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Abstract

Sleep deprivation (SD) is very common in modern society and regarded as a potential

causal mechanism of several clinical disorders. Previous neuroimaging studies have

explored the neural mechanisms of SD using magnetic resonance imaging (MRI) from

static (comparing two MRI sessions [one after SD and one after resting wakefulness])

and dynamic (using repeated MRI during one night of SD) perspectives. Recent SD

researches have focused on the dynamic functional brain organization during the

resting-state scan. Our present study adopted a novel metric (temporal variability),

which has been successfully applied to many clinical diseases, to examine the

dynamic functional connectivity after SD in 55 normal young subjects. We found that

sleep-deprived subjects showed increased regional-level temporal variability in large-

scale brain regions, and decreased regional-level temporal variability in several thala-

mus subregions. After SD, participants exhibited enhanced intra-network temporal

variability in the default mode network (DMN) and increased inter-network temporal

variability in numerous subnetwork pairs. Furthermore, we found that the inter-

network temporal variability between visual network and DMN was negative related

with the slowest 10% respond speed (β = �.42, p = 5.57 � 10�4) of the psychomo-

tor vigilance test after SD following the stepwise regression analysis. In conclusion,

our findings suggested that sleep-deprived subjects showed abnormal dynamic brain

functional configuration, which provides new insights into the neural underpinnings

of SD and contributes to our understanding of the pathophysiology of clinical

disorders.
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1 | INTRODUCTION

Sleep deprivation (SD) has been a common problem in modern soci-

ety. Previous studies have reported that 35% of adults in the

United States sleep less than 7 h during a typical 24-h day, and this

phenomenon is more prominent among US middle school

students (Bandyopadhyay & Sigua, 2019) and older adults (Mander

et al., 2017). It has been well-documented that insufficient sleep is

detrimental to human health and causes cognitive dysfunctions, even

after one night of SD (Hudson et al., 2020; Itani et al., 2017;

Porras-Segovia et al., 2019; Tobaldini et al., 2017; Van

Craenenbroeck, 2019). Prominently, attention lapses, impaired work-

ing memory, hindering decision making, impaired emotional

processing are associated with one single night of SD (Cassé-Perrot

et al., 2016; Cousins & Fernández, 2019; Tempesta et al., 2018). Fur-

thermore, recent studies have demonstrated that SD is one of the

reasons for the pathogenic mechanism of various neurological disor-

ders such as Alzheimer's disease and Parkinson's disease (Bishir

et al., 2020). Patients with psychiatric disorders suffer from sleep

deficit during the early stage of these diseases, and several

researches have revealed that this deficit may be a potential causal

mechanism of psychosis (Waite et al., 2020). Thus, elucidating the

underlying mechanisms of SD is an important goal in basic and clini-

cal neuroscience.

A growing body of neuroimaging researches have explored the

neural underpinnings of SD by using magnetic resonance imaging

(MRI; Chee & Zhou, 2019; Krause et al., 2017; Li et al., 2021; Zhang

et al., 2021). Recently, our group has carried out a series of studies

on this research area. By comparing SD session with resting wakeful-

ness (RW) session, we have reported poorer performance of inhibi-

tory control and deficits in the cerebral activation of inhibitory

control after SD (Zhao, Zhang, Fei, et al., 2019). We further have

found that one night of SD could induce alterations in brain structure

(Sun, Zhao, et al., 2020), and the structural MRI data in RW session

could linearly predict the alterations of response inhibition after SD

(Zhao et al., 2018). Within resting-state functional MRI (rsfMRI) data,

our group have reported the disrupted resting state functional orga-

nization in hippocampal subregions using the masked independent

component analysis (Zhao, Zhang, Zhu, et al., 2019), and increased

interhemispheric resting-state functional connectivity (FC) which may

reflect the compensatory mechanisms after SD (Zhu et al., 2016).

Using diffusion tensor imaging, we have examined the relationship

between the inter-individual difference in cognitive performance

with white matter characteristics after SD (Zhu et al., 2017). These

studies used a typically experimental paradigm that run two MRI

scans (one after SD and one after RW). However, this type of

researches depicted the modulated brain after SD, rather than the

modulation processes during SD. For this issue, our group increases

the number of MRI scan during the whole time of SD, and explored

the dynamic changes of brain response to sustained attention task

and working memory task during one night of SD (Zhu et al., 2018;

Y. Zhu et al., 2019). Above mentioned studies have revealed the

neural mechanisms of SD from static and dynamic perspectives,

which give us a deeper understanding of SD.

Besides the dynamic analysis using repeated fMRI, recent SD

researches have investigated the effects of SD on the dynamic

functional brain organization on the order of seconds to minutes

over the resting state scan based on a sliding-window method. Li

et al. and Xu et al. (C. Li et al., 2020; Xu et al., 2018) have shown

altered dwell time and transit between FC states after SD. Long

et al. (Long et al., 2021) have examined the age-related changes in

FC variability of the thalamus after partial SD, and reported

reduced FC variability between the left thalamus and the left supe-

rior parietal cortex in young adults after 3 h of sleep restriction.

However, the FC states analysis measured the patterns of whole

brain dynamic FC (Allen et al., 2014; Bolton et al., 2020), rather

than the dynamic FC architecture of a specific region. The FC vari-

ability analysis quantifies the fluctuations of FC between two brain

regions (Kucyi & Davis, 2014; Liu et al., 2018), lack of global infor-

mation. Recently, the temporal variability of functional architecture

associated with a specific region, a novel measure of functional

brain dynamics at the mesoscale introduced by Zhang et al. (2016),

is different from the above two methods which measures the inter-

regional property of dynamic FC (Hu et al., 2018). This approach

allows the coupling analysis between the temporal variability of a

region and its neural activities, and can localize regions showing sig-

nificant variability changes between groups and regions showing

significant variability correlated with behavior, thus helping to

revealing the underlying neuroimaging mechanisms of brain disor-

ders (Sun et al., 2019; Zhang et al., 2016). It has been successfully

applied to many diseases including schizophrenia (Deng et al., 2019;

Dong et al., 2019; Yue et al., 2018), major depressive disorder (Hou

et al., 2018), stroke (Hu et al., 2018), Parkinson's disease (H. Zhu

et al., 2019), and Alzheimer's disease (Gu et al., 2020). These

researches suggested that the temporal variability might provide

new insights into the neural underpinnings of brain disorders. Con-

sidering that SD may be a potential causal factor of these disorders

(Reeve et al., 2015; Waite et al., 2020), and that experimentally

controlled SD is a valuable experimental medicine model of schizo-

phrenia (Ettinger & Kumari, 2015; Kumari & Ettinger, 2020), per-

forming research on temporal variability after SD may promote our

understanding of the pathophysiology of clinical disorders. How-

ever, the effects of SD on the temporal variability have not been

depicted.

In this present study, we investigated the effects of one night of

SD on the temporal variability in 55 healthy young subjects. Firstly,

we measured the regional-level temporal variability of FC architecture

after RW and SD, using the method introduced by Zhang et al. (2016),

and compared the differences of the temporal variability between RW

and SD states. Similarly, the intra-network and inter-network tempo-

ral variability of FC architecture was analyzed using the method intro-

duced by (Sun et al., 2019). Finally, we explored the correlations

between the temporal variability and vigilant attention using stepwise

regression analysis.

SUN ET AL. 3825
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2 | MATERIALS AND METHODS

2.1 | Subjects

Sixty-eight righted-handed healthy young subjects were recruited

from Xidian University in this study. The recruitment criteria were

similar to those in our previous researches (Sun, Zhao, et al., 2020;

Zhao, Zhang, Fei, et al., 2019; Zhao, Zhang, Zhu, et al., 2019; Zhao

et al., 2018). All participants had normal sleep schedules of 7–9 h

per night between 10:00 p.m. and 8:00 a.m. They had no history of

smoking, self-reported medical, psychiatric, neurological or sleep

disorders, and were free of any abused alcohol or drugs. Further-

more, all of them did not present an extreme morning or extreme

evening type, assessed by the Morningness-Eveningness question-

naire (Horne & Ostberg, 1976) which was the most used and cited

questionnaire. Subjects with the total score ranging from 16 to

30 were determined to be the extreme evening type. Subjects were

divided into the extreme morning type with the total score ranging

from 70 to 86.

We performed the pre-experiment for the first subject. However,

this subject was removed from this study owing to incomplete data.

Two subjects opted out of this study during the SD session. Three

subjects were discarded due to the abnormality in brain structure.

Furthermore, one subject was abandoned by reason that the MRI

scanner was broken during the SD session scan. Another six partici-

pants were excluded who showed abnormal head motion (see

Section 2.5.1 for details). Therefore, 55 subjects were included in the

final analysis in total with the mean age of 20.58 ± 1.83 years (range

18–23 years; 29 males, 26 females).

All participants declared that they did not smoke or consume any

stimulants, medications, alcohol or caffeine (coffee, tea, cola, etc.) for

at least 24 h before the formal experiment. All subjects provided writ-

ten informed consent prior to participation and were compensated for

their time. All research procedures were conducted in accordance

with the Declaration of Helsinki and approved by the institutional

research ethics committee of the Xijing Hospital of the Fourth Military

Medical University.

