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A computational model of neurodegeneration
in Alzheimer’s disease
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Disruption of mental functions in Alzheimer’s disease (AD) and related disorders is

accompanied by selective degeneration of brain regions. These regions comprise large-scale

ensembles of cells organized into systems for mental functioning, however the relationship

between clinical symptoms of dementia, patterns of neurodegeneration, and functional

systems is not clear. Here we present a model of the association between dementia symp-

toms and degenerative brain anatomy using F18-fluorodeoxyglucose PET and dimensionality

reduction techniques in two cohorts of patients with AD. This reflected a simple information

processing-based functional description of macroscale brain anatomy which we link to AD

physiology, functional networks, and mental abilities. We further apply the model to normal

aging and seven degenerative diseases of mental functions. We propose a global information

processing model for mental functions that links neuroanatomy, cognitive neuroscience and

clinical neurology.
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Mapping biological functions to their anatomic substrates
has been a central theme throughout medicine. At the
core of the clinical practice of neurology is the locali-

zation of a particular clinical deficit to an anatomic substrate in
the nervous system. Localizing limb strength to a lesion in the
nervous system is usually straightforward, but in neurodegen-
erative disorders of the brain that cause dementia, clinical
symptoms manifest as selective impairments in mental functions.
Cognitive psychology describes these mental abilities using terms
such as perception, emotion, memory, social cognition, language,
and executive function. Clinical localization of these functions is
poorly understood as there is no widely used model in neurologic
practice describing the high-level relationships between anatomy,
brain dynamics, and mental functioning to guide the clinical
approach to these common conditions. This has led to recent calls
to revise the psychological ontology using data driven methods1.
Lack of understanding of this mental biology in terms of func-
tions performed by brain networks also precludes the develop-
ment of disease models that include physiology related to
functional brain systems like the default mode network
(DMN)2–6. To bridge this divide, mapping between concepts in
clinical neuropsychology, neurology, and computational neu-
roscience is required.

From a computational neuroscience perspective, the diverse
cognitive functions degraded by Alzheimer’s disease (AD) and
related disorders, are conceptualized as emerging from the inte-
gration of ongoing microscale and mesoscale dynamic functional
operations occurring within a relatively fixed spatial anatomy. In
this respect, high-level mental abilities emerge from the compu-
tations performed from dynamic global integration of local
integrators at these micro- and mesoscales7. These globally
integrated units, or large-scale ensembles of coordinated neuronal
activity, can be modeled as large-scale network topologies
embedded in hierarchical adaptive network architecture8. These
global network models can be decomposed into bigraphs repre-
senting instantaneous brain states that dynamically integrate over
time to form the commonly observed static functional network
architectures5,9. In this framework, properties of particular
topologies are associated with specific classes of mental abilities.
Therefore, a systematic spatial mapping of these network con-
figurations may provide a model of the brain networks associated
with dynamic optimization of perception, cognition, and
behavior5,9–11. These networks, and mental abilities, are asso-
ciated with neurodegenerative diseases of the brain12. Given that
neurodegenerative diseases are functionally structured clinically
and anatomically13, they encode a clinically relevant mapping
between brain function and structure. Regional approaches to this
clinical brain-behavior relationship are being replaced by func-
tional network approaches12,14,15. Indexing a large number of
brain state configurations associated with clinically relevant
symptoms in perceptual, cognitive, and behavioral functions
seems like an intractable problem on the surface due to the high
dimensional nature of these configurations, but functional net-
work topologies can also be described using a low-dimensional
manifold10,16,17. This means that brain state configurations can
be represented in a comparatively low dimensional space, such
that any particular brain state can be largely characterized by a
vector in this space. Neurotransmitter-modifiable activity within
this manifold may be associated with diverse mental abilities10.
Low dimensional principles are commonly utilized in movement
neuroscience18. However, many computational operations rele-
vant for movement neuroscience are at a different functional level
relative to mental operations relevant for clinical neurodegen-
erative syndromes (e.g., perception, cognition, and behavior). In
these syndromes, the level of functioning is clinically indexed by
global scales such as the Clinical Dementia Rating (CDR) global

score19, Global Assessment of Functioning (GAF)20, and/or glo-
bal cognitive domain scores21. Therefore, the low dimensional
representation of degenerative brain state configurations at this
scale represent features of this global level of mental functioning.

Trajectories in a continuous manifold10, or sequence of binary
states in a discrete manifold5,9, may be used to model network
topologies associated with high-level mental abilities. Rather than
relating impairment in a particular class of mental functions to a
brain region as is commonly done in clinical practice, this model
could associate clinical symptoms to altered dynamics in a por-
tion of the manifold associated with that function. Disruption of a
portion of the manifold may be characteristically associated with
a particular dementia syndrome. In this context, previously
observed altered dynamics in disease states5 may help char-
acterize the similarity between brain atrophy and patterns of
decreased12 functional connectivity that co-occur with increases
in functional connectivity distant from atrophy22,23. In the cur-
rent study we examine these relationships, and incorporate them
into a model linking neurodegenerative anatomy, functional
systems, and clinical symptoms. This is accomplished within a
low dimensional framework that emphasizes functional modes of
degeneration. This proposed framework is a requirement of
complex systems models of AD, such as the cascading network
failure model that relates dynamic spatial and temporal patterns
in amyloid and tau accumulation to large-scale functional net-
work dynamics22,24–26.

The neurobiology that allows for AD and related disorders to
selectively target particular mental abilities, brain networks, or
brain regions while sparing others, is unknown27. There are
prominent individual differences in this selectivity leading to
variable cognitive symptoms among types of AD dementia28,
such as the typical late life amnestic syndrome and the younger-
onset visual or dysexecutive variants29, resulting in a “paradox of
syndromic diversity”30. Characterizing the factors related to this
paradox, and individual variability in general, should inform the
underlying neurobiology driving syndromic variability31. Recent
investigations of individuals with typical amnestic AD and those
with the visual variant of AD showed that they were indis-
tinguishable at the molecular level32,33, but they can be dis-
tinguished at the network level34,35 or by tau spatial patterns that
resemble the anatomy of functional brain networks24. This sug-
gests that inter-individual variability in mental abilities affected
by AD is partly driven by inter-individual differences in the
macroscale functional pathophysiology of AD, as opposed to
purely at the molecular level. This would be consistent with
theories of AD pathogenesis that implicate large-scale network
dynamics in disease pathogenesis alongside microscale misfolding
of proteins22,24–26 that is in-line with general theories of network
dysfunction in neuropsychiatric disease36. To test and improve
upon AD models that include large-scale network physiology, a
more complete model of the physiology of mental abilities and
their relationship to brain networks and neuroanatomy is
essential. This requires a model that spans computational neu-
roscience, clinical neuropsychology, and neurology, however this
would require evidence for selective degeneration of modes/
regions within the previously described manifold. It is also
uncertain how such a model would relate to currently used
clinical frameworks for classifying degenerative dementia syn-
dromes using terms such as semantic dementia, primary pro-
gressive aphasia, progressive dysexecutive syndrome, behavioral
variant of frontotemporal dementia, amnestic predominant
dementia, and related terms.

In this model of neurodegeneration, a selective functional
impairment seen in an individual with AD can be modeled as
impaired dynamics in a particular portion of the manifold, or
degenerative dynamics within a functional mode of operation5. In

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29047-4

2 NATURE COMMUNICATIONS |         (2022) 13:1643 | https://doi.org/10.1038/s41467-022-29047-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


other words, the specific pattern of global dysfunction in an
individual is represented by a particular parameterization of
disease pathophysiology within this framework. In this compu-
tational disease model, individuals with neurodegenerative dis-
eases represent “lesion studies” of functional modes associated
with higher mental functions, as opposed to discrete regions or
networks. We used this data to inform our model linking neu-
rodegenerative diseases with brain function. We hypothesized
that the inter-individual differences in neurodegeneration across
the AD spectrum could be represented by a low-dimensional
manifold that captures key features of our computational model
of neurodegeneration. This has the potential to link AD patho-
physiology and functional brain organization with the computa-
tional concepts in our model. The manifold identified in patterns
of neurodegeneration may also be linked to the functional ima-
ging literature and be aligned with mental symptoms observed in
specific dementia syndromes. Therefore, this study attempts to
link low-dimensional patterns of neurodegeneration to the
existing neuroscience literature describing gradients of functional
connectivity37, task activation patterns38, a variety of AD bio-
markers, brain aging, and distinct clinical syndromes that selec-
tively impair cognitive functions.

