that RSN-states

that are nearer in ordinal label are considered nearer in the corresponding state space; for example RSN-state 2 can be considered

nearer to RSN-states 1 or 3 than to RSN-state 12.
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We derive this distance metric from the transition matrix directly. LetQ be the Markov state transition matrix, such that each entry

qi;j = Pðzt + 1 = j j zt = iÞ; that is, each entry contains the probability of observing a direct transition from state i into state j. First, we

exclude self-transitions, which are uninformative for the purposes of distances between states; this is done by setting the diagonal

entries to zero, then normalizing so each row sums to one, such that our new matrix has entries jij = Pðzt + 1 = j j zt = i; zt + 1 siÞ.
Noting that high transition probabilities should correspond to small distances, we then define the distance between two states as

the probability of not observing that state transition:

dij = 1� ji;j

Finally, to convert this to a symmetrical matrix of distances (as currently dijsdji), we simply average corresponding off-diagonal

entries bdij =
1
2 ðdij +djiÞ.

Given the 123 12matrix of distances bdij, we then usemultidimensional scaling to identify the single axis that accounts for themost

variance in the distance matrix. RSN-states are then labeled 1-12 in the order of their appearance on this axis – see visualization in

Figure S1.

RSN Spectral Information
Each RSN-state is defined by a distinct spatial distribution of spectral power and coherence. These characteristics can be interpreted

directly from the observation model parameters - however this may emphasize certain traits of the model fitting procedure, in partic-

ular the effects of the PCA dimensionality reduction methods applied, rather than the underlying spectra that is observable in each

RSN-state. For this reason, we extract the spectral information by fitting a multitaper to the raw data, conditioned on the active RSN-

state as introduced by Vidaurre et al. (2016) which provides an empirical assessment of the power and coherence for each ROI as a

function of frequency. We fit the multitaper using the following parameters: a taper window length of 2 s; frequency resolution of

0.5Hz; frequency range of 1 to 45 Hz; and applying 7 Slepian tapers. As outlined above, due to the increased confidence of spatial

RSN-state parameters derived from dataset C, a larger dataset for which MRI structural information was available, the spatial and

spectral distributions per RSN-state referred to in this paper were derived from this dataset, supporting their interpretation as a

set of canonical RSN-states.

This information is still very high dimensional so we summarize it through a spectral mode decomposition, obtaining spatial power

and coherence maps for a data-driven set of frequency band modes. This decomposition is implemented by non-negative matrix

factorization as detailed in Quinn et al. (2018) and Vidaurre et al. (2018). For summary purposes in Figure 2B and Figure S1, we fit

this with two modes, to separate a single wideband mode from higher frequency noise. To explore further the spatial breakdown

of different frequency modes, we fit the same non-negative matrix factorization procedure with four modes as in Figure 5 (use of

four modes was found to produce broadly stable decompositions and mirrors findings in previous work). These can be derived

for each RSN-state; alternatively, to more accurately reflect the full power and coherence distribution at a particular event time,

we can use the evoked RSN-state distribution to weight the power and coherence information, producing HMM regularized time

frequency plots in Figure 5 and Figure S4.

Replay Evoked RSN Analysis
Figure 2A analyses the average RSN-state distribution evoked by individual replay events. At the single subject level, we took the

probabilistic RSN-state time course fgi;tg=PðZt = iÞ; that is, a timeseries with K distinct values between 0 and 1 at each timestep

reflecting the probability of each RSN-state’s activation. We then baseline corrected by subtracting the average over all time points

for that subject, such that values greater than zero reflect probabilities greater than the session average, and values less than zero

reflect activation probabilities below the session average for that subject. We then epoched this time series using the replay times

identified above, extracting a window extending from 0.5 s prior to each event to 0.5 s after each event. For each subject, we

then computed the evoked RSN-state distribution over this time window by averaging the epoched RSN-state distributions over

all replay events. Let us denote by Bi;t;n the evoked distribution for subject n and RSN-state i at timelag t from the estimated replay

events. Figure 2A plots themean of these values over subjects, reflecting the expected increase or decrease in RSN-state probability

evoked by individual replay events.