2.2 | Experimental procedure

The experimental procedure in the present study was similar to those

that in our previous researches (Zhao et al., 2018; Zhao, Zhang, Zhu,

et al., 2019). All subjects were scheduled for three visits to the labora-

tory. For the first visit, subjects underwent the screening process, and

were informed of the experimental procedures and given instructions

about the psychomotor vigilance test (PVT). Subjects were also

requested to keep a sleep diary throughout the experiment to verify

subjects' compliance to a regular sleep schedule. After 1 week, sub-

jects who met the inclusion criteria performed the second visit. During

this visit, subjects underwent the RW session or SD session. During

the third visit, subjects underwent the other session. For the RW ses-

sion, subjects slept as usual with at least 7 h of sleep and reported to

the laboratory at 7:30 a.m. After performing the PVT task, subjects

underwent the MR scanning at 8:00 a.m. For the SD session, subjects

waked up regularly according to their sleep schedules (at 8:00 a.m. at

the latest) after 7–9 h of sleeping and were required no naps or vigor-

ous physical activities in the daytime. Subjects reported to the labora-

tory before 10:00 p.m., and were not allowed to sleep from

10:00 p.m. to 8:00 a.m. In order to prevent subjects from falling

asleep in this period, they were monitored by experimenters in the

laboratory, and they could do some nonstrenuous activities such as

reading and watching videos in this period. After finishing the PVT

task, subjects were administered the MR scanning at 8:00 a.m. The

second and third visits were administered in a randomized, cross-over

fashion with at least 1 week apart to minimize possible residual

effects of SD on cognition (Van Dongen et al., 2003). During this

week, subjects continued their usual daily activities, but were not per-

mitted to perform shiftwork or stay up all night. They were also not

permitted to do vigorous physical activities 1 day before scanning.

2.3 | Psychomotor vigilance test

We used PVT to measure vigilant attention, which is the cognitive

domain most severely impaired by SD (Lim & Dinges, 2008; Yang

et al., 2018). The procedure of this task in the present study was simi-

lar to our previous research (Sun, Zhao, et al., 2020). Firstly, a red fixa-

tion cross appeared in the center of a black background on the screen

and remained for 2 s. Then, the red fixation cross disappeared, and

the black background screen was presented for a random duration of

2–10 s. After that, a red target circle was displayed and participants

were instructed to press a button as quickly as possible with their

right index finger. They were required to press the button within 30 s.

If the participant responded, the red target circle disappeared and the

real-time reaction time (RT) was displayed on the screen to provide

feedback regarding their performance. The feedback was presented

1 s after the response. If the participant did not respond, the displayed

real-time RT was 0 ms. The whole process of this task lasted

for 7 min.

The primary behavioral measurements of interest in the PVT were

(1) the number of trails; (2) lapse number (the lapse was defined as the

trail with RT >500 ms); (3) the mean RT of all trials; (4) the RT of the

fastest 10% trials (10% fast RT); (5) the reciprocal of RT of the slowest

10% trials (10% slow 1/RT); (6) the standard deviation of RT (sd_RT);

and (7) coefficient of variation of RT (cv_RT).

2.4 | MRI data acquisition

MRI data were acquired from a 3T GE MR750 scanner at Department

of Radiology, Xijing Hospital, The Air Force Medical University, Xi'an,

China. A standard 8-channel head coil was used together with a

restraining foam pad to minimize head motion and diminish scanner

noise. The 3D T1-weighted structural images were obtained during the

second visit with the following scanning parameters: repetition time

3826 SUN ET AL.
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(TR) = 8.2 ms; echo time (TE) = 3.18 ms; field of view

(FOV) = 256 � 256 mm2; matrix = 512 � 512; in-plane

resolution = 0.5 � 0.5 mm2; slice thickness = 1 mm; 196 sagittal slices;

flip angle = 9�. The rsfMRI data were collected within 7 min using the

following parameters: TR = 2 s; TE = 30 ms; FOV = 240 � 240 mm2;

matrix = 64 � 64; in-plane resolution = 3.75 � 3.75 mm2; slice

thickness = 3.5 mm; 45 axial slices; flip angle = 90�, and 210 volumes

were acquired for each subject.

In order to avoid sleeping during the rsfMRI scanning, subjects

were required to relax, stay still, remain awake with their eyes open

and focus on a fixation cross. The fixation cross was projected onto a

screen positioned at the head of the magnet bore and viewed with a

mirror attached to the head coil. After the rsfMRI scanning, subjects

were asked whether they were awake during the scanning and all the

subjects confirmed that they were awake.

2.5 | Data analysis

2.5.1 | Preprocessing

Preprocessing was performed using the Statistical Parametric Map-

ping (SPM12, www.fil.ion.ucl.ac.uk/spm/software/spm12/) and Func-

tional Connectivity Toolbox (CONN version 17f, https://www.nitrc.

org/projects/conn). The first five volumes of the rsfMRI data for each

session were discarded for signal stabilization, and for participants to

become accustomed to the scanning noise. Then, the remaining

205 volumes of the rsfMRI were preprocessed with the CONN's

default preprocessing pipeline which included 7 steps. (1) Functional

realignment and unwarp. The remaining rsfMRI data was realigned to

the middle volume of each session using the SPM12 realign and

unwarp procedure (Andersson et al., 2001) to perform the head

motion correction. In order to control the influence of the head

motion on the results, subjects with translation of more than 2 mm or

rotation of more than 2� over the course of each session were

excluded from the final analyzed group. Six participants were dis-

carded with higher head motion. (2) The realigned functional data

were centered to (0, 0, 0) coordinates. (3) Slice-timing correction.

According to the sequential nature of the fMRI acquisition protocol,

the slice order of the rsfMRI was temporal misaligned, which was

time-shifted using the SPM12 slice-timing correction procedure

(Henson et al., 1999). (4) Functional outlier detection. Functional

scans were subjected to artifact and motion outlier identification for

scrubbing using the Artifact Detection Toolbox (ART; https://www.

nitrc.org/projects/artifact_detect/) according to intermediate settings

(97th percentiles in normative sample). Timepoints were flagged as

outliers with global blood oxygenation level dependent (BOLD) signal

changes above 5 standard deviation and framewise displacement

above 0.9 mm. (5) Functional direct segmentation and normalization.

The slice-timing corrected rsfMRI data were segmented into gray mat-

ter, white matter, and cerebrospinal fluid (CSF), and normalized into

the standard Montreal Neurological Institute (MNI) space adopting

default Tissue Probability Maps using SPM12 unified segmentation

and normalization procedure (Ashburner & Friston, 2005), with a

voxel size of 2 � 2 � 2 mm3. (6) The 3D T1-weighted structural

images were center to (0, 0, 0) coordinates. (7) Structural segmenta-

tion and normalization. The structural data were segmented into gray

matter, white matter, and CSF, and normalized into the standard MNI

space with a voxel size of 2 � 2 � 2 mm3, using the similar procedure

that applied to the functional data. (8) Functional smoothing. In order

to increase the BOLD signal-to-noise ratio, functional data were spa-

tially smoothed using a Gaussian kernel with 8 mm full width at half

maximum.

Finally, the denoising pipeline was applied to remove potential

confounders from the BOLD signal using an anatomical component-

based noise correction procedure (aCompCor; Behzadi et al., 2007).

Confounders included 10 noise components from white matter and

CSF (five components each) with the principal component analysis,

12 motion-related parameters (3 translation and 3 rotation parameters

plus their associated first-order derivatives), and scrubbing parameters

obtained from the functional outlier detection. Then, the temporal

band-pass filtering was implemented with a frequency window of

0.008–0.09 Hz to focus on slow-frequency fluctuations and minimize

the influence of physiological, head-motion and other noise sources.

The linear detrending was also performed to remove linear trends

within each functional session.

2.5.2 | Temporal variability of regional-level FC
architecture

Figure 1 illustrated the analysis pipeline for computing the tree types

of temporal variabilities. The temporal variability of the FC architec-

ture associated with a brain region was evaluated based on the previ-

ously described method (Zhang et al., 2016). For the regional-level

temporal variability, data processing was divided into five major steps.

(1) The whole brain was segmented into N ROIs according to a

parcellation brain atlas. (2) The mean time course of each ROI was

extracted by averaging the time series of all voxels in the

corresponding ROI. (3) Averaged time series of all ROIs were seg-

mented into M nonoverlapping windows with an equal length of L.

(4) Within the ith window, a N � N FC matrix (denoted as Fi, i = 1,

2, 3, …, M) was generated by computing pairwise Pearson's correlation

among N ROIs using the averaged windowed time series. The kth row

(or kth column) in Fi, that is, Fi(k,:), is a N-dimensional vector and char-

acterizes the FC profile of the kth ROI at the ith time window. We

denoted it as Fi,k for convenience. (5) The regional-level temporal vari-

ability of the kth ROI (Vk
region) was computed by comparing the FC pro-

file of region k at different windows based on the following

formulation:

Vk
region ¼1�corrcoef Fi,k ,Fj,k

� �
, i, j¼1,2,3,…,M, i≠ j

In this equation, corrcoef Fi,k ,Fj,k
� �

denotes the Pearson's correlation

coefficient between the FC architecture of the kth ROI at the ith time

window and the jth time window. corrcoef Fi,k ,Fj,k
� �

is the averaged

SUN ET AL. 3827
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correlation coefficient of the FC architecture of the kth ROI between

any two different time windows, which measures the averaged simi-

larity of FC profile associated with brain region k across different time

windows. A deduction from 1 indicates temporal variability of FC

architecture of the region k.