In this study, we report a low-dimensional representation of
neurodegeneration and characterize its relationship to funda-
mental features of AD, linking it to the neuroscience literature
and clinical syndromes related to brain function. This is accom-
plished through four main investigations: (1) patient data
(N= 423) is used to derive the low-dimensional manifold via a
latent space representation of glucose uptake across the AD
clinical spectrum, (2) mental functions are mapped to the
observed manifold using a functional meta-analysis and com-
pared to functional connectivity data, (3) application and external
validation of the predictive ability of the observed manifold in a
large multi-site study (N= 410), and (4) additional clinical con-
struct validation of the functional-anatomic mapping by pro-
jecting data from normal aging (N= 1121) and clinically defined
dementia syndromes (N= 291) selectively targeting memory,
executive functions, language, behavior, movement, perception,
semantic knowledge, and visuospatial abilities. The first 10
dimensions of this low-dimensional representation explained 51%
of the variance in glucose uptake. The anatomic patterns of this
representation are related to gradients of functional connectivity
and encode a mapping of meta-analytic functional task activation
patterns. The eigenvalues of this manifold are predictive of
markers of AD within the cohort and validated in an external
sample. Within our theoretical framework, these observations are
consistent with a global information processing model of
impaired mental functions in dementia syndromes. This hypo-
thetical computational construct was consistent with the known
brain-behavior relationships observed in normal aging and seven
dementia syndromes.

Results
Patients. To ensure that global information processing was dis-
rupted in the individuals included in our investigation, we
selected patients with evidence of clinically relevant cognitive
impairment using a clinical dementia scale, defined here as a CDR
global score greater than zero. In this patient population, we
aimed to investigate brain physiology that would be sensitive to
degeneration of brain function that can be reliably measured and
etiologically non-specific. Therefore, we studied glucose uptake
measured by F18-fluorodeoxyglucose (FDG) positron emission
tomography (PET), a widely used functional imaging modality in
routine use in our clinical practice currently. In the current
research framework for AD, FDG-PET is considered a biomarker

of neurodegeneration39, therefore in this selected population the
majority of individual variation in FDG-PET uptake would be
related to a neurodegenerative etiology. We further limited our
FDG-PET analysis to individuals who had evidence of microscale
AD pathophysiology (i.e., elevated beta-amyloid PET) making
this an analysis of AD associated neurodegeneration that man-
ifests in individual differences in altered glucose uptake. While
this focuses our investigation to individuals with a microscale
element of AD pathophysiology by definition39, it does not pre-
clude other co-morbid conditions and therefore allows for a
sampling of the complete spectrum of beta-amyloid associated
cognitive impairment. We identified 423 patients that met these
inclusion criteria (Table 1). The characteristics of the validation
cohort from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) are also listed in Table 1.

Low-dimensional representation of neurodegenerative anat-
omy. Individual variability in patterns of glucose uptake in these
patients are a parameterization of amyloid-associated degen-
erative AD neurobiology31. We decoded this parametrized AD
pathophysiology by performing principal component analysis
within a flexible framework we refer to as Between-subject
variability Projection and Reduction (BPR) that emphasizes the
importance of the component parts of the analysis related to
sample selection and patient factors for representing a patho-
physiology of interest driving the observed variability. We
explored different elements in the BPR framework (e.g., subject
selection, data preprocessing, and dimensionality reduction
method) and these are discussed in more detail in the Supple-
mentary Methods (Supplementary Figs. 1–7).

The biologically motivated BPR framework is able to
incorporate many commonly used analytic techniques to identify
patterns characterized by between subject covariance. As we
applied it to our imaging data using principal component
analysis, it is a three-dimensional computational equivalent of
the two-dimensional eigenfaces facial recognition algorithm as
implemented by Turk and Pentland for defining a face space40.
Unsupervised linear (singular value decomposition) and non-
linear (Laplacian eigenmaps) methods for the manifold decoding
step performed similarly in our data suggesting that the linear

Table 1 Mayo and Alzheimer’s disease neuroimaging
initiative sample characteristics.

Mayo ADNI P-value

N 423 410 –
Age (median
[Q1,Q3])

77.4 [69.1, 83.5] 74.5 [69.6, 79.4] 0.001

Male (%) 244 (57.7) 223 (54.4) 0.375
Education
(median [Q1,Q3])

15 [12,17] 16 [14,18] <0.001

APOE e4+ (%) 243 (61.7) 283 (69.2) 0.030
CDR (%) – – <0.001

0.5 274 (64.8) 310 (75.6) –
1 106 (25.1) 96 (23.4) –
2 39 (9.2) 4 (1.0) –
3 4 (0.9) 0 (0.0) –

CDR-SOB
(median [Q1,Q3])

3.0 [1.0, 5.5] 2.0 [1.0, 4.4] 0.004

MMSE (median
[Q1,Q3])

24 [21,27] 26 [24,28] <0.001

FDG (median
[Q1,Q3])

1.25 [1.09, 1.40] 1.16 [1.05, 1.28] <0.001

Source data are provided as a Source Data file.
APOE e4+ carriage of an APOE-ε4 allele, CDR Clinical Dementia Rating Scale, CDR-SOB Clinical
Dementia Rating Scale Sum of Boxes, MMSE Mini-Mental State Examination.
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solution is a good approximation of the manifold. In contrast, a
full sampling of the parameterization of the manifold of interest,
via between subject variances, is required to replicate the same
low-dimensional representation. This is because BPR, and related
analyses, of FDG-PET images from a disease class will index
meaningful features of altered glucose uptake caused by the
pathophysiologic process of interest in the patient population
being studied. In the population we studied, this algorithm
produced a low dimensional linear basis-set of eigenbrains or EBs
(Fig. 1), that describes 51% of the variability in the FDG images.
These EBs describe modes of variation in glucose uptake among
the group that index meaningful functional brain properties
relevant to AD biology (Table 2). To support our main hypothesis
that this biologically meaningful latent space reflects aspects of
our computational model of neurodegeneration, we conducted a
series of experiments linking this latent space to existing
neuroscience literature and clinical syndromes related to large-
scale brain function. These analyses support our hypothesis that
these degenerative patterns can be associated with computational
principles in our model. In this computational model of mental
functions, the observed low-dimensional representation of
neurodegeneration is interpreted as quantifying latent parameters
within the manifold.

Functional mapping of the anatomy described by the glucose
eigenbrains. We used a Neurosynth (www.neurosynth.org)41

functional topic terms38 based decoding42 as a common frame-
work to compare the functional anatomy captured in this study to
the existing functional MRI literature in a similar manner as
Shine et al.10 and Margulies et. al.37, allowing for a common
understanding of these diverse findings in the same meta-analytic
functional terminology. The functional topic term decoding for a
single topic across all 10 EBs can also be used as an embedding of
that topic in our model’s coordinate system. The coordinates of

that embedding can then be used as EB weights in a linear ana-
tomical reconstruction of that functional topic (Fig. 2). The linear
combination of the smooth gradients described by the EBs pro-
duce whole brain patterns associated with each functional topic.
Peak values in these reconstructed maps correspond to regions of
peak activation associated with brain patterns observed during
performance of these tasks. These topic term embeddings can also
be used as ‘functional waypoints’ to aid in interpreting functional
correlates of large-scale anatomic patterns of disruption in
patients. To do this on a single subject level across functional
topic terms, we linked values in our model’s coordinate system
continuously to the functional imaging literature via a full topic
term decoding of each EB (Fig. 3) and then embedded individual
subjects into this well characterized functional-anatomic coordi-
nate-based model (Fig. 4).