To test the significance of these results two types of statistical test were utilized; to support claims of a significant result at a specific

point in time we used a one-sided t test, whereas to support claims of a broad peak of significant points across time we used a non-

parametric sign flipping cluster permutation test. The cluster permutation test determined the probability of finding by chance a clus-

ter of consecutive significant points that was the same size or larger than that observed in the data. We defined significance in this

context as observing a group level t-statistic exceeding 3; we then generated a null distribution of cluster sizes by randomly

permuting 5000 times the sign of each subject’s evoked response parameters Bi;t;n before computing group t-statistics, and deter-

mining the number of consecutive points exceeding the significance threshold. We could thus compute the chance probability of

generating a cluster of the same size observed in the data.

When testing whether this result replicated on a second study, we applied an inflexible analysis to determine cluster significance.

Specifically, we took the clusters in time found in the analysis of Dataset A. We then extracted the corresponding data for that time

cluster in Dataset B and defined our cluster threshold as the minimum t-statistic within this temporal cluster. In a final step we then
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computed (using the same sign-flipping permutation tests) the probability of a cluster of points the same or greater in size than this

threshold occurring by chance in Dataset B.

Figure 2C plots the results of the same analysis on the functional localizer data; epochs were defined by the time of visual stimulus

presentation, corresponding to t = 0 in the plot. The thick red line indicates the time at which the replay classifiers were trained.

Figure 2D then directly compares the evoked RSN-state distribution between the replay and functional localizer data sessions; for

ease of presentation, we only focused on the distribution at the exact time of replay onset (t = 0) and the exact time point the replay

classifiers were trained on (t = 200msec); for each of the 12 RSN-states we conducted a paired t test to check whether the evoked

RSN-state distributions were significantly different across the two conditions.

Controlling for Replay Classifier Variance During DMN Activation
RSN-states 1 and 2, which correlate with replay, also have the highest variance in the data (as in Figure 4, these RSN states have the

highest broadband power and therefore the highest variance). This leads to increased variance in the classifier outputs when these

states are on, which could lead to spurious ‘‘reactivations’’ occurring solely as a result of the increased variance in the classifier

outputs.

To control for this, we note that such spurious effects must be unbiased; that is they should not selectively bias a classifier output

toward a particular value. It therefore follows that, when classifier outputs are plotted by percentile, any spurious effects attributed to

increased variance should be symmetric across the median. Thus, we repeated the replay evoked RSN analysis while varying the

threshold value from 1% to 99% (see Figure S6). This allowed us to characterize the degree to which the relationship was dependent

upon the choice of threshold value, and also whether the effect was symmetric over thresholds (suggesting it is driven by the variance

of classifier outputs) or strongly weighted toward higher threshold values (suggesting it is driven by the classifier values). These are

shown in Figure S6.

Comparing Reactivation Evoked and Replay Evoked Distributions
Our main result focuses on the replay evoked distributions; in Figures S6F and S6G we compare this with the reactivation evoked

distribution to relate our findings to the extensive literature on reactivations. This analysis was performed by repeating the precise

steps outlined above for Replay Evoked RSN Analysis, but replacing the replay time courses with the reactivation time courses –

that is, the actual stimulus classifier outputs denoted by At; Bt; . in the Replay Detection methods outline.

These two measures are however strongly correlated (Pearson’s Rho = 0.45), as we have defined the replay time course itself as a

linear superposition of the reactivation time courses. Furthermore the autocorrelation structure of the reactivation time courses and

the bursty nature of the replay time course characterized below impose fundamental methodological constraints this specific anal-

ysis, such that Figures S6E and S6F should be interpreted accordingly.

Spectral Characterizations of Replay and Classifier Outputs
A growing field of literature focuses on the dynamics of classifier outputs using spectral analysis methods (Kerrén et al., 2018). Such

studies may, for example, use some cued paradigm, training multiple classifiers on each successive time point after stimulus onset

and then analyze in detail the Fourier spectrum of the cross validated accuracy time course over trials. Readers familiar with such

analyses may be interested in how they would apply to our paradigm.