However, several considerations of the specific analysis processes

needed to be explained. Firstly, for the parcellation brain atlas, we

choose the automated anatomical labeling atlas 3 (AAL3) template to

parcellate the whole brain into 166 ROIs. However, the locus

coeruleus, ventral tegmental area, raphe nuclei, substantia nigra, red

nucleus, and reuniens nucleus were excluded which should be used

with caution for their smaller voxels (Rolls et al., 2020). Therefore, the

whole brain was segmented into 152 ROIs (i.e., N = 152). This atlas

was used because it has named brain areas that can be related to neu-

rology, and because it subdivided well a large brain area into smaller

sections with more specific functions (Rolls et al., 2021). Secondly, to

reduce the influence of the starting point of the window for the

BOLD signal, we segmented the time series L � 1 times for a given

window length L, and the segmented time series started from the sth

point (s = 1, 2, …, L � 1). Vk
region with different starting points s (s = 1,

2, …, L�1) was calculated, and the obtained L�1 Vk
region were aver-

aged as the temporal variability of the kth ROI with the window

length L. Thirdly, to avoid the arbitrary choice of the window length,

Vk
region with different window length L (L = 10, 11, 12, …, 30 volumes,

F IGURE 1 The analysis pipeline for computing the tree types of temporal variabilities. First, the whole brain was segmented into N ROIs
according to a parcellation brain atlas such as the AAL3 template. Second, the mean time course of each ROI was extracted from the
preprocessed BOLD signal. Third, the mean time series of all ROIs were segmented into M nonoverlapping windows. Forth, within the ith
window, a N � N FC matrix Fi was generated. We extracted the kth column in Fi and denoted it as Fi,k. Then, we calculated the regional-level
temporal variability of the kth ROI (Vk

region). For the network-level temporal variability, the N ROIs were assigned into nine functional subnetworks.
For the network p, Np ROIs were assigned into this network. Within the ith window, a Np*(Np�1)/2 FC matrix was obtained and reshaped as a
1D vector (Fpi ). Similar with the regional-level temporal variability, we computed the intra-network temporal variability of network p (Vp

intra�network).
However, for the inter-network variability (Vp,q

inter�network) between network p with Np ROIs and network q with Nq ROIs, a Np*Nq FC matrix
between these two networks in the ith window was calculated and reshaped as a 1D vector (denoted as Fp,qi ). Finally, we calculated Vp,q

inter�network

according to the corresponding formula

3828 SUN ET AL.
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equal to 20, 22, 24, …, 60 s) was also calculated. This range was deter-

mined based on several previous studies on temporal variability (Dong

et al., 2019; Long et al., 2020; Sun et al., 2019; Sun, Zhang,

et al., 2020), and we chose their union. The corresponding window

number M was the rounded down 205/L. We took the averaged

Vk
region over different window length L as the final temporal variability

of the kth ROI.

2.5.3 | Temporal variability of network-level FC
architecture

In addition to calculating the temporal variability of the regional-level

FC profile, the temporal variability of FC at the network level was fur-

ther characterized following recently published procedures (Dong

et al., 2019; Sun et al., 2019). There were two major types of

network-level temporal variability: intra-network variability, which

characterizes the changes of FC within subnetwork over time, and

inter-network variability. For this analysis, three major steps should be

performed. (1) The N ROIs were assigned into nine functional subnet-

works, which were consisted of the subcortical network (SUB), cere-

bellum (CN) and the seven networks defined by Yeo et al. (2014)

including visual network (VN), sensorimotor network (SMN), dorsal

attention network (DAN), ventral attention network (VAN), limbic net-

work (LN), frontal-parietal network (FPN), and default mode network

(DMN). (2) For the pth network, Np ROIs were assigned into this net-

work. The number of ROIs of each network satisfied the following

formula:

N1þN2þ���þNpþ���þN9 ¼N:

Np*(Np � 1)/2 FCs within this network in the ith window were

obtained and reshaped as a 1D vector (denoted as Fpi , i = 1, 2, 3, …,

M; p = 1, 2, 3, …, 9). Similar with the regional-level temporal variabil-

ity, the intra-network temporal variability of network p (Vp
intra�network

in short) was defined according to the following equation:

Vp
intra�network ¼1�corrcoef Fpi ,F

p
j

� �
i, j¼1,2,3,…,M, i≠ j

(3) In order to measure the inter-network variability (Vp,q
inter�network)

between network p with Np ROIs and network q with Nq ROIs, Np*Nq

FCs between these two networks in the ith window were calculated

and reshaped as a 1D vector (denoted as Fp,qi , i = 1, 2, 3, …, M; p = 1,

2, 3, …, 9; q = 1, 2, 3, …, 9; p ≠ q). Then, Vp,q
inter�network was defined as:

Vp,q
inter�network ¼1�corrcoef Fp,qi ,Fp,qj

� �
i, j¼1,2,3,…,M, i≠ j

Furthermore, in order to improve the robustness of the result, we

computed Vp
intra�network and Vp,q

inter�network with different starting points

s (s = 1, 2, …, L�1) and multiple window length L (L = 10, 11, 12, …,

30 volumes) using the similar procedure for the regional-level tempo-

ral variability, and took an average as the final intra-network variability

and inter-network variability.

2.6 | Validation analysis

In order to verify the consistency of the results, we also measured

these three variables with the Shen-268 functional atlas which is an

FC-based brain parcellation generated with a rsfMRI dataset from

79 healthy adults based on the groupwise clustering of voxel-wise

FCs (Shen et al., 2013). This atlas is more suitable for rsfMRI studies

because it provides highly homogeneous and functionally coherent

brain parcellations, compared with other anatomical information-

based parcellations (Arslan et al., 2018), and it has been widely used in

many functional brain studies (Beaty et al., 2018; Bertolero

et al., 2015; Rosenberg et al., 2016; Wen et al., 2020).

2.7 | Statistical analysis

First, the seven primary behavioral measurements of PVT were com-

pared between RW and SD sessions using paired t-test with false dis-

covery rate (FDR) correction for multiple comparisons (p <.05).

Secondly, in order to explore the effects of SD on temporal variability,

we compared the above mentioned three types of temporal variabil-

ities (regional-level, intra-network, inter-network) between RW and

SD states using paired t-test with FDR correction (p <.05). To improve

the robustness of the results, we extracted the overlapped results

showing significant changes in regional-level and network-level tem-

poral variability after SD using the AAL3 template and Shen-268 func-

tional atlas.

Thirdly, we performed stepwise regression analysis to explore the

relationship between temporal variability and behavioral measures of

PVT. In statistics, stepwise regression is a method of fitting regression

models in which the choice of predictive variables is carried out by an

automatic procedure. This method can screen and eliminate the vari-

ables which are marginal important and cause multicollinearity, and

identify the important variates. Therefore, in consideration of the

highly correlation between the seven performance measures, we

input these performance measures into the regression model as inde-

pendent variables, with the temporal variability as the dependent vari-

able, and picked out the independent variables that have significant

effect on the dependent variable. This analysis was implemented in

the overlapped regions showing significant changes of regional-level

temporal variability (n = 37), one network showing significant changes

of intra-network temporal variability, and the common subnetwork

pairs showing significant changes of inter-network temporal variability

(n = 15) after SD using the above two atlases. Moreover, this analysis

was accomplished for the SD state and the changes between SD and

RW (the differences in temporal variability as the dependent variable

and the differences in performance measures as independent vari-

ables) with the AAL3 atlas. Then, the FDR correction for multiple com-

parisons was performed with p <.05 (37 * 2 repeated comparisons for

the regional-level temporal variability, 2 repeated comparisons for the

intra-network temporal variability, and 15*2 repeated comparisons for

the inter-network temporal variability) using MATLAB 2019b. Fur-

thermore, considering the dimensional differences among temporal
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variability and seven performance measures, independent variables

and dependent variable were normalized before stepwise regression

analysis.

3 | RESULTS

3.1 | Behavioral results

Poorer performance of PVT was observed after SD with less number

trails (p = .04, p(FDR) = .04), slower mean RT (p = 1.99 � 10�6, p(FDR)

= 3.49 � 10�6), more lapse (p = 5.71 � 10�9, p(FDR) = 2.00 � 10�8),

increased 10% fast RT (p = 0.0032, p(FDR) = .0037), decreased 10%

slow 1/RT (p = 2.33 � 10�11, p(FDR) = 1.63 � 10�10), greater sd_RT

(p = 8.34 � 10�6, p(FDR) = 1.17 � 10�5), increased cv_RT

(p = 3.78 � 10�7, p(FDR) = 8.81 � 10�7, Table 1).

3.2 | Temporal variability of regional-level FC
architecture

For the RW session, subjects showed low regional-level temporal vari-

ability among a large of brain regions (Figure 2a), especially in VN (includ-

ing the bilateral cuneus, bilateral calcarine, bilateral lingual gyrus, and

bilateral fusiform gyrus), DMN (including the bilateral lateral orbital gyrus

(OFClat), bilateral medial of superior frontal gyrus (Frontal_Sup_Medial),

bilateral medial orbital of superior frontal gyrus (Frontal_Med_Orb), and

left inferior frontal gyrus pars orbitalis (Frontal_Inf_Orb)), and VAN

(including the bilateral insula, bilateral supramarginal gyrus (SMG), and

bilateral middle cingulate & paracingulate gyri (MCC)) with the AAL3

atlas. High regional-level temporal variability was observed in SUB

(including thalamus, putamen and nucleus accumbens (N_Acc)), CN, and

bilateral anterior cingulate cortex, supracallosal (ACC_sup) (Figure 2a).

These results suggested that the functional architecture of regions in

VN, DMN and VAN was highly correlated across different time win-

dows, and the dynamic FC time series between SUB, CN, ACC_sup, and

other regions were asynchronous.

For the SD session, low regional-level temporal variability cov-

ered bilateral cuneus, bilateral calcarine, bilateral amygdala, bilateral

intralaminar thalamus and bilateral lateral posterior thalamus

(Figure 2b). Subjects showed high regional-level temporal variability in

bilateral ACC_sup, bilateral N_Acc, left ventral posterolateral thala-

mus, bilateral mediodorsal medial magnocellular thalamus, and cere-

bellum (Figure 2b) with the AAL3 atlas.

Compared with the RW session, subjects exhibited significant

increased regional-level temporal variability in several brain regions

after SD with FDR correction (p <.05). The involved regions included

the bilateral OFClat, left Frontal_Inf_Orb, bilateral Frontal_Sup_Medial,

bilateral hippocampus (HIP), bilateral supplementary motor area (SMA),

bilateral postcentral gyrus, bilateral lobule III of cerebellar hemisphere

(Cerebellum_3), and so on (Table 2 and Figure 2C). Furthermore, signifi-

cant reduced regional-level temporal variability was found in thalamus

subregions and vermis after SD with FDR correction (p <.05).