In this cohort, the first three EBs account for 29% of the
variance and are related to hemispherically symmetric orthogonal
axes of brain function that capture the majority of the manifold.
Therefore, we focused on presenting the results for characterizing
these three EBs. The functional axis captured in EB2 (Fig. 3a) was
nearly identical to the principal gradient defined by Margulies
et al.37 using functional connectivity data from cognitively
unimpaired individuals. The meta-analytic functional topic
terms-based decoding for EB2 and the same decoding of the
principal gradient were highly correlated (Fig. 3b). This EB fully
indexes the glucose uptake in the principal gradient of macroscale
cortical organization, characterized at one extreme by hetero-
modal association cortex (centered on DMN regions) and on the
other extreme by primary sensory and motor regions. This
fundamental organizing feature of brain function was first
observed in FDG-PET6, subsequently identified in patterns of
functional connectivity2, and also shown to be impaired in AD3.
Features of this pattern (e.g., sparing of the sensorimotor strip)
are also routinely used by clinicians when interpreting FDG scans
from patients43. The fact that variation in glucose metabolism in
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AD takes place along this and other macroscale functional
gradients is consistent with our hypothesis that AD can be
modeled as altered flow through a low dimensional functional
manifold that represents large-scale network configurations
related to mental functions10.

This structural-functional mapping of the EBs can be
compactly represented and visualized in a three-dimensional
approximation of the low dimensional manifold using the first
three eigenbrains. This can be done using a latent space
coordinate system (Fig. 3c, e), or in anatomic space (Fig. 3d).
The RGB color map of the anatomic representation demarcates
functionally meaningful brain parcels based on the patterns of
continuous variation in the gradients of the first three
eigenbrains. This produces analogous results to defining brain
parcels based on regional variation in cytoarchitectonics within
an individual44, but was derived from variation in degenerative
patterns across individuals.

Each of the axes, or latent variables in our model, can be
conceptually simplified and dichotomized via axis polarity
informed by this brain-behavior mapping (EB1: data source
[internal vs. external], EB2: model form [abstract vs. concrete],
and EB3: control type [feedback vs. feedforward]). These
conceptual labels are hypothetical based on the relations between
functional topic term mappings, anatomic connectivity, functional
activation, and degenerative clinical symptoms described here.

The three-dimensional approximation is hemispherically
symmetrical, but EB4 and EB5 can be included to capture breaks
in symmetry and cumulatively explain 38% of the variance in the
dataset. Naturally, the relative variance explained depends on
the phenotypic composition of the cohort studied, in line with the
BPR formulation. For example, EB5 captures hemispheric
asymmetries in the left temporal lobe, including regions relevant
for language functions, and eigenvalues were higher for the
patients diagnosed with the language-variant of AD relative to the
rest of the cohort, two-sided two-sample t(421)= 3.69, p < 0.001.
The topic terms-based decoding of all 10 EBs and the principal
gradient from Marguiles et. al.37 are presented in Table 3.

Predictive modeling of factors related to AD. Together, the set
of 10 EBs could be used to predict key demographic, imaging,
clinical, and pathologic variables associated with the effects of AD
(Table 2). In other words, indexing variation in glucose uptake in
brain systems associated with mental functions and large-scale
networks within a global information processing model is highly
predictive of key effects of AD biology on an individual.

External validation of predictive modeling. We next validate the
predictive ability of quantifying dysfunction in our computational
model in an independent cohort. Using the simple multivariate
linear regression models from this cohort (Table 2) to predict
the age of patients from an independent database (N= 410)
available as part of the Alzheimer’s Disease Neuroimaging
Initiative (Table 1), we achieved a mean absolute error of 5.1
years using a linear 10 EB model. Similar results were obtained
predicting other variables in the dataset related to glucose uptake,
cognition, and disease severity, with peak prediction performance
achieved with models using 8–20 EBs (Supplementary Figs. 9 and
10). This predictive ability, across diverse variables using simple
interpretable linear regression models, is evidence of the predicted
association between our computational model and the expression
of AD pathophysiology within an individual and serves as vali-
dation of our results in a multisite study. However, it should be
noted that we did not attempt to optimize our manifold learning
or predictive modeling for any particular predictive task in the
current work, but demonstrate its potential to do so across diverseT

ab
le

2
P
re
di
ct
iv
e
m
od

el
s
in

th
e
m
ay
o
co
ho

rt
fo
r
ke

y
ef
fe
ct
s
of

A
lz
he

im
er
’s

di
se
as
e.