Ourmethods are different in a number of important ways that limit the potential of these common analysis techniques when applied

to our data. First, these analyses rely upon the use of aligned trial data, allowing independent classifiers to be applied to the data at

each consecutive timestep from the stimulus presentation time. In contrast, we take a single classifier for each stimulus (taken from

the point of maximum decoding accuracy, 200msec following stimulus onset in the functional localizer data) and apply that classifier

to the entire timeseries of resting state data. Consequently, whereas the approach as applied by Kerrén et al. (2018) typically

identifies complex spectral characteristics emerging in the decoded signal, in our analysis the spectra of the classifier outputs is

by definition a static linear function of the cross spectrum (because the decoding weights being used are fixed over time).

Nonetheless, this can still be informative, and when we apply this analysis to our data in Figure S3E we find the spectrum closely

mirrors that of the RSN-states that align to replay; specifically, it reproduces two prominent peaks in the alpha and delta/theta range.

These peaks are accentuated when we time-lock this analysis to epochs surrounding replay events; extracting the same modes in

this data as used in the main manuscript text, we find a prominent increase in the alpha range (paired t test, p = 0.002) and a weaker

but significant increase in the delta/theta range (paired t test, p = 0.045). Due to the methodological differences with the analyses of

Kerrén et al. (2018), as highlighted above, the interpretation of these peaks is more limited. These oscillatory patterns are stronger at

replay times, but we do not know whether these reactivations are themselves a function of these oscillations or merely coincident

with them.

Some readers may be interested in what such an analysis would conclude when applied to the replay time courses. However, such

an analysis would be inappropriate in this case. Spectral analysis applies well to data that has a roughly Gaussian distribution; it is

typically applied to the ‘classifier evidence’, namely the classifier output before a sigmoid nonlinearity is applied. However, as the

replay time course is determined by a logic operation (see section on Replay Detection), there is no equivalent to the ‘classifier

evidence’ time course upon which these analyses are conducted; the replay time course itself is highly nonlinear as shown in Figures

S3B and S3C. The shape of this time course led us to conclude that it was more appropriately modeled as a Poisson point process,
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whose dynamics are better represented by statistics such as the Fano Factor, than by a spectral analysis such as pursued by Kerrén

et al. (2018), and by others in similar papers.

Transient Burst Activity Analysis
To analyze the temporal statistics of replay onset, we modeled the estimated replay event times for each subject and as a Poisson

point process. Wherever an interval between events encompassed MEG data samples that had been marked as bad, the whole in-

terval was excluded. We then partitioned the replay time course into non-overlapping windows, for a given window length W, and

computed the total sum of replay events observed in each window (Teich et al., 1996). The Fano Factor, for a given window of length

W, is then given by:

FW =
s2
W

mW

Where mW and s2W are the mean and variance of event counts in each window. The Fano Factor was computed individually for each

subject, Figure 3D plots the mean ± ste over subjects for each window length. We then computed parametric t tests on the Fano

factor to test the null hypothesis that it was equal to one.

This alone does not prove conclusively that replay occurrences are transient burst events, but rather that they are not homoge-

neous Poisson processes. Hence, we furthermore tested a much broader null hypothesis that the intervals between replay events

were independent and identically distributed, following the approach of Teich et al. (1996). We generated surrogate data by shuffling

the interval times; that is, for each subject, we took the replay event time course, computed the intervals between consecutive events,

and randomly permuted the intervals to generate a new event time course. This maintained the exact distribution of replay intervals

while removing any dependence between consecutive intervals. We then computed the subject and group Fano Factors exactly as

above.With this surrogate data, after 1000 permutations themaximumFano Factor computed (plotted as the dotted line in Figure 3D)

remained well below that of the true time course, confirming that the longer term dispersion arises from correlation over consecutive

intervals (p < 1e-3) and allowing us to conclude that replay is characterized by irregular transient bursting behavior.