3.3 | Temporal variability of network-level FC
architecture

As shown in Figure 3 and Table S1, sleep-deprived subjects showed

increased intra-network temporal variability in DMN and SMN, while

decreased intra-network temporal variability was found in SUB and

CN after FDR corrected (p <.05) when using the AAL3 atlas.

Among all the 36 inter-network temporal variability (9 � 8/2), we

found 20 significant increased inter-network temporal variability and one

decreased inter-network temporal variability (SUB-CN) after SD with

FDR correction (p <.05) using the AAL3 atlas (Table 3 and Figure 4).

3.4 | Validation results

For the regional-level temporal variability, subjects showed significant

increased regional-level temporal variability in a wide range of brain

regions which spanned VN, SMN, DAN, VAN, LN, FPN, DMN and CN

after SD with FDR correction (p <.05, Figure S1) using the Shen-268

TABLE 1 Behavioral changes after SD

Behavioral measurements RW SD t value p value p(FDR) value

Number trails 55.38 ± 2.46 54.45 ± 2.81 �2.10 .04 0.04

Lapse 1.73 ± 2.51 7.66 ± 7.22 6.91 5.71 � 10�9 2.00 � 10�8

Mean RT (ms) 341.74 ± 41.15 475.90 ± 209.27 5.33 1.99 � 10�6 3.49 � 10�6

10% fast RT (ms) 274.76 ± 25.59 286.54 ± 35.02 3.09 .0032 0.0037

10% slow 1/RT(s) 2.22 ± 0.38 1.50 ± 0.74 �8.39 2.33 � 10�11 1.63 � 10�10

sd_RT 68.71 ± 52.32 450.69 ± 586.60 4.93 8.34 � 10�6 1.17 � 10�5

cv_RT 19.74 ± 11.92 72.92 ± 67.92 5.78 3.78 � 10�7 8.81 � 10�7

Note: Data are presented as mean ± standard deviation.

Abbreviations: cv_RT, the coefficient of variation of RT; sd_RT, the standard deviation of RT; SD, sleep deprivation. RT, reaction time; RW, rested

wakefulness.
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functional atlas. We also found significant reduced regional-level tem-

poral variability in thalamus and cerebellum.

In order to improve the robustness of the results, we extracted

the overlapped brain regions showing significant changes in regional-

level temporal variability after SD using the two brain region tem-

plates. We found that compared with RW session, the regional-level

temporal variability was significant changed after SD under both the

AAL3 and Shen-268 atlas in VN (including the left cuneus, bilateral lin-

gual gyrus and left fusiform gyrus), SMN (including the left Rolandic

operculum, bilateral postcentral gyrus and left SMA), the right superior

parietal gyrus, VAN (including the right insula, right MCC, and bilateral

SMG), LN (including the right gyrus rectus, right HIP, and right tempo-

ral pole: superior temporal gyrus), FPN (including the bilateral middle

frontal gyrus, left inferior frontal gyrus, opercular part, left inferior

frontal gyrus, triangular part, left anterior orbital gyrus, and right infe-

rior parietal gyrus), and DMN (including the left superior frontal gyrus,

dorsolateral, left Frontal_Inf_Orb, bilateral Frontal_Sup_Medial, left

Frontal_Med_Orb, left OFClat, and bilateral angular gyrus). All of these

brain regions exhibited increased regional-level temporal variability

after SD. Meanwhile, we also found that several thalamus subregions

showed reduced regional-level temporal variability after SD using

both the two brain templates (Table S2 and Figure 5).

For the intra-network temporal variability, higher intra-network

temporal variability in DAN, FPN and DMN was observed after SD

after FDR correction (p <.05) using the Shen-268 functional atlas. No

network showed significant decreased intra-network temporal vari-

ability after SD (Figure S2 and Table S1). However, the intra-network

temporal variabilities in DMN in AAL3 atlas and in Shen-268 func-

tional atlas had significant difference between RW and SD, and

showed the similar change trend.

For the inter-network temporal variability, we found 19 significant

increased inter-network temporal variability and 4 decreased inter-

network temporal variability (between LN, VN, VAN, DMN, and SUB)

after SD with FDR correction (p <.05) in the Shen-268 functional atlas

(Table S3 and Figure S3). However, there were 15 inter-network tempo-

ral variability which showed significant changes after SD using the two

atlases (Figure 6): VN-SMN, VN-DMN, SMN-DAN, SMN-DMN, DAN-

LN, DAN-FPN, DAN-DMN, DAN-CN, VAN-FPN, VAN-DMN, VAN-CN,

LN-FPN, FPN-DMN, FPN-CN, and DMN-CN. All of these subnetwork

pairs showed increased inter-network temporal variability after SD.

3.5 | Correlations between temporal variability and
clinical variables

For SD state, we found that only the 10% slow 1/RT could be an

important predictor of the inter-network temporal variability between

VN and DMN (β = �.42, p = 5.57 � 10�4) following the stepwise

regression analysis (Figure 7). These results suggest that the 10% slow

1/RT have significant negative influence on the VN-DMN inter-

network temporal variability. However, no significant relationship

between the differences of temporal variability and the differences in

PVT measurements.

F IGURE 2 Whole-brain regional-level temporal variability
topography on AAL3 template after rested wakefulness and sleep
deprivation. (a) After rested wakefulness (RW). The color scale
represents regional-level temporal variability. (b) After sleep
deprivation (SD). The color scale represents regional-level temporal
variability. (c) Significant changes between RW and SD with FDR
correction for multiple comparisons (p <.05). The color scale
represents t value. The positive t values mean SD > RW; the negative
t values mean SD < RW. R, right. L, left. These figures were
constructed using the BrainNet Viewer (http://www.nitrc.org/
projects/bnv/; Xia et al., 2013)
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TABLE 2 Significant changes of regional-level temporal variability after SD with AAL3 atlas

Brain region Hemisphere RW SD t value p value

p(FDR)

value

Superior frontal gyrus, dorsolateral L 0.89 ± 0.04 0.90 ± 0.03 2.53 .0144 .0384

Middle frontal gyrus L 0.87 ± 0.04 0.89 ± 0.03 3.29 .0018 .0082

R 0.87 ± 0.03 0.89 ± 0.03 2.86 .0061 .0220

Inferior frontal gyrus, opercular part L 0.88 ± 0.04 0.89 ± 0.04 2.54 .0140 .0384

Inferior frontal gyrus, triangular part L 0.87 ± 0.04 0.89 ± 0.03 3.68 .0005 .0030

IFG pars orbitalis L 0.88 ± 0.03 0.90 ± 0.03 4.66 1.87 � 10�5 .0004

Rolandic operculum L 0.87 ± 0.04 0.89 ± 0.03 2.41 .0194 .0492

Supplementary motor area L 0.89 ± 0.03 0.91 ± 0.03 3.57 .0008 .0038

Superior frontal gyrus, medial L 0.87 ± 0.04 0.89 ± 0.03 3.54 .0008 .0040

R 0.86 ± 0.04 0.89 ± 0.04 4.20 .0001 .0008

Superior frontal gyrus, medial orbital L 0.86 ± 0.04 0.88 ± 0.03 2.82 .0067 .0236

Gyrus rectus R 0.87 ± 0.04 0.88 ± 0.03 2.58 .0127 .0358

Anterior orbital gyrus R 0.89 ± 0.04 0.90 ± 0.03 2.51 .0152 .0398

Lateral orbital gyrus L 0.88 ± 0.04 0.90 ± 0.03 5.04 5.53 � 10�6 .0002

Insula R 0.86 ± 0.04 0.87 ± 0.03 2.44 .0182 .0470

Middle cingulate and paracingulate gyri R 0.87 ± 0.04 0.89 ± 0.03 3.13 .0028 .0120

Hippocampus L 0.89 ± 0.03 0.92 ± 0.02 4.41 5.01 � 10�5 .0005

R 0.89 ± 0.03 0.92 ± 0.03 4.42 4.85 � 10�5 .0005

Cuneus L 0.85 ± 0.04 0.87 ± 0.03 2.70 .0092 .0285

Lingual gyrus L 0.87 ± 0.04 0.89 ± 0.04 3.03 .0037 .0152

R 0.88 ± 0.04 0.90 ± 0.04 2.62 .0115 .0339

Fusiform gyrus L 0.88 ± 0.03 0.90 ± 0.04 2.73 .0086 .0273

Postcentral gyrus L 0.91 ± 0.03 0.93 ± 0.02 4.04 .0002 .0012

R 0.91 ± 0.02 0.93 ± 0.02 3.60 .0007 .0037

Superior parietal gyrus R 0.87 ± 0.03 0.89 ± 0.03 2.60 .0071 .0239

Inferior parietal gyrus, excluding supramarginal, and angular

gyri

R 0.87 ± 0.04 0.89 ± 0.04 2.81 .0068 .0236

Supramarginal gyrus L 0.86 ± 0.04 0.88 ± 0.04 2.95 .0047 .0187

R 0.85 ± 0.04 0.87 ± 0.04 2.53 .0144 .0384

Angular gyrus L 0.89 ± 0.03 0.90 ± 0.03 2.61 .0118 .0339

R 0.89 ± 0.03 0.90 ± 0.03 2.91 .0053 .0200

Temporal pole: superior temporal gyrus R 0.89 ± 0.04 0.91 ± 0.03 3.27 .0019 .0084

Lobule III of cerebellar hemisphere L 0.86 ± 0.03 0.88 ± 0.04 4.44 4.45 � 10�5 .0005