V
ar
ia
bl
e

N
R
2

a
d
jR
2

p
re
R
2

EB
1

EB
2

EB
3

EB
4

EB
5

EB
6

EB
7

EB
8

EB
9

EB
10

P
-v
al
ue

a
d
jP
-

va
lu
e

FD
G
A
D

4
23

0
.7
4

0
.7
3

0
.7
2

0
.3
9

−
0
.6
4

−
0
.0
3

−
0
.0
1

0
.1
1

−
0
.0
5

−
0
.2
3

−
0
.2
0

0
.2
6

−
0
.0
2

2.
2E

-1
6

2.
2E

-1
5

A
ge

4
23

0
.6
6

0
.6
5

0
.6
4

0
.5
4

−
0
.3
3

−
0
.3
2

0
.0
6

−
0
.1
8

−
0
.1
3

0
.2
3

0
.1
7

−
0
.0
9

0
.1
2

2.
2E

-1
6

2.
2E

-1
5

FD
G
H
S

4
23

0
.6
3

0
.6
2

0
.6
0

0
.5
2

−
0
.4
0

−
0
.2
9

0
.1
0

0
.1
0

−
0
.0
1

−
0
.1
2

−
0
.2
2

0
.1
1

0
.1
4

2.
2E

-1
6

2.
2E

-1
5

M
M
SE

4
0
3

0
.5
7

0
.5
6

0
.5
4

0
.2
4

−
0
.6
0

0
.0
6

0
.1
5

−
0
.1
7

−
0
.0
3

−
0
.0
5

−
0
.0
9

0
.3
2

−
0
.0
1

2.
2E

-1
6

2.
2E

-1
5

M
R
I T
H
K

4
17

0
.5
1

0
.5
0

0
.4
8

0
.0
9

−
0
.5
0

0
.2
7

−
0
.1
8

−
0
.0
5

−
0
.0
2

−
0
.1
7

−
0
.1
7

0
.3
1

−
0
.0
2

2.
2E

-1
6

2.
2E

-1
5

Br
aa
k
N
FT

6
7

0
.6
0

0
.5
2

0
.4
2

−
0
.1
2

0
.2
5

−
0
.0
4

0
.4
3

0
.5
8

0
.0
4

−
0
.3
1

−
0
.4
0

−
0
.1
6

0
.0
8

7.
2E

-0
8

7.
2E

-0
7

C
D
R
-S
O
B

4
23

0
.4
5

0
.4
4

0
.4
2

−
0
.1
8

0
.5
4

0
.0
1

−
0
.0
6

0
.0
9

0
.0
8

0
.0
5

0
.1
2

−
0
.3
1

0
.0
0

2.
2E

-1
6

2.
2E

-1
5

T
au
-P
ET

13
8

0
.5
1

0
.4
7

0
.4
1

−
0
.2
9

0
.4
8

0
.0
9

0
.0
8

0
.2
1

0
.0
3

−
0
.2
8

−
0
.0
2

−
0
.2
0

0
.0
8

9
.5
E-
16

9
.5
E-
15

H
ip
po

V
ol

4
17

0
.4
0

0
.3
9

0
.3
7

−
0
.2
3

−
0
.1
7

0
.3
4

−
0
.1
8

−
0
.0
4

0
.0
5

−
0
.0
7

−
0
.1
1

0
.3
4

−
0
.2
1

2.
2E

-1
6

2.
2E

-1
5

C
D
R

4
23

0
.3
4

0
.3
3

0
.3
0

−
0
.1
7

0
.4
7

0
.0
4

−
0
.0
5

0
.0
8

0
.0
8

0
.0
8

0
.0
7

−
0
.2
6

−
0
.0
1

2.
2E

-1
6

2.
2E

-1
5

Se
x

4
23

0
.2
1

0
.2
0

0
.1
7

0
.0
9

−
0
.1
1

0
.0
9

0
.0
2

0
.0
1

0
.1
9

0
.0
3

0
.3
1

0
.0
7

−
0
.2
2

2.
2E

-1
6

2.
2E

-1
5

U
D
PR

S
4
0
7

0
.2
0

0
.1
8

0
.1
6

−
0
.1
3

0
.0
4

0
.1
7

−
0
.1
3

−
0
.2
5

0
.0
4

0
.2
3

0
.1
5

0
.0
3

−
0
.0
2

5.
3E

-1
5

5.
3E

-1
4

R
BD

24
6

0
.2
0

0
.1
7

0
.1
3

−
0
.1
7

−
0
.0
9

0
.1
7

−
0
.0
8

−
0
.1
6

0
.1
1

0
.2
1

0
.1
9

−
0
.0
1

−
0
.1
2

3.
9
E-
0
8

3.
9
E-
0
7

FD
G
D
LB

4
23

0
.1
6

0
.1
4

0
.1
2

−
0
.2
6

−
0
.1
2

0
.2
3

0
.0
6

−
0
.0
4

−
0
.1
1

0
.0
5

−
0
.0
2

0
.0
1

−
0
.0
9

7.
5E

-1
2

7.
5E

-1
1

A
m
yl
oi
d-
PE

T
4
23

0
.1
6

0
.1
4

0
.1
2

0
.0
2

0
.1
1

−
0
.2
3

0
.0
5

0
.1
2

−
0
.1
1

−
0
.1
0

0
.0
8

−
0
.2
3

0
.0
3

7.
6
E-
12

7.
6
E-
11

D
ur
at
io
n

11
8

0
.2
5

0
.1
8

0
.1
0

−
0
.1
4

0
.1
8

−
0
.2
6

−
0
.0
3

0
.1
7

−
0
.0
4

−
0
.1
3

0
.0
6

−
0
.2
5

0
.0
9

3.
6
E-
0
4

3.
6
E-
0
3

Le
w
y
pa
th

6
4

0
.3
9

0
.2
7

0
.0
6

−
0
.2
2

0
.2
0

−
0
.0
2

−
0
.1
7

−
0
.1
0

−
0
.1
6

0
.3
5

0
.5
1

0
.0
4

0
.0
8

1.
8
E-
0
3

1.
8
E-
0
2

E4
+

38
4

0
.0
8

0
.0
6

0
.0
3

0
.0
4

0
.0
9

0
.0
2

0
.1
8

0
.1
4

0
.1
3

−
0
.0
3

−
0
.0
7

−
0
.0
3

0
.0
1

1.
9
E-
0
4

1.
9
E-
0
3

Fo
r
ea
ch

of
th
e
de

pe
nd

en
t
va
ri
ab
le
s,
th
e
fi
rs
t
10

ei
ge
nv
al
ue

s
w
er
e
us
ed

as
pr
ed

ic
to
rs

in
a
m
ul
tiv

ar
ia
te

lin
ea
r
re
gr
es
si
on

m
od

el
.T

he
R
2 ,
ad
ju
st
ed

R
2 ,
pr
ed

ic
te
d
R
2 ,
st
an
da
rd
iz
ed

be
ta

co
ef
fi
ci
en

ts
,t
w
o-
si
de

d
p-
va
lu
e,
an
d
m
ul
tip

le
co
m
pa
ri
so
ns

ad
ju
st
ed

p-
va
lu
es

us
in
g
th
e
Bo

nf
er
ro
ni

co
rr
ec
tio

n
ar
e
di
sp
la
ye
d
fo
r
ea
ch

m
od

el
.
So

ur
ce

da
ta

ar
e
pr
ov
id
ed

as
a
So

ur
ce

D
at
a
fi
le
.

FD
G
A
D
FD

G
SU

V
R
in

A
D
si
gn

at
ur
e
re
gi
on

s,
FD

G
H
S
FD

G
SU

V
R
in

hi
pp

oc
am

pa
ls
cl
er
os
is
si
gn

at
ur
e
re
gi
on

s,
FD

G
D
LB
FD

G
SU

V
R
in

D
LB

si
gn

at
ur
e
re
gi
on

s,
M
M
SE

M
in
i-
M
en

ta
lS

ta
te

Ex
am

in
at
io
n,

M
RI

T
H
K
M
R
It
hi
ck
ne

ss
in

A
D
si
gn

at
ur
e
re
gi
on

s,
Br
aa
k
N
FT

Br
aa
k
ne

ur
ofi

br
ill
ar
y
ta
ng

le
st
ag
e,
C
D
RC

lin
ic
al
D
em

en
tia

R
at
in
g
Sc
al
e,
C
D
R-
SO

B
C
lin
ic
al
D
em

en
tia

R
at
in
g
Sc
al
e
Su

m
of

Bo
xe
s,
H
ip
po

V
ol
H
ip
po

ca
m
pa
lv
ol
um

e,
U
PD

RS
U
ni
fi
ed

Pa
rk
in
so
n’
s
D
is
ea
se

R
at
in
g
Sc
al
e,
RB

D
R
EM

sl
ee
p
be

ha
vi
or

di
so
rd
er
,D

ur
at
io
n
di
se
as
e
du

ra
tio

n,
E4

+
ca
rr
ia
ge

of
an

A
PO

E-
ε4

al
le
le
.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29047-4 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1643 | https://doi.org/10.1038/s41467-022-29047-4 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


tasks relevant to neurodegeneration in a computational model
relatable to functional connectivity gradients (Fig. 3), task acti-
vation patterns (Figs. 2 and 3), and clinical reasoning about
degenerative brain conditions affecting perception, cognition, and
behavior (Fig. 4).

Clinical symptoms and the computational model of neurode-
generation. We embedded a large cohort of Mayo Clinic parti-
cipants in our model’s representation using the eigenbrains
derived from only the 423 individuals with amyloid-associated
cognitive impairment (Fig. 4). See the Supplementary Methods
for an exploration of the effect of cohort on eigenbrain definition
(Supplementary Figs. 5 and 6).

This cohort included cognitively unimpaired individuals with
negative amyloid-PET scans (n= 1121) across the age spectrum
(median age [q1, q3]= 65 [57,74], range= 30–93) and seven
clinically defined age-associated dementia syndromes: typical
Alzheimer’s disease (tAD, n= 137), Dementia with Lewy Bodies
(DLB, n= 72), behavioral variant of frontotemporal dementia
(bvFTD, n= 33), semantic dementia (SD, n= 11), posterior
cortical atrophy (PCA, n= 15), logopenic variant of primary
progressive aphasia (lvPPA, n= 8), and dysexecutive Alzheimer’s
disease (dAD, n= 15).

Each clinical syndrome could be characterized at the group
level by their distribution along the first three coordinates of our
manifold in a manner reflecting their distinguishing clinical
features (Fig. 4a–c). Manifold learning that optimizes for group
separation was not the goal of this analysis. Instead, we set out to

observe the interpretable relationships between clinical symptoms
that are characteristic of each phenotype and our model’s
functional terminology derived from the association with
functional connectivity and task activation patterns (Figs. 2 and
3). Consistent with clinical experience, and the fact that multiple
pathologies are the most common pathologic findings in autopsy
studies45, clinical phenotypes did not separate into distinct
clusters in the first three dimensions of the model. Instead, they
spread out along a continuum with distinct phenotypes collecting
near the extremes (Fig. 4e, f). The relative location of the latent
space embedding between phenotypes also reflects known shared
pathologic similarities between clinical phenotypes (e.g., TDP-43
pathology in both late life amnestic dementia syndromes46 and
semantic dementia or the co-occurrence of AD and DLB
associated pathology47). Using a higher dimensional embedding
and a multi-class classifier and/or optimizing manifold learning
for group separation may improve clinical group separation, but
that is not the goal of the current study as this may obscure a
more generalizable and interpretable representation.