We then repeated the analysis for RSN-state activations (Figure 3E). Treating each RSN-state visit as an event, we removed

consecutive activations and just used the interval between events to create the equivalent RSN-state visit event time course. As

above, we computed the Fano Factor versus window length for each subject.

To compute the significance of these results, we used a one-way ANOVA to test the null hypothesis that there was no significant

difference between the Fano factors of different RSN-states; this was conducted for each window length resulting in 100 multiple

ANOVA tests.We only report the highest p value obtained, which remained significant with Bonferroni correction, allowing us to reject

the null hypothesis for all window lengths observed.We could then assess a two-sample t test, taking each RSN-state one by one and

testing the hypothesis that the observed Fano Factors for that RSN-state were no different from the entire population of remaining

RSN-states. For example, we would take the 21 subject level Fano Factors for RSN-state 1, and compare that with the population of

size 21 by 11 of Fano Factors for each subject for RSN-states 2-12, then repeat this for RSN-state 2. Again, this test was computed for

each value of the window size; only the highest obtained p value was reported, all others were below this and therefore more

significant.

Finally, Figure 3F considers the interval between replay events given the active RSN-state; that is, if a replay event occurs at time t

we compute the length of time to the successive replay event, and also themost likely RSN-state to be active at time t. In this analysis,

we omit any observations where the interval to the next replay event overlaps with segments marked as bad. For each subject, we

thus compute a mean replay interval given the active RSN-state, generating a collection of 21 observations of replay intervals given

the active RSN-state. Certain subjects had very few observed replay events in particular RSN-states, resulting in high variance es-

timates; we therefore omitted from further analysis any means that were derived from fewer than ten observations. We then could

then test for significant variation by active RSN-state with a one-way ANOVA followed by two sample t tests, in which we tested

whether the replay intervals given RSN-state k was active were significantly different from the replay intervals of all other RSN-states

combined.

RSN-state Power and Coherence Analysis
Figure S4 is another way to characterize the spectral information unique to each RSN-state. For these plots, we take the RSN-state

spectral information as outlined by the multitaper approach outlined above.

To summarize the wideband response over all frequencies, we take the NNMF decomposition with two modes – that is, with one

mode that we interpret as higher frequency noise, and the remaining widebandmode interpreted as a denoised average of the overall

frequency spectrum – and plot the RSN-state specific power and coherence for each ROI, given the active RSN-state. The power is

given directly by themultitaper approach; coherence is defined per pair of ROIs, so the values plotted on the y axis in these plots is the

sum of coherences between a given ROI and all others.

We can also follow the same procedure for each of the three spectral decompositions corresponding to individual spectral modes;

that is, we derive the power and coherence for each ROI and for each given RSN-state, as computed for each of the delta / theta,

alpha and beta spectral modes.
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Replay Evoked Spatial Maps
To accurately convey the spectral profile that is linked to each replay event, we can combine the replay evokedRSN-state distribution

plotted in Figure 2Awith each RSN-state’s spectral information. As outlined above, we have values for the spectral power and coher-

ence of each RSN-state from dataset C. We can initially visualize these by averaging over all recorded ROIs; the left-hand side of

Figures 5A and 5B plot the state specific power and coherence values, respectively. To compute the power and coherence patterns

that most closely reflect replay times, we take the subject specific replay evoked RSN-state distributions, referred to as Bi;t;n above

and plotted in the lower panel of Figures 5A and 5B. For consistency of interpretation with Figure 2 these are plotted after baseline

correction, however to compute the replay evoked power and spectral density plots we revert to the non-baseline corrected values,

such that each Bi;t;n is a probability between 0 and 1, with the sum of values over all different states equal to 1 for each time point and

subject.We can then compute the expected power and coherence as a function of both time and frequency around each replay event

by weighting the state specific PSD and coherence values by the replay evoked state distribution. Note that this analysis was done at

the subject level; that is, we computed subject-specific power and coherence estimates as a function of both time and

frequency using each subject’s specific replay evoked state distribution. This produced maps of dimension [time x frequency

x subjects x channels] in the case of PSD and [time x frequency x subjects x channels x channels] in the case of coherence. Given

the high dimensionality of this data we separately summarize the time-frequency information (Figures 5A and 5B) and the spatial

frequency distribution (Figure 5C). For visualization in the heatmaps of Figures 5A and 5B we baseline corrected at the subject level,

such that zero on the color scale denotes an average PSD and coherence. Figure 5C then expresses how this information is distrib-

uted over frequency and space. This plot uses only the distribution defined at t = 0, the exact time of replay estimated by Liu et al.