R 0.87 ± 0.04 0.89 ± 0.04 3.94 .0002 .0015

Lobule IV, V of vermis 0.94 ± 0.02 0.92 ± 0.03 �2.65 .0105 .0320

Lobule VII of vermis 0.92 ± 0.03 0.90 ± 0.04 �4.55 3.10 � 10�5 .0004

Lobule VIII of vermis 0.92 ± 0.03 0.90 ± 0.04 �4.56 2.96 � 10�5 .0004

Lobule IX of vermis 0.94 ± 0.02 0.93 ± 0.02 �2.87 .0059 .0220

Lobule X of vermis 0.94 ± 0.02 0.92 ± 0.04 �4.30 7.16 � 10�5 .0006

Thalamus, anteroventral nucleus L 0.91 ± 0.03 0.89 ± 0.03 �4.71 1.80 � 10�5 .0004

R 0.92 ± 0.03 0.89 ± 0.04 �5.49 1.10 � 10�6 7.08 � 10�5

Lateral posterior L 0.90 ± 0.04 0.86 ± 0.04 �5.60 7.51 � 10�7 7.08 � 10�5

R 0.89 ± 0.03 0.87 ± 0.04 �4.30 7.14 � 10�5 .0006

Ventral anterior L 0.91 ± 0.03 0.88 ± 0.04 �3.60 .0007 .0037

R 0.91 ± 0.03 0.89 ± 0.04 �3.43 .0012 .0056
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4 | DISCUSSION

In the present study, we adopted a novel metric (temporal variability)

to explore the resting state dynamic FC alterations after SD. Our main

findings were as follows. (1) At the regional-level, compared with RW

session, sleep-deprived subjects showed widespread significant alter-

ations including increased temporal variability in several brain regions

such as visual cortices, primary sensorimotor cortices, FPN, DMN, and

so on, as well as decreased temporal variability was found in several

thalamus subregions after SD (Figure 5 and Table S2). (2) For the

intra-network temporal variability, increased intra-network temporal

variability in DMN were observed after SD. (3) Subjects exhibited

increased inter-network temporal variability in 15 subnetwork pairs

such as VN-DMN, FPN-DMN, and so on after SD (Figures 4 and 6).

(4) The inter-network temporal variability between VN and DMN

showed significant negative relationship with the 10% slow 1/RT of

PVT in SD state with the AAL3 atlas (Figure 7). These results suggest

that sleep-deprived subjects showed widespread functional network

abnormalities in term of temporal variability, and the abnormal tempo-

ral variability also correlated with behavior performance and thus

offering new insights in understanding SD.

For the RW state, we found that very low regional-level temporal

variability was showed in regions of VN, DMN, and VAN, such as

cuneus, calcarine, fusiform gyrus, medial frontal gyrus and insula,

which is consistent with the findings of Zhang et al. in healthy control

subjects (Zhang et al., 2016; Figure 2a and Figure S1a). However, high

regional-level temporal variability was showed in regions of SUB and

CN, which was not found by Zhang et al. These different findings may

result from the different brain templates. Zhang et al. calculate the

regional-level temporal variability in the 90-regions of AAL template

which exclude CN and take the thalamus as a whole ROI. We mea-

sured the regional-level temporal variability in 152 regions of AAL3

template and 268 regions of Shen atlas, which contain the CN and

divide the thalamus into several subregions.

TABLE 2 (Continued)

Brain region Hemisphere RW SD t value p value

p(FDR)

value

Ventral lateral L 0.92 ± 0.03 0.89 ± 0.04 �5.03 5.74 � 10�6 .0002

R 0.92 ± 0.03 0.89 ± 0.04 �4.34 6.35 � 10�5 .0006

Ventral posterolateral R 0.94 ± 0.03 0.92 ± 0.03 �3.88 .0003 .0017

Intralaminar L 0.89 ± 0.03 0.87 ± 0.04 �3.87 .0003 .0017

R 0.89 ± 0.03 0.86 ± 0.04 �4.36 5.97 � 10�5 .0006

Mediodorsal medial magnocellular L 0.95 ± 0.02 0.93 ± 0.03 �2.92 .0051 .0197

Mediodorsal lateral parvocellular L 0.94 ± 0.03 0.92 ± 0.03 �2.74 .0084 .0273

R 0.94 ± 0.02 0.92 ± 0.03 �2.61 .0118 .0339

Lateral geniculate L 0.92 ± 0.03 0.91 ± 0.03 �3.26 .0021 .0093

R 0.92 ± 0.02 0.90 ± 0.04 �4.14 .0001 .0009

Medial Geniculate L 0.91 ± 0.03 0.88 ± 0.04 �4.56 3.02 � 10�5 .0004

R 0.91 ± 0.03 0.88 ± 0.04 �4.64 2.23 � 10�5 .0004

Pulvinar anterior L 0.91 ± 0.03 0.88 ± 0.04 �5.43 1.40 � 10�6 7.08 � 10�5

R 0.92 ± 0.03 0.88 ± 0.04 �4.83 1.19 � 10�5 .0003

Pulvinar medial R 0.92 ± 0.03 0.90 ± 0.05 �3.98 .0002 .0014

Pulvinar inferior R 0.87 ± 0.03 0.88 ± 0.04 2.73 .0085 .0273

Note: Data are presented as mean ± standard deviation.

Abbreviations: L, left; R, right; RW, rested wakefulness; SD, sleep deprivation.

F IGURE 3 Significant changes in intra-network temporal
variability between RW and SD with the AAL3 atlas. Subjects showed
increased intra-network temporal variability in DMN and SMN and
decreased in SUB and CN after SD with false discovery rate (FDR)
correction (p <.05). CN, cerebellum; DMN, default mode network;
RW, rested wakefulness; SD, sleep deprivation; SMN, sensorimotor
network; SUB, subcortical network. ****p <.0001. ***p <.001. **p <.01
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After SD, increased regional-level temporal variability was found

in large-scale regions of functional network (VN, SMN, VAN, LN, FPN,

and DMN), which indicated that the dynamical FC series between

these regions and all other regions remained independent. Previous

neuroimaging studies have shown increased regional spontaneous

fluctuations in visual cortex and sensorimotor cortex after SD using

the amplitude of low-frequency fluctuations (ALFFs) (Cai et al., 2021),

percent amplitude of fluctuation (PerAF) (Zeng et al., 2020) and

regional homogeneity (ReHo) (Dai et al., 2012). Qi et al. (2021) have

explored the effect of SD on FC in insula, which is a core hub of VAN.

They find increased FC between the insula and prefrontal cortex and

ACC, and reduced FC between the insula and temporal, parietal, and

occipital regions after SD. For the LN, Li et al. have found that SD

reduces the FC between the hippocampus and SMA, SFG, and tempo-

ral regions, and increases the FC with thalamus, using a ROI-to-voxel

analysis (Chengyang et al., 2017). Furthermore, our previous study has

investigated the effect of SD on the FC of hippocampus subregions

using the masked ICA, and found differential effects of SD on the FC

in specific hippocampal regions (Zhao, Zhang, Zhu, et al., 2019). Previ-

ous studies have reported that cognitive decline after SD is associated

with imbalances in functional brain networks such as DMN, FPN, and

DAN (Wirsich et al., 2018). Abnormal FC within FPN and DMN after

SD have been showed in several rsfMRI studies (Dai et al., 2020; Yeo

et al., 2015). Jointly with our results, these findings suggested that

brain regions showed abnormal functional integration after SD.

An interesting finding was the significant decreased regional-

level temporal variability in several thalamus subregions after SD,

which suggested that the enhanced synchronization of FC time

series between thalamus and all other regions during the scanning

time. Thalamus is a vital region which seems to integrate neural

activity from widespread neocortical inputs and outputs (Postuma &

Dagher, 2006). The vast majority of studies show that thalamus

plays a key central role in the sleep–wake pathway and involved in a

variety of brain cognitive functions (Chee et al., 2008, 2010; Gent

et al., 2018; Krause et al., 2017). Thalamus has strong reciprocal

connections with the cerebral cortex which suggests that thalamus

modulates and facilitates communication in all areas of the cerebral

cortex (Shao et al., 2013). The higher synchronization in thalamus

may contribute to maintaining cognitive performance when arousal

is low after SD. This result is consistent with previous studies that

found increased thalamic activation during working memory task

and attention tasks (Ma et al., 2015), increased ALFF in the thalamus

(Cai et al., 2021), and increased voxel-mirrored homotopic connec-

tivity (Zhu et al., 2016) after SD. These results might represent a

compensatory mechanism to maintain cognitive performance

after SD.

TABLE 3 The significant changes of
inter-network temporal variability
between RW and SD with AAL3 atlas

Paired network RW SD t value p value p(FDR) value

VN-SMN 0.90 ± 0.03 0.92 ± 0.03 4.13 .0001 .0015

VN-DMN 0.92 ± 0.02 0.94 ± 0.02 3.32 .0016 .0065

SMN-DAN 0.89 ± 0.04 0.91 ± 0.05 2.79 .0073 .0164

SMN-VAN 0.82 ± 0.06 0.86 ± 0.06 3.58 .0007 .0038

SMN-FPN 0.91 ± 0.02 0.93 ± 0.03 3.45 .0011 .0049

SMN-DMN 0.90 ± 0.03 0.91 ± 0.02 3.24 .0021 .0074

SMN-CN 0.94 ± 0.02 0.95 ± 0.02 3.05 .0035 .0098

DAN-LN 0.93 ± 0.04 0.95 ± 0.04 2.37 .0215 .0408

DAN-FPN 0.84 ± 0.06 0.86 ± 0.05 3.20 .0023 .0075

DAN-DMN 0.87 ± 0.05 0.90 ± 0.04 3.00 .0041 .0106

DAN-CN 0.92 ± 0.04 0.94 ± 0.04 2.27 .0272 .0489

VAN-LN 0.90 ± 0.04 0.93 ± 0.04 4.68 1.98 � 10�5 .0007

VAN-FPN 0.86 ± 0.05 0.89 ± 0.05 3.60 .0007 .0038

VAN-DMN 0.85 ± 0.04 0.87 ± 0.04 3.05 .0036 .0098

VAN-CN 0.93 ± 0.03 0.95 ± 0.03 2.65 .0105 .0223

LN-FPN 0.91 ± 0.03 0.92 ± 0.03 2.88 .0057 .0138

LN-DMN 0.89 ± 0.02 0.91 ± 0.02 3.79 .0004 .0027

FPN-DMN 0.88 ± 0.03 0.90 ± 0.03 4.10 .0001 .0015

FPN-CN 0.94 ± 0.02 0.95 ± 0.02 2.39 .0205 .0408

DMN-CN 0.94 ± 0.01 0.95 ± 0.02 2.25 .0285 .0489

SUB-CN 0.95 ± 0.01 0.94 ± 0.02 �4.05 .0002 .0015

Note: Data are presented as mean ± standard deviation.