All the cognitive dementia syndromes differed from cognitive
aging in terms of brain regions involved in abstract model
formation (Fig. 4b). Using all 10 EBs as predictors in a logistic
regression model with L2 penalty achieves the following perfor-
mance on the task of predicting the presence or absence of clinical
dementia (CDR global score greater than zero), averaged over
5-fold cross validation and with the estimated 95% confidence
interval: 90.9 ± 2.6% accuracy, 89.7 ± 3.3% ROC AUC, 88.5 ± 6.6%
precision, 68.1 ± 9.0% recall, and 0.769 ± 0.060 F1 score.
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maps (z-scores) for four topics related to AD clinical syndromes are displayed on surface renderings. b The manifold embeddings (arbitrary units) of these
topics were used to generate the anatomy associated with that point in the manifold and projected onto surface renderings. This demonstrates faithful
representation of these anatomic patterns associated with mental topics in the manifold coordinate system (also see Fig. 6 and Supplementary Fig. 8).
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In our proposed framework for brain-behavior mapping, both
PCA and DLB displayed characteristic abnormalities in brain
regions abstractly modeling information from external data
sources (Fig. 4a), but brain regions important for feedforward
control were more abnormal in PCA relative to DLB (Fig. 4c).
Subjects with bvFTD and SD displayed characteristic abnormal-
ities in brain regions abstractly modeling internal data sources
(Fig. 4a), but SD involved more feedforward control brain regions
relative to bvFTD (Fig. 4c). Both lvPPA and dAD groups showed
the most extreme abnormalities in abstract modeling brain
regions relative to other dementia groups, but dAD subjects were
characteristically more impaired in brain regions supporting
feedback control, in line with their characteristic working
memory impairment24,29. Typical AD is characterized by being
in the middle of these extremes.

Discussion
In our proposed computational model, neurodegeneration in
dementia syndromes can be indexed using a continuous low-
dimensional manifold associated with global information pro-
cessing that spans the dynamic macroscale functional-anatomic
organization of the brain. This model is a formulation of com-
putational neuroscience principles focusing on ontologies rele-
vant for clinical dysfunction in perception, cognition, and
behavior. This formulation can be used to interpret our observed
low-dimensional representation of the anatomy associated with
the mental functions selectively impaired by neurodegenerative

brain diseases that cause dementia (Figs. 2–4). The predictive
ability of the model for major effects of AD on an individual
(Table 2), establishes an association between our model of global
functional physiology and the expression of AD within an indi-
vidual. These predictive latent factors, related to information
processing (Fig. 3), were decoded from patterns of glucose uptake
in patients with AD, but are also able to represent meta-analytic
functional activation patterns and functional connectivity gra-
dients from cognitively normal individuals. These factors are also
able to capture clinically relevant patterns of variability across
seven dementia phenotypes differing them from normal aging.
This construct allows for a framework for clinical reasoning based
on a degenerative spectrum rather than distinct disease classes
(Fig. 4). Importantly, this same manifold can be found from
decoding metabolic patterns across the aging and dementia
spectrum (Supplementary Figs. 5 and 6). Together, these facts
lend support to computational interpretations of existing complex
systems based models of neurodegenerative diseases that integrate
macroscopic functional physiology with microscopic cellular and
molecular physiology5,22,24. As this is a cross-sectional associa-
tional study design using FDG-PET as a marker of neurodegen-
eration, we cannot make causal predictions about brain-behavior
relationships but the results here are informative for interpreting
the existing literature and for hypothesis generation. These con-
siderations are discussed in more detail below. Our study is also
limited by potential cohort selection bias and generalizability to
individuals not captured in our original analysis or external

Fig. 3 Global information processing interpretation of low-dimensional degenerative patterns in dementia. a Joint histogram between the principal axes
of functional connectivity37 and glucose EB2. b Neurosynth decoding of the principal axes of functional connectivity versus glucose EB2 decoding. Select
topic terms are color-coded on the right (color coding is the same as in c). c Scatter plot of topic term decoding for glucose EB1-3. Source data are provided
in Supplementary Table 1. For the color-coding, each EB decoding was used as a RGB channel (EB1= Blue, inverted polarity EB2= Red, EB3=Green).
Radius of the points encodes depth along EB2. Generated anatomy using the 10-D EB decoded coordinates for faces and objects are displayed on the right
and left hemisphere (respectively) surface renderings. Below these, axial brain slice with the peak voxels from the faces and objects anatomic projection
overlaid highlighting regions near the fusiform face area (red) and visual word form area (blue) respectively encoded at these points. d The same RGB
color-coding was applied in a voxel-wise manner using the intensities from EB1-3 producing a continuous functional parcellation of brain anatomy along
these gradients. e The global information processing state space representation of the same color mapping with the approximate location of nine cognitive
topic terms from panel c overlaid and numbered. A surface rendering of the anatomic correlates, generated from linear combinations of EB1-3 weighted by
the position in state space, for the eight extremes of the cube are displayed near the portion of state space represented. AU-arbitrary units; A-anterior; P-
posterior; L-left lateral; R-right lateral; D-dorsal; V-ventral.
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validation studies. We are also limited by the degree to which
individual variation in FDG-PET captures degenerative biology,
including technical factors such as spatial resolution, limiting
the delineation of manifold dimensions potentially useful for
our model.

Selective vulnerability of brain anatomy, large scale-brain
networks, and the mental functions these networks and anatomy
support, is a hallmark of all neurodegenerative diseases of mental
function. This leads to a characteristic mapping between clinical
phenotype, structural anatomy, and brain networks12. Our
interpretation recasts these relationships in terms of degeneration
in modes of brain functioning along a continuous manifold, or
functional gradients. A complete model of this type of selective
degeneration requires a framework for physiology that allows
static brain structure to support dynamic reconfiguring of func-
tional operations in response to current high-level demands
through coordination of spiking activity in large populations of
neurons across the brain globally7. In other words, a model
bridging cognitive computational neuroscience and clinical neu-
rology is needed. We propose that our model of neurodegen-
eration represents a step in that direction conceptually.

Degenerative diseases of global brain functions are an important
model in which to study these proposed global neurodynamics

because the pathophysiology in these conditions must selectively
impair these global modes of function when they limit particular
high-level functional abilities (memory, social cognition, executive
control, semantic knowledge, visuospatial processing, etc.). Given
the ambiguity with which the term global neurodynamics could
be interpreted, we will more precisely state what is meant in this
context.