(2019). We decompose the spectral information using the previously introduced non-negative matrix factorization, a data-driven

approach that identifies the main spectral modes explaining the data, producing a vector of power values over channels and amatrix

of coherence values between channels for each spectral mode and each subject. For the purposes of visualization, PSD values are

thresholded by the highest 90% of values. The higher dimensionality of the coherence matrix required a more stringent thresholding

approach; for this we applied a Gaussian mixture model threshold test (Quinn et al., 2018; Vidaurre et al., 2018), only plotting con-

nections if they fall into a distinct mixture separated from the global distribution. All these spectral estimation and thresholding steps

follow those previously introduced (Quinn et al., 2018; Vidaurre et al., 2018).

High Frequency Oscillations
To analyze the higher frequency correlates of specific RSN-state activations, we first took the timeseries of state activations that had

been fit to the resting state data as outlined above. Importantly, this analysis had been conducted on data that was downsampled to

250 samples/second and band pass filtered between 1 and 45Hz. For this analysis we therefore returned to the raw data which had

been acquired at 600samples/second with a low pass filter applied with cutoff 160Hz. This data did contain power line noise with a

baseline frequency at 50Hz and some harmonic noise at integer multiples of 50Hz; we did not attempt to filter this out to avoid intro-

ducing any undesirable filter effects. Using the exact state activation times andmultitaper approach outlined above, but instead using

data with a higher sampling rate that included high frequency content, we estimated the power spectral density associated with each

state over all frequencies from 1 to 160Hz. Figure 6A plots the mean ± standard error over subjects of the PSD across this broader

frequency band for all states. To compare this to the PSD estimated at replay times, we reused the same multitaper approach but

replaced the state activation timeswith estimated replay times. Specifically, we defined awindow of width 30msec around the time of

each estimated replay event, and computed the PSD across all frequencies for the data in these windows using the same multitaper

approach. To estimate the baseline non-replay high frequency power, we followed the same approach but now using randomly

sampled replay times that were shuffled over subjects – this ensured consistency in epoch lengths and temporal profiles while

extracting data that was not aligned to replay events in any consistent way. These PSD values are plotted in Figure 6B. Finally, given

the exclusive correlation between high frequency power increases and RSN-state 2, we explored the spatial distribution of power in

higher frequencies in this specific RSN-state. Figure 6C averages the PSD values over all subjects between 102-148Hz (this band

was defined to exclude mainline power noise effects) for each ROI, and plots the spatial topography over all ROIs.

Baseline Correction for High Frequency Oscillations
The replay evoked spectrum in higher frequencies in Figure 6B may appear more broadband than previously reported in Liu et al.

(2019). This is in fact due to the baseline correction measures used, with a more narrowband signal emerging when the signal is

plotted relative to baseline than when the absolute signal is plotted.

To compare our findings directly, we recreated Figure 6B using a wavelet decomposition applied to the entire timeseries. This

allowed us to compare our replay evoked distribution of Figure 6B – that averages over a time window around replay events –

with the full epoch analysis reported by Liu et al. (2019) which plots the replay evoked spectrum as a function of both time and

frequency around replay events. To produce Figure S5D we took the same 30msec window around replay events which replicates

the broadband high frequency spectrum of Figure 6B. We then plotted the difference between this signal and baseline as in

Figure S5E. Finally, we plotted this spectrum as a function of both time and frequency in Figure S5F, replicating the figures reported

by Liu et al. (2019).
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