Abbreviations: CN, cerebellum; DAN, dorsal attention network; DMN, default mode network; FPN,

frontal-parietal network; LN, limbic network; RW, rested wakefulness; SD, sleep deprivation; SMN,

sensorimotor network; SUB, subcortical network; VAN, ventral attention network; VN, visual network.
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For the intra-network temporal variability, we found inconsistent

results between AAL3 atlas and Shen-268 template. Increased intra-

network temporal variability in DMN and SMN and decreased intra-

network temporal variability in SUB and CN were showed with the

AAL3 atlas after SD. However, for the Shen-268 functional atlas,

higher intra-network temporal variability in DAN, FPN, and DMN was

observed after SD. These inconsistent findings may result from the

different brain partitions. AAL3 atlas is an update on the AAL which is

widely used in neuroimaging research. AAL3 atlas subdivide several

brain which are of interest in many neuroimaging investigations into

small regions, such as ACC and thalamus (Rolls et al., 2020). The

Shen-268 functional atlas is an FC-based brain parcellation using

graph-theory-based approaches (Shen et al., 2013), which segments

the whole brain into more small regions. These two partitions have

given rise to different number and scope of brain regions in each net-

work when we assign the N ROIs into nine functional subnetworks.

For example, if one region in AAL3 distributes over two networks, we

assign this region into the networks in which the region has more

voxels. Therefore, the discrepant assigned networks may cause differ-

ent intra-network temporal variability, and then result in the inconsis-

tent findings.

For the inter-network temporal variability, we found that

15 inter-network temporal variability was significant changed after

SD using both the two templates, and that all of them were increased

after SD. These results implied an unstable FC architecture and more

dynamic interactions between subnetworks. Previous studies have

F IGURE 5 The overlapped brain regions showing significant
changes of regional-level temporal variability using the AAL3 template
and Shen-268 functional atlas after SD. The color scale represents
t value. The positive t values mean SD > RW; the negative t values
mean SD < RW. R, right. L, left. RW, rested wakefulness; SD, sleep
deprivation. This figure was constructed using the BrainNet Viewer
(http://www.nitrc.org/projects/bnv/; Xia et al., 2013)

F IGURE 6 The common subnetwork pairs showing significant
changes of inter-network temporal variability after SD using the AAL3

atlas and Shen-268 functional atlas. All of these subnetwork pairs
showed increased inter-network temporal variability after SD. CN,
cerebellum; DAN, dorsal attention network; DMN, default mode
network; FPN, frontal-parietal network; LN, limbic network; SD, sleep
deprivation; SMN, sensorimotor network; VAN, ventral attention
network; VN, visual network. These figures were constructed using
the BrainNet Viewer (http://www.nitrc.org/projects/bnv/; Xia
et al., 2013)

F IGURE 4 Significant changes in inter-network temporal

variability between RW and SD using the AAL3 atlas after FDR
correction (p <.05). The color scale represents t value. The positive
t values mean SD > RW; the negative t values mean SD < RW. Black
asterisks (*) indicate the subnetwork pairs showing significantly
increased inter-network temporal variability after SD compared with
RW. Red asterisks indicate the subnetwork pairs showing significantly
decreased inter-network temporal variability after SD compared with
RW. ****p <.0001. ***p <.001. **p <.01. *p <.05. CN, cerebellum;
DAN, dorsal attention network; DMN, default mode network; LN,
limbic network; FDR, false discovery rate; FPN, frontal-parietal
network; SD, sleep deprivation; SMN, sensorimotor network; SUB,
subcortical network; VAN, ventral attention network; VN, visual
network; RW, rested wakefulness
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reported the abnormal FC patterns among cortical networks after SD,

including the stronger FC between DAN and DMN, and decreased FC

between FPN and DMN (Dai et al., 2020; Yeo et al., 2015). Further-

more, recent studies have investigated the alterations of time-varying

fluctuations of FC after SD in global level using a sliding-window cor-

relations approach, and found that the mean dwell time and fraction

of two brain connectivity states were significantly altered after SD

(C. Li et al., 2020; Xu et al., 2018). Together with our observations,

these results suggested widespread aberrant dynamic brain network

reconfigurations after SD.

Taken together, we found that the regional-level temporal vari-

ability in several brain regions of DMN, the intra-network temporal

variability in DMN and the inter-network temporal variability between

DMN and other subnetworks such as VN, SMN, DAN, VAN, FPN, and

CN were increased after SD. Furthermore, the inter-network temporal

variability between VN and DMN was significant negative related

with the 10% slow 1/RT of PVT in SD state with the AAL3 atlas using

the stepwise regression analysis. These results suggested that sub-

jects who showed poor behavior performance after SD, would exhibit

greater asynchrony of the dynamical FC time series between VN and

DMN. Previous studies have reported hypoconnectivity within DMN

(De Havas et al., 2012) and between the right precuneus (a key

node of DMN) and the right middle frontal gyrus after SD

(B. Li et al., 2020). Moreover, the decreased precuneus FC is corre-

lated with the alertness decline after SD. Jointly with our present

observations, these results suggest that SD disrupts resting DMN

function. DMN is a very special brain network because it is often

more activated in the resting state than in the task state, is the neural

basis of the self and is related to maintaining the awake state. There-

fore, the increased temporal variability in DMN and the relationship

with PVT may indicate that DMN is a hub network in the neural foun-

dations of SD-related cognitive deficit.

Considering that SD may be a potential causal factor of several

neurological disorders and psychiatric disorders (Bishir et al., 2020;

Waite et al., 2020), we then discussed the relationship between the

significant changes of brain functional variability in SD and clinical dis-

eases. Dong et al. (2019) have examined the alterations of region-level

and network-level temporal variability in schizophrenia, and reported

increased regional-level temporal variability in thalamus and regions

of VN, SMN, DAN, and VAN, decreased in regions of FPN and DMN;

increased intra-network temporal variability in VN, SMN and thala-

mus, decreased in FPN and DMN; increased inter-network temporal

variability (VN-thalamus, SMN-VAN, and SMN-thalamus) and

decreased between FPN and DMN compared to healthy subjects.

Zhu, et al. (H. Zhu et al., 2019) have performed the similar analysis in

Parkinson's disease, and found increased regional-level temporal vari-

ability in putamen and regions of VN, SMN and CN; increased intra-

network temporal variability in VN, salience network and SUB;

increased inter-network temporal variability in several subnetwork

pairs associated with SMN, VN, SUB, and CN compared to normal

people. Furthermore, Gu et al. (2020) have reported decreased

regional-level temporal variability in several regions in VN, SMN, con-

trol network, and DMN in Alzheimer's disease. Combining these find-

ings with our results, we found aberrant temporal variability in VN

and SMN both after SD and in the above-mentioned diseases, which

indicated that the brain function in VN and SMN might be more vul-

nerable. We also found abnormal temporal variability in thalamus,

FPN and DMN both after SD and in schizophrenia. These results were

partially in agreement with the viewpoint that experimentally con-

trolled SD was a valuable experimental medicine model of schizophre-

nia (Ettinger & Kumari, 2015; Kumari & Ettinger, 2020). However, the

alteration of temporal variability in thalamus, FPN and DMN in sleep-

deprived subjects and schizophrenia patients was in the reverse direc-

tion. Although recent studies have found that SD-induced cognitive

impairments are similar to those in schizophrenia patients and

asserted that SD is a useful schizophrenia model (Kumari &

Ettinger, 2020), the reverse alterations indicated that the similarity

between the neural mechanisms of SD and schizophrenia should be

further studied.

The present study has several limitations that should be consid-

ered. Firstly, one night of SD can cause substantial deterioration of

multiple types of cognitive performance. We only examined the rela-

tionship between temporal variability metrics and PVT performance.

Further researches should investigate variability metrics and their

association with other cognitive performance to establish the relation-

ship between dynamic analysis and behavioral performance. Secondly,

F IGURE 7 The temporal variability is correlated with the
performance of PVT in SD state. The 10% slow 1/RT showed
significant negative correlation with the inter-network temporal
variability between VN and DMN in SD state after FDR correlation
with the AAL3 atlas (β = �.42, p = 5.57 � 10�4) following the
stepwise regression analysis. Considering the dimensional differences
among temporal variability and performance measures, the 10% slow
1/RT and the inter-network temporal variability between VN and

DMN were normalized. The green solid line indicated the linear
regression of the correlation. The green dotted line indicated the error
bars. DMN, default mode network; FDR, false discovery rate; PVT,
psychomotor vigilance test; RT, reaction time; SD, sleep deprivation;
VN, visual network
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compared the results of AAL3 atlas with Shen-268 functional, we did

not entirely replicate the findings from one atlas with the other which

were also found in H. Zhu et al. (2019). These findings suggested that

the temporal variability might be partly dependent on brain template.

Further researches should study the stability of the three temporal

variability measures using test retest data and more brain templates.