Given that these brain state configurations can be represented
by a low dimensional manifold in our model, such that any
particular brain state can be largely characterized by a vector in
this space, neurodynamics could be represented as trajectories
in this state space. In other words, previously observed
dynamic changes from one global brain state to another in
health5,9,11,17,48,49 and in degenerative disease5 can be modeled
as moving from one point in the manifold to another point
representing a different global brain state10. Therefore, our
hypothetical model suggests that aspects of degenerative diseases
can be modeled as altered flow through a low dimensional
functional manifold that represents large-scale network config-
urations related to mental functions. In this context, we simply
refer to the landscape of these dynamics as the global functional
state space (GFSS). Consequently, aspects of degenerative
diseases of global scale mental functions can be thought of as
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Fig. 4 Glucose eigenbrains across normal aging and seven clinical dementia syndromes. Rain cloud plots61 with data distribution and jittered raw data
points for biologically independent unique patient observations on either side of boxplots (horizontal lines denote median values; boxes extend from the
25th to the 75th percentile of each group’s distribution of values; vertical extending lines denote values within 1.5 interquartile range of the 25th and 75th
percentile of each group) of eigenvalues for a EB1, b EB2, and c EB3 for cognitively normal amyloid negative individuals across the aging spectrum (CN,
n= 1121), typical AD (tAD, n= 137), dementia with Lewy bodies (DLB, n= 72), behavioral variant of frontotemporal dementia (bvFTD, n= 33), sematic
dementia (SD, n= 11), posterior cortical atrophy (PCA, n= 15), logopenic variant of primary progressive aphasia (lvPPA, n= 8), and dysexecutive AD
(dAD, n= 15). Source data are provided as a Source Data file. d Scatter plot for the first 3 EBs for all these subjects with age color mapping showing the
youngest individuals (blue) at the opposite extreme from the oldest individuals (red). The same plot with RGB color mapping for reference to other figures
is inset in the bottom right. e Scatter plot for the first 3 EBs for 5 dementia syndromes highlighting the differential mapping across the manifold with clinical
syndromes coinciding with predictions made by the functional mapping in Fig. 3. The same plot with RGB color mapping for reference to other figures is
inset in the bottom right. f The same RGB color mapping used in Fig. 3 indicating the anatomy and state space location for each clinical group (including an
example of limbic-predominant age-related TDP-43 encephalopathy [LATE]46). A representative single subject clinical FDG-PET (Cortex ID, GE
Healthcare, Chicago, IL, USA) with z-scores relative to age matched controls color-coding the degree of hypometabolism for one patient from each group is
also displayed. AU-arbitrary units.
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“lesion studies” of these GFSS neurodynamics with selectively
impaired functional modes, rather than damage to a functionally
relevant focal brain region as is the case in structural lesion
models. It is notable that our study of only AD associated
cognitive impairment revealed such a manifold robust to the
sample characteristics and methods used to derive it (Supple-
mentary Figs. 2–7). This phenomenon may be explained by the
wide clinical phenotypic variability in AD, the low dimensional
nature of the computational manifold, and the necessary
dependencies within the neurodynamics regulating the GFSS
manifold.

In our analysis, three brain patterns which we relate to high-
level informational processing (information source [EB-1], model
type [EB-2], and control mode [EB-3]) are sufficient to explain
much of the variability in degenerative pattern formation in AD
and related disorders. Necessarily, these eigenbrains also encode
patterns observed in the functional MRI literature. We believe this
occurs because the macroscopic functional properties encoded by
the manifold observed in our study index state variables of the
brain’s complex adaptive information processing system at a scale
relevant for high-level mental functions. These mental functions
are routinely investigated in fMRI experiments and selectively
degraded by neurodegenerative diseases. The proposed neurode-
generative selectivity for certain dynamic brain patterns, or modes
of function of the complex information processing system, would
require a fundamental role for large-scale neurodynamic phy-
siology in AD and related disorders. This highlights the transla-
tional potential of grounding clinical neurology and cognitive
psychology in terms of computational neuroscience. Our model of
mental functions relevant for dementia is a step in that direction.

Methods
Participants. All participants or their designee provided written consent with
approval of the Mayo Clinic Foundation and Olmsted Medical Center Institutional

Review boards. All participants in the Mayo Clinic Rochester Alzheimer’s Disease
Research Center (ADRC) and the Mayo Clinic Study of Aging (MCSA) that met
our inclusion criteria were included in this study. The Mayo Clinic Rochester
ADRC is a longitudinal cohort study that enrolls subjects from the clinical practice
at Mayo Clinic in Rochester, MN24. The MCSA is a population-based study of
cognitive aging among Olmsted County, MN residents50. Enrolled participants are
adjudicated to be clinically normal or cognitively impaired by a consensus panel
consisting of study coordinators, neuropsychologists, and behavioral neurologists.
Methods for defining clinically unimpaired, mild cognitive impairment and
dementia in both studies conform to standards in the field51–53. MCSA study
participants receive renumeration of USD 100 as part of study participation. Both
the MCSA and the ADRC studies offer assistance with ground transportation cost
associated with study participation and USD 50 for participation in PET scanning
portions of the study.

Inclusion criteria for this study consisted of (1) a CDR global score greater than
zero, (2) presence of amyloid plaques, defined as amyloid-PET standard uptake
value ratio (SUVR) >1.5, and (3) had high-quality MRI, amyloid-PET, and FDG-
PET data available for analysis. A higher more conservative SUVR cut point was
used for defining amyloid-PET positivity to avoid false positives24. See Table 1 for
more details on the participants included in this study.

Structural magnetic resonance imaging. MRI was performed on one of three
compatible 3T systems from the same vendor (General Electric, Waukesha, WI,
USA)24. A 3D magnetization prepared rapid acquisition gradient echo (MPRAGE)
structural imaging sequence developed for the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study was acquired54. All images were acquired using an
8-channel phased array head coil. Post-processing to correct for gradient distortion
correction and processing has been validated in multiple studies, shown to give
consistent stable results in ADNI data, and geometric fidelity after correction is
independent of scanner55,56. Parameters were: TR/TE/T1, 2300/3/900 msec; flip
angle 8°, 26 cm field of view (FOV); 256 × 256 in-plane matrix with a phase FOV of
0.94, and slice thickness of 1.2 mm. These MPRAGE parameters have been held
invariant since approximately 2008. This structural MRI was used for preproces-
sing PET data.

PET acquisition and preprocessing. The amyloid-PET imaging was performed
with C-11 Pittsburgh Compound B57 and FDG-PET with F-18 fluorodeoxyglucose.
PET images were acquired using 1 of 2 PET/CT scanners (DRX; GE Healthcare).
A computed tomography scan was obtained for attenuation correction. These
images were usually acquired on the same day with 1 h between amyloid-PET and

Table 3 Neurosynth topic term decoding of eigenbrains and principal gradient of functional connectivity.

Summary term Topic
term number

EB1 EB2 EB3 EB4 EB5 EB6 EB7 EB8 EB9 EB10 FC gradient

Langue
comprehension

36 −0.02 −0.35 −0.04 0.19 −0.15 −0.03 −0.15 −0.12 0.04 0.13 0.20

Social 17 −0.15 −0.30 −0.05 −0.05 −0.01 −0.13 −0.05 −0.11 −0.04 −0.11 0.31
Memory 12 0.05 −0.21 0.08 0.06 −0.17 −0.16 −0.02 −0.18 0.06 −0.29 0.22
Language semantics 44 0.09 −0.18 −0.01 0.18 −0.21 0.01 −0.22 −0.12 0.04 0.07 0.06
Negative emotion 40 −0.38 −0.16 0.01 −0.22 −0.06 −0.16 −0.05 −0.02 −0.07 −0.17 0.23
Visual attention 41 0.35 −0.15 −0.05 0.00 0.11 0.04 −0.02 −0.10 −0.17 −0.04 −0.06
Language perception 20 0.22 −0.13 0.01 0.22 −0.12 0.01 −0.22 −0.09 0.00 0.17 −0.05
Numerical 42 0.21 −0.12 −0.10 0.08 0.08 0.01 0.15 −0.09 −0.01 −0.05 0.04
Working memory 22 0.14 −0.09 −0.20 0.13 0.06 0.08 0.10 −0.04 −0.04 −0.05 −0.01
Emotional cues 23 −0.28 −0.08 0.20 −0.24 −0.11 −0.20 −0.06 −0.02 −0.01 −0.09 0.13
Reward 29 −0.34 −0.08 −0.05 −0.10 0.04 −0.13 −0.07 0.08 −0.17 −0.23 0.17
Response preparation 47 0.15 −0.06 −0.22 0.04 0.14 0.22 0.03 −0.06 −0.13 0.00 −0.07
Hearing 32 −0.04 −0.06 0.03 0.05 0.00 0.06 −0.23 0.12 0.09 0.49 −0.11
Facial recognition 5 0.25 −0.05 0.29 −0.15 −0.09 −0.23 −0.10 −0.15 0.11 −0.09 0.01
Addiction 27 −0.27 −0.02 −0.02 −0.10 0.05 −0.09 0.06 0.05 −0.08 −0.17 0.10
Objects 1 0.40 0.01 0.27 0.01 −0.15 −0.09 −0.13 −0.15 0.10 −0.06 −0.08
Sustenance state 26 −0.30 0.03 0.06 −0.15 −0.03 −0.07 −0.07 0.14 −0.08 −0.07 0.03
Error learning 25 −0.01 0.04 −0.19 0.09 0.16 0.11 0.02 0.07 −0.08 0.02 −0.02
Response inhibition 8 −0.15 0.04 −0.13 −0.14 0.14 0.14 0.01 0.07 −0.15 0.02 −0.04
Praxis 0 0.38 0.08 0.02 0.07 0.06 0.26 0.00 0.01 0.03 0.21 −0.22
Stimulus response 19 0.00 0.12 −0.06 −0.01 0.11 0.04 −0.03 0.08 −0.11 −0.02 −0.09
Motion perception 11 0.57 0.13 0.17 −0.02 0.04 0.08 −0.05 −0.05 −0.04 0.06 −0.27
Perception 3 0.39 0.14 0.18 0.02 −0.02 0.10 −0.25 0.02 −0.02 0.20 −0.27
Pain 48 −0.35 0.18 −0.03 −0.11 0.12 0.12 −0.05 0.20 0.00 0.24 −0.15
Directed gaze 15 0.41 0.20 0.07 −0.01 0.09 0.15 0.08 −0.09 −0.02 −0.11 −0.22
Somatosensory 35 0.02 0.29 −0.04 0.00 0.17 0.35 0.06 0.22 0.05 0.38 −0.35
Motor 49 0.08 0.40 −0.17 0.15 0.16 0.38 0.07 0.14 0.07 0.30 −0.34
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FDG-PET acquisitions. Subjects were prepared for FDG-PET in a dimly lit room,
with minimal auditory stimulation. Amyloid-PET images consisted of four 5-min
dynamic frames from 40 to 60 min after injection. FDG-PET consisted of four
2-min dynamic frames acquired from 30 to 38 min after injection. PET sinograms
were iteratively reconstructed into a 256 mm FOV. The pixel size was 1.0 mm and
the slice thickness 3.3 mm. Standard corrections were applied.

The global amyloid-PET SUVRs were calculated as previously described58. The
FDG-PET image volumes of each subject were coregistered to the subject’s own
T1-weighted MRI scan, using a 6 degree-of-freedom affine registration with mutual
information cost function. Each MRI scan was then spatially normalized to an
older adult template space59 using a unified segmentation and normalization
algorithm60 with transforms applied to co-registered FDG-PET images. These
spatially normalized images were then intensity normalized to the pons and
spatially smoothed with a 6-mm full-width half-maximum Gaussian kernel.

Between-subject variability projection and reduction. The unsupervised
machine learning framework, Between-subject variability Projection and Reduction
(BPR), was designed to capture pathophysiologic information present in between-
subject variability in a disease parameter of interest. The singular value decom-
position (SVD) at the heart of the data reduction portion of the algorithm is widely
used and interpretable, but other methods could be used depending on the framing
of the problem at hand. The goals of this framework also motivate data pre-
processing decisions that focus on between-subject variance within the class being
studied rather than variance in the observed modality under investigation or
variance relative to classes not being studied. This algorithm conceptualizes mul-
tivariate medical data from an individual as representing a particular para-
meterization of a (patho)physiological process of interest and uses within-class
individual differences in this parametrization to define a high dimensional para-
meter space that contains a smaller dimensional subspace manifold that describes
common features of the disease generating processes of interest. This lower
dimensional subspace can be isolated in many ways, but ideally the dimensionality
reduction technique used would retain interpretability in order to promote
understanding of the pathophysiology of interest and be able to meaningfully place
new subjects into the learned subspace and make interpretable predictions about
clinical variables of interest.

In the present study, we assume that macroscale glucose uptake patterns in
cognitively impaired individuals with amyloid plaque deposits represent a
parameterization of macroscale AD pathophysiology. We then isolated the
between-subject variability of interest to this study from these preprocessed FDG-
PET scans in the following way. The preprocessed FDG-PET images are three-
dimensional arrays of voxel intensities that correspond to SUVR values in a
standard template space. Taking only the voxel intensities that fall within the set of
voxels that have a greater than 15% probability of being gray matter in template
space, this three-dimensional array can be reduced to a one-dimensional vector, Ψ,
with V= 150,468 elements at our image resolution. To isolate subject effects, each
element is non-parametrically standardized by the median, eX, and interquartile

range, eQ, for that element across subjects Γi ¼ ðΨ i � eXÞeQ�1
(see Fig. 1 for surface

renderings of eX and eQ). Let the set of these standardized vectors, with 150,468
elements per image, be Γ1, Γ2, Γ3… ΓM, where M is the number of participants
studied (M= 423). Subject-wise centering of each image is represented by the
vector Φi ¼ Γi � 1

V ∑
V
n¼1Γi . This can then be used to represent the individual

differences of interest in the brain images between each image pair, or between
subject variance, by calculating the subject-wise M by M matrix L,

L ¼ ATA ð1Þ
where the matrix A = [Φ1 Φ2… ΦM]. This high-dimensional projection of
individual differences can be represented as an eigendecomposition, using the
singular-value decomposition L ¼ vεvT, such that the M eigenvectors, vi , of L,
determine the linear combination of the M set of FDG-PET images that produce
image space eigenvectors, ul, or eigenbrains given that they can be ordered into a
three-dimensional configuration corresponding to the original brain images, as
previously described for the eigenfaces facial recognition algorithm for two-
dimensional facial recognition40:

ul ¼ ∑M
k¼1vikΦK l ¼ 1; :::M ð2Þ

This was demonstrated while considering that the eigenvectors vi of A
TA such

that

ATAvi ¼ μivi ð3Þ
multiplying both sides by A,

AATAvi ¼ μiAvi ð4Þ
it is shown that Avi are the eigenvectors of the larger dimensional covariance
matrix (150,468 by 150,468) in image space, C ¼ AAT. This algorithm
demonstrates how individual differences in multivariate patterns in brain images
can be mapped back into the original image space in the form of a compact lower-
dimensional basis-set of eigenbrains (EBs). This allows for a highly interpretable
understanding of the parameterization of a disease process affecting the individuals
included in the analysis.

The first 10 EBs (see Fig. 1 for surface renderings) explained 51% of the variance
in the dataset (Fig. 5). Using only these 10 EBs, ui , and the eigenvectors vi , of L, as
a subject-level weight, an individual FDG-PET scan can be estimated, Ψest; from a
linear combination of EBs in following way:

Ψest ¼ eX þ∑n¼10
i¼1 viui eQ ð5Þ

An example of an estimated image using only these 10 EBs relative to the
original image is presented in Supplementary Fig. 1. Using additional EBs adds
additional structural information and/or individual factors, but this does not
appear relevant to quantifying dysfunction in the manifold or enhance predicative
ability (Supplementary Figs. 9 and 10). In addition, reconstruction with a low-rank
manifold can be considered a denoising step leaving out effects of no interest (e.g.,
confounding structural effects seen in the red areas in the bottom of Supplementary
Fig. 1b).

In order to determine the robustness of this algorithm to place an unseen image
into this same manifold mapping, we iterated the algorithm 423 times leaving out
each subject exactly once and estimated the subject level weights, vi , for the left-out
subject using the first 10 EBs, ui , and the associated singular values, εi;i , derived
from the remaining 422 subjects. These estimates were then compared to the
derived values from the original run that included all 423 subjects. The set of
subject-level weights, vi , for an unseen image, Γm , for each of the 10 EBs, ui , was
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Fig. 5 Low-rank structure. a A plot of the proportion of variance explained by each eigenbrain organized in rank order. The first 10 components are
highlighted in red, with the remaining 413 components in blue. The same plot for the first 20 components is inset highlighting the natural break after the
first 10 components. b A plot of the cumulative total variance explained at each rank. The majority of the variance (51%) is explained by the first 10
components that are highlighted in red with the remaining 413 components in blue. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29047-4

10 NATURE COMMUNICATIONS |         (2022) 13:1643 | https://doi.org/10.1038/s41467-022-29047-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


calculated in the following way:

vi;m ¼ ∑n¼10
i¼1 Γmui
εi;i

ð6Þ

The concordance between the original values and the estimated values was
assessed using the absolute value, given that the sign is indeterminate and may
change on a given iteration (Supplementary Fig. 2). The method demonstrated a
robust performance with Kendall’s coefficient of concordance approaching 1,
indicating near complete agreement between the full model and the estimates
obtained for the unseen left out subjects using Eq. (6).