Thirdly, we did not objectively monitor the real-time sleep state dur-

ing resting-state scans. In further studies, electroencephalography

(EEG) monitoring is necessary to exclude the interference of

microsleeps. Forth, in this study, we did not straightforwardly explore

the relationship between SD and clinical diseases. Further studies

should explain this relationship by vertical comparison that long-term

follow up sleep-deprived subjects. Furthermore, we monitored sub-

jects' sleep before scanning using sleep diary. Further researches

should use actigraphy or EEG to verify subjects' compliance to a regu-

lar sleep schedule.

5 | CONCLUSIONS

In conclusion, the present study explored the effect of SD on dynamic

FC from temporal variability perspective. We identified increased

regional-level temporal variability in large-scale regions of functional

network (VN, SMN, VAN, LN, FPN, and DMN), and decreased

regional-level temporal variability in several thalamus subregions after

SD. Increased intra-network temporal variability in DMN was observed

after SD. Several subnetwork pairs also showed increased inter-

network temporal variability after SD. Furthermore, the inter-network

temporal variability between DMN and VN were negative correlated

with the performance of PVT. These findings suggested that partici-

pants showed widespread abnormal dynamic FC configuration which

provide new insights into the neural underpinnings of SD and advance

our understanding of the pathophysiology of clinical disorders.

ACKNOWLEDGMENT

We thank the subjects whose participation enabled this work.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on

request from the corresponding author. The data are not publicly

available due to privacy or ethical restrictions.

ORCID

Jinbo Sun https://orcid.org/0000-0001-6868-9164

Wei Qin https://orcid.org/0000-0003-4583-0406

REFERENCES

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., &

Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in

the resting state. Cerebral Cortex, 24, 663–676.

Andersson, J. L. R., Hutton, C., Ashburner, J., Turner, R., & Friston, K.

(2001). Modeling geometric deformations in EPI time series.

NeuroImage, 13, 903–919.
Arslan, S., Ktena, S. I., Makropoulos, A., Robinson, E. C., Rueckert, D., &

Parisot, S. (2018). Human brain mapping: A systematic comparison of

parcellation methods for the human cerebral cortex. NeuroImage, 170,

5–30.
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage,

26, 839–851.
Bandyopadhyay, A., & Sigua, N. L. (2019). What is sleep deprivation? Amer-

ican Journal of Respiratory Critical Care Medicine, 199, P11–P12.
Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D.,

Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, T. R., Kane, M. J., &

Silvia, P. J. (2018). Robust prediction of individual creative ability from

brain functional connectivity. Proceedings of the National Academy of

Sciences of the United States of America, 115, 1087–1092.
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based

noise correction method (CompCor) for BOLD and perfusion based

fMRI. NeuroImage, 37, 90–101.

Bertolero, M. A., Yeo, B. T., & D'Esposito, M. (2015). The modular and inte-

grative functional architecture of the human brain. Proceedings of the

National Academy of Sciences of the United States of America, 112,

E6798–E6807.
Bishir, M., Bhat, A., Essa, M. M., Ekpo, O., Ihunwo, A. O.,

Veeraraghavan, V. P., Mohan, S. K., Mahalakshmi, A. M., Ray, B.,

Tuladhar, S., Chang, S., Chidambaram, S. B., Sakharkar, M. K.,

Guillemin, G. J., Qoronfleh, M. W., & Ojcius, D. M. (2020). Sleep depri-

vation and neurological disorders. BioMed Research International, 2020,

5764017.

Bolton, T. A. W., Morgenroth, E., Preti, M. G., & Van De Ville, D. (2020).

Tapping into multi-faceted human behavior and psychopathology

using fMRI brain dynamics. Trends in Neurosciences, 43, 667–680.
Cai, Y., Mai, Z., Li, M., Zhou, X., & Ma, N. (2021). Altered frontal connectiv-

ity after sleep deprivation predicts sustained attentional impairment: A

resting-state functional magnetic resonance imaging study. Journal of

Sleep Research, 30, e13329.

Cassé-Perrot, C., Lanteaume, L., Deguil, J., Bordet, R., Auffret, A., Otten, L.,

Blin, O., Bartrés-Faz, D., & Micallef, J. (2016). Neurobehavioral and

cognitive changes induced by sleep deprivation in healthy volunteers.

CNS & Neurological Disorders - Drug Targets, 15, 777–801.

Chee, M. W., Tan, J. C., & Parimal, S. (2010). Sleep deprivation and its

effects on object-selective attention. Neuroimage, 49, 1903–1910.

Chee, M. W., Tan, J. C., Zheng, H., Parimal, S., Weissman, D. H.,

Zagorodnov, V., & Dinges, D. F. (2008). Lapsing during sleep depriva-

tion is associated with distributed changes in brain activation. The

Journal of Neuroscience, 28, 5519–5528.

Chee, M. W. L., & Zhou, J. (2019). Functional connectivity and the sleep-

deprived brain. Progress in Brain Research, 246, 159–176.

Chengyang, L., Daqing, H., Jianlin, Q., Haisheng, C., Qingqing, M., Jin, W.,

Jiajia, L., Enmao, Y., Yongcong, S., & Xi, Z. (2017). Short-term memory

deficits correlate with hippocampal-thalamic functional connectivity

alterations following acute sleep restriction. Brain Imaging Behavior,

11, 954–963.

Cousins, J. N., & Fernández, G. (2019). The impact of sleep deprivation on

declarative memory. Progress in Brain Research, 246, 27–53.

Dai, C., Zhang, Y., Cai, X., Peng, Z., Zhang, L., Shao, Y., & Wang, C. (2020).

Effects of sleep deprivation on working memory: Change in functional

connectivity between the dorsal attention, default mode, and fronto-

parietal networks. Frontiers in Human Neuroscience, 14, 360.

Dai, X. J., Gong, H. H., Wang, Y. X., Zhou, F. Q., Min, Y. J., Zhao, F.,

Wang, S. Y., Liu, B. X., & Xiao, X. Z. (2012). Gender differences in brain

regional homogeneity of healthy subjects after normal sleep and after

sleep deprivation: A resting-state fMRI study. Sleep Medicine, 13,

720–727.

SUN ET AL. 3837

 10970193, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.25886, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-6868-9164
https://orcid.org/0000-0001-6868-9164
https://orcid.org/0000-0003-4583-0406
https://orcid.org/0000-0003-4583-0406


De Havas, J. A., Parimal, S., Soon, C. S., & Chee, M. W. (2012). Sleep depri-

vation reduces default mode network connectivity and anti-correlation

during rest and task performance. NeuroImage, 59, 1745–1751.
Deng, Y., Liu, K., Cheng, D., Zhang, J., Chen, H., Chen, B., Li, Y., Wang, W.,

Kong, Y., & Wen, G. (2019). Ventral and dorsal visual pathways exhibit

abnormalities of static and dynamic connectivities, respectively, in

patients with schizophrenia. Schizophrenia Research, 206, 103–110.
Dong, D., Duan, M., Wang, Y., Zhang, X., Jia, X., Li, Y., Xin, F., Yao, D., &

Luo, C. (2019). Reconfiguration of dynamic functional connectivity in

sensory and perceptual system in schizophrenia. Cerebral Cortex, 29,

3577–3589.
Ettinger, U., & Kumari, V. (2015). Lancet Psychiatry. Effects of sleep depriva-

tion on inhibitory biomarkers of schizophrenia: Implications for drug devel-

opment., 2, 1028–1035.
Gent, T. C., Bassetti, C., & Adamantidis, A. R. (2018). Sleep-wake control

and the thalamus. Current Opinion in Neurobiology, 52, 188–197.
Gu, Y., Lin, Y., Huang, L., Ma, J., Zhang, J., Xiao, Y., & Dai, Z. (2020). Abnor-

mal dynamic functional connectivity in Alzheimer's disease. CNS Neu-

roscience & Therapeutics, 26, 962–971.
Henson, R. N. A., Buechel, C., Josephs, O., & Friston, K. J. (1999). The

slice-timing problem in event-related fMRI. NeuroImage, 9, 125.

Horne, J. A., & Ostberg, O. (1976). A self-assessment questionnaire to

determine morningness-eveningness in human circadian rhythms.

International Journal of Chronobiology, 4, 97–110.
Hou, Z., Kong, Y., He, X., Yin, Y., Zhang, Y., & Yuan, Y. (2018). Increased

temporal variability of striatum region facilitating the early antide-

pressant response in patients with major depressive disorder. Pro-

gress in Neuro-Psychopharmacology & Biological Psychiatry, 85,

39–45.
Hu, J., Du, J., Xu, Q., Yang, F., Zeng, F., Weng, Y., Dai, X. J., Qi, R., Liu, X.,

Lu, G., & Zhang, Z. (2018). Dynamic network analysis reveals altered

temporal variability in brain regions after stroke: A longitudinal

resting-state fMRI study. Neural Plasticity, 2018, 9394156.

Hudson, A. N., Van Dongen, H. P. A., & Honn, K. A. (2020). Sleep deprivation,

vigilant attention, and brain function: A review. Neuropsychopharmacology,

45, 21–30.
Itani, O., Jike, M., Watanabe, N., & Kaneita, Y. (2017). Short sleep duration

and health outcomes: A systematic review, meta-analysis, and meta-

regression. Sleep Medicine, 32, 246–256.
Krause, A. J., Simon, E. B., Mander, B. A., Greer, S. M., Saletin, J. M.,

Goldstein-Piekarski, A. N., & Walker, M. P. (2017). The sleep-deprived

human brain. Nature Reviews Neuroscience, 18, 404–418.
Kucyi, A., & Davis, K. D. (2014). Dynamic functional connectivity of the

default mode network tracks daydreaming. NeuroImage, 100,

471–480.
Kumari, V., & Ettinger, U. (2020). Controlled sleep deprivation as an experi-

mental medicine model of schizophrenia: An update. Schizophrenia

Research, 221, 4–11.
Li, B., Zhang, L., Zhang, Y., Chen, Y., Peng, J., Shao, Y., & Zhang, X. (2020).

Decreased functional connectivity between the right Precuneus and

middle frontal gyrus is related to attentional decline following acute

sleep deprivation. Frontiers in Neuroscience, 14, 530257.

Li, B. Z., Cao, Y., Zhang, Y., Chen, Y., Gao, Y. H., Peng, J. X., Shao, Y. C., &

Zhang, X. (2021). Relation of decreased functional connectivity

between left thalamus and left inferior frontal gyrus to emotion

changes following acute sleep deprivation. Frontiers in Neurology, 12,

642411.

Li, C., Fronczek-Poncelet, J., Lange, D., Hennecke, E., Kroll, T., Matusch, A.,

Aeschbach, D., Bauer, A., Elmenhorst, E. M., & Elmenhorst, D. (2020).

Impact of acute sleep deprivation on dynamic functional connectivity

states. Human Brain Mapping, 41, 994–1005.
Lim, J., & Dinges, D. F. (2008). Sleep deprivation and vigilant attention.

Annals of the New York Academy of Sciences, 1129, 305–322.
Liu, J., Liao, X., Xia, M., & He, Y. (2018). Chronnectome fingerprinting:

Identifying individuals and predicting higher cognitive functions using

dynamic brain connectivity patterns. Human Brain Mapping, 39,

902–915.
Long, Y., Liu, Z., Chan, C. K. Y., Wu, G., Xue, Z., Pan, Y., Chen, X.,

Huang, X., Li, D., & Pu, W. (2020). Altered temporal variability of local

and large-scale resting-state brain functional connectivity patterns in

schizophrenia and bipolar disorder. Frontiers in Psychiatry, 11, 422.

Long, Z., Zhao, J., Chen, D., & Lei, X. (2021). Age-related abnormalities of

thalamic shape and dynamic functional connectivity after three hours

of sleep restriction. PeerJ, 9, e10751.

Ma, N., Dinges, D. F., Basner, M., & Rao, H. (2015). How acute total sleep

loss affects the attending brain: A meta-analysis of neuroimaging stud-

ies. Sleep, 38, 233–240.
Mander, B. A., Winer, J. R., & Walker, M. P. (2017). Sleep and Human

Aging. Neuron, 94, 19–36.
Porras-Segovia, A., Pérez-Rodríguez, M. M., L�opez-Esteban, P., Courtet, P.,

Barrig�on, M. M. L., L�opez-Castromán, J., Cervilla, J. A., & Baca-

García, E. (2019). Contribution of sleep deprivation to suicidal behav-

iour: A systematic review. Sleep Medicine Reviews, 44, 37–47.
Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity

based on a meta-analysis of 126 positron emission tomography and

functional magnetic resonance imaging publications. Cerebral Cortex,

16, 1508–1521.
Qi, J., Li, B. Z., Zhang, Y., Pan, B., Gao, Y. H., Zhan, H., Liu, Y., Shao, Y. C., &

Zhang, X. (2021). Altered insula-prefrontal functional connectivity cor-

relates to decreased vigilant attention after total sleep deprivation.

Sleep Medicine, 84, 187–194.
Reeve, S., Sheaves, B., & Freeman, D. (2015). The role of sleep dysfunction

in the occurrence of delusions and hallucinations: A systematic review.

Clinical Psychology Review, 42, 96–115.
Rolls, E. T., Cheng, W., & Feng, J. (2021). Brain dynamics: The temporal

variability of connectivity, and differences in schizophrenia and

ADHD. Translational Psychiatry, 11, 70.

Rolls, E. T., Huang, C. C., Lin, C. P., Feng, J., & Joliot, M. (2020). Automated

anatomical labelling atlas 3. NeuroImage, 206, 116189.

Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X.,

Constable, R. T., & Chun, M. M. (2016). A neuromarker of sustained

attention from whole-brain functional connectivity. Nature Neurosci-

ence, 19, 165–171.
Shao, Y., Wang, L., Ye, E., Jin, X., Ni, W., Yang, Y., Wen, B., Hu, D., &

Yang, Z. (2013). Decreased thalamocortical functional connectivity

after 36 hours of total sleep deprivation: Evidence from resting state

FMRI. PLoS One, 8, e78830.

Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T. (2013).

Groupwise whole-brain parcellation from resting-state fMRI data for

network node identification. NeuroImage, 82, 403–415.
Sun, J., Liu, Z., Rolls, E. T., Chen, Q., Yao, Y., Yang, W., Wei, D., Zhang, Q.,

Zhang, J., Feng, J., & Qiu, J. (2019). Verbal creativity correlates with

the temporal variability of brain networks during the resting state.

Cerebral Cortex, 29, 1047–1058.
Sun, J., Zhang, Q., Li, Y., Meng, J., Chen, Q., Yang, W., Wei, D., & Qiu, J.

(2020). Plasticity of the resting-state brain: Static and dynamic func-

tional connectivity change induced by divergent thinking training.

Brain Imaging and Behavior, 14, 1498–1506.
Sun, J., Zhao, R., Yang, X., Deng, H., Zhu, Y., Chen, Y., Yuan, K., Xi, Y., Yin, H., &

Qin, W. (2020). Alteration of brain gray matter density after 24 h of sleep

deprivation in healthy adults. Frontiers in Neuroscience, 14, 754.

Tempesta, D., Socci, V., De Gennaro, L., & Ferrara, M. (2018). Sleep and

emotional processing. Sleep Medicine Reviews, 40, 183–195.
Tobaldini, E., Costantino, G., Solbiati, M., Cogliati, C., Kara, T., Nobili, L., &

Montano, N. (2017). Sleep, sleep deprivation, autonomic nervous sys-

tem and cardiovascular diseases. Neuroscience Biobehavioral Reviews,

74, 321–329.
Van Craenenbroeck, E. M. (2019). Sleep deprivation and increased cardio-

vascular risk: A wake-up call! European Journal of Preventive Cardiology,

28, 187–188.

3838 SUN ET AL.

 10970193, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.25886, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Van Dongen, H. P. A., Greg, M., Mullington, J. M., & Dinges, D. F.

(2003). The cumulative cost of additional wakefulness: Dose-

response effects on neurobehavioral functions and sleep physiology

from chronic sleep restriction and Total sleep deprivation. Sleep:2,

26, 117–126.
Waite, F., Sheaves, B., Isham, L., Reeve, S., & Freeman, D. (2020). Sleep

and schizophrenia: From epiphenomenon to treatable causal target.

Schizophrenia Research, 221, 44–56.
Wen, X., Wang, R., Yin, W., Lin, W., Zhang, H., & Shen, D. (2020). Develop-

ment of dynamic functional architecture during early infancy. Cerebral

Cortex, 30, 5626–5638.
Wirsich, J., Rey, M., Guye, M., Bénar, C., Lanteaume, L., Ridley, B.,

Confort-Gouny, S., Cassé-Perrot, C., Soulier, E., Viout, P., Rouby, F.,

Lefebvre, M.-N., Audebert, C., Truillet, R., Jouve, E., Payoux, P.,

Bartrés-Faz, D., Bordet, R., Richardson, J. C., … Pharmacog Consor-

tium. (2018). Brain networks are independently modulated by

donepezil, sleep, and sleep deprivation. Brain Topography, 31,

380–391.
Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualiza-

tion tool for human brain connectomics. PLoS One, 8, e68910.

Xu, H., Shen, H., Wang, L., Zhong, Q., Lei, Y., Yang, L., Zeng, L. L., Zhou, Z.,

Hu, D., & Yang, Z. (2018). Impact of 36 h of total sleep deprivation on

resting-state dynamic functional connectivity. Brain Research, 1688,

22–32.
Yang, F. N., Xu, S., Chai, Y., Basner, M., Dinges, D. F., & Rao, H. (2018).

Sleep deprivation enhances inter-stimulus interval effect on vigilant

attention performance. Sleep, 41, zsy189.

Yeo, B. T., Krienen, F. M., Chee, M. W., & Buckner, R. L. (2014). Estimates

of segregation and overlap of functional connectivity networks in the

human cerebral cortex. NeuroImage, 88, 212–227.

Yeo, B. T., Tandi, J., & Chee, M. W. (2015). Functional connectivity during

rested wakefulness predicts vulnerability to sleep deprivation.

NeuroImage, 111, 147–158.

Yue, J. L., Li, P., Shi, L., Lin, X., Sun, H. Q., & Lu, L. (2018). Enhanced tempo-

ral variability of amygdala-frontal functional connectivity in patients

with schizophrenia. NeuroImage Clinical, 18, 527–532.

Zeng, B., Zhou, J., Li, Z., Zhang, H., Li, Z., & Yu, P. (2020). Altered percent

amplitude of fluctuation in healthy subjects after 36 h sleep depriva-

tion. Frontiers in Neurology, 11, 565025.

Zhang, J., Cheng, W., Liu, Z., Zhang, K., Lei, X., Yao, Y., Becker, B., Liu, Y.,

Kendrick, K. M., Lu, G., & Feng, J. (2016). Neural, electrophysiological

and anatomical basis of brain-network variability and its characteristic

changes in mental disorders. Brain, 139, 2307–2321.

Zhang, Y., Dai, C., Shao, Y., Peng, J., Yang, Y., & Hou, Y. (2021). Decreased

functional connectivity in the reward network and its relationship with

negative emotional experience after total sleep deprivation. Frontiers

in Neurology, 12, 641810.

Zhao, R., Zhang, X., Fei, N., Zhu, Y., Sun, J., Liu, P., Yang, X., & Qin, W.

(2019). Decreased cortical and subcortical response to inhibition con-

trol after sleep deprivation. Brain Imaging Behavior, 13, 638–650.
Zhao, R., Zhang, X., Zhu, Y., Fei, N., Sun, J., Liu, P., Yang, X., & Qin, W.

(2018). Prediction of the effect of sleep deprivation