To investigate the sample-related bias of the basis-set produced by this dataset,
we generated 500 bootstrapped samples and calculated the first 10 EBs per sample
and compared the correlation of the absolute values of the EB images produced to
the EBs from the original model. All 10 EBs appeared to be robust to sample
variation (Supplementary Fig. 3).

FDG-PET eigenbrains linked to the functional organization of the brain. We
used the Neurosynth database (www.neurosynth.org)41 and the recently
described37 principal gradient of macroscale functional organization (available at
https://neurovault.org/images/24346/) to map our FDG-PET derived EBs to pat-
terns of functional connectivity and functional terminology. We first calculated the
voxel-wise Pearson correlation between the principal gradient of functional con-
nectivity and EB2 and found a high correlation (r= 0.82) (Fig. 3a). Next we

compared a Neurosynth topic terms38 based decoding of EB2 and the principal
gradient of functional connectivity. Feature terms were derived from the 50 set of
topic terms (v4). Of the 50 available, 27 terms captured coherent mappings of
cognitive terms spanning the theoretical range of the manifold and mirrored the
range evaluated by Margulies, et al.37 and are used in further analysis. The
decoding using all 27 topic terms is available in Table 3 for all 10 eigenbrains and
the principal gradient of functional connectivity.

The decoding analysis produces a Pearson correlation between the
unthresholded EB and the unthresholded topic term meta-analysis images (see the
FAQs section here for details: http://neurosynth.org/decode/?neurovault=308). The
topic term decoding of EB2 was similar to the same analysis performed on the
principal gradient of macroscale functional organization (r= 0.86) in that at one
extreme were regions serving concrete primary sensory/motor functions and at the
other end were abstract processes involving transmodal regions (Fig. 3b). The same
decoding of EB1 however revealed brain regions involved in processing external
visual information were at one extreme and brain regions associated with evaluating
internal mental and physical states (e.g., emotions, pain, and sustenance) were on
the other extreme. EB3 was divided into brain regions involved in fluid executive
control (e.g., response preparation, working memory, and response inhibition) with
highly learned perceptual categories (e.g., faces, objects, and sensory perception)
that can rely on feedforward control of previously learned models on the opposite
extreme. The decoding weights for each of the topic terms for EB1-3 were used to
associate functional terminology with the points in the three-dimensional manifold
(Fig. 3c). The points in this plot were color-coded treating each EB decoding as a

Fig. 6 Similarity between eigenbrain representations and Neurosynth topic representations. Top, bar graph of the Dice similarity coefficient (DSC)
between Neurosynth topic maps and thresholded manifold representation of topic maps order from highest to lowest DSC and colored into four similarity
categories: 0-0.2 poor (blue), 0.2–0.4 fair (green), 0.4–0.6 moderate (yellow), 0.6–0.8 good (red). The letters a–f correspond to the visualization of the
spatial overlap represented on surfaces below the bar graph. a–f, The thresholded Neurosynth anatomic representations, the manifold anatomic
representations, and the overlap of the binarized representations (blue = Neurosynth, red = manifold, pink = overlap) are displayed on brain surfaces for
these six topic terms. Source data are provided as a Source Data file.
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channel in a RGB color scheme (EB1= Blue, inverted polarity EB2= Red,
EB3=Green). This same RGB color-coding was done voxel-wise using the spatial
loadings of EB1-3 so that a complete functional-anatomical mapping could be
visualized on a brain rendering (Fig. 3d). The same color-coding is then used for the
eigenvalues for individual subjects included in this study (Fig. 4).

The topic term mapping of the manifold coordinates can also be used to
reconstruct the anatomic patterns associated with each functional topic (Figs. 2 and
3c). This produces a continuous representation of the anatomy associated with
these topics in contrast to the discrete regions of statistically significant meta-
analytic activation patterns. Thresholding the continuous manifold representations
recapitulates the focal activation patterns seen in fMRI experiments summarized in
the meta-analytic activation patterns (Fig. 3c). In order to quantify and better
understand this phenomenon, we calculated the Dice coefficient of similarity
(DSC) between the binarized topic terms (z-score threshold of 3.5 for all topics)
and the binarized manifold representations at the threshold that produced the
maximum DSC. The DSC is on a 0–1 scale and can be interpreted as follows: 0-0.2
poor, 0.2–0.4 fair, 0.4–0.6 moderate, 0.6–0.8 good, and 0.8-1 near complete overlap.
Only 6 of the 27 topics had poor overlap, with the remainder having fair or better
overlap (Fig. 6). Of these 21 topics with fair or better overlap, EB2 loading was
correlated with the DSC, in contrast to having no relationship with EB1 and EB3
loadings (Supplementary Fig. 8). EB2 encodes a concrete-to-abstract functional
continuum suggesting that the more abstract a cognitive function is, the more
difficult it is to represent as discrete regions of activation relative to the linear
combination of continuous gradients in the manifold representations.

Statistical analysis. A combination of MATLAB (v9.4) (Mathworks Inc., Natick,
MA, USA), SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), R (v3.4.0)
(http://www.R-project.org), and Cortex ID (GE Healthcare, Chicago, IL, USA) soft-
ware packages were used to perform all imaging processing and statistical analyses.
The Matlab Toolbox for Dimensionality Reduction was used to compare linear and
non-linear techniques (https://lvdmaaten.github.io/drtoolbox/). When comparing
cohort characteristics, Kruskal–Wallis one-way ANOVA was used for continuous
variables and chi-squared tests were used for categorical variables. Multiple linear
regression predictive models were used to for dependent variables in Table 2, the first
10 eigenvalues were used as predictors. The adjusted R2 attempts to penalize for the
number of variables used in the model and is always equal to or less than the R2 value.
The predicted R2 uses a leave-one-out cross-validation strategy that fits all observa-
tions but one and then predicts that left out variable with a model fit to the remainder
of the observations. This procedure is repeated until each variable is left out. This
value is always equal to or less than the R2 value. Large discrepancies between these
values are indicative of model overfitting and poor generalizability.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The eigenimages from this study are available for download (https://neurovault.org/
collections/AXJZMEAY/). A data package containing the preprocessed FDG-PET data
from the AD spectrum cohort (N= 423) and associated data used to generate these
eigenbrains from this data have been deposited in the Dryad database (https://doi.org/
10.5061/dryad.msbcc2g0n) with associated code in Zenodo (https://doi.org/10.5281/
zenodo.6030044). Data from the Mayo Clinic Study of Aging and the Mayo Clinic
Alzheimer’s Disease Research Center are available upon request from these studies
(https://www.mayo.edu/research/centers-programs/alzheimers-disease-research-center/
data-requests). Data from the Alzheimer’s disease Neuroimaging Initiative (ADNI) and
are available from the ADNI database (adni.loni.usc.edu) upon registration and
compliance with the data usage agreement. Source data underlying Tables 1 and 2,
Figs. 4–6, and Supplementary Figs. 2, 3, 5, 6, 8–10 are provided with this paper. Source
data are provided with this paper.

Code availability
A data package containing the preprocessed FDG-PET data from the AD spectrum
cohort (N= 423) and associated data used to generate eigenbrains from this data have
been deposited in the Dryad database (https://doi.org/10.5061/dryad.msbcc2g0n) with
associated code in Zenodo (https://doi.org/10.5281/zenodo.6030044). Code used for non-
linear manifold learning techniques is available from the Matlab Toolbox for
Dimensionality Reduction (https://lvdmaaten.github.io/drtoolbox/).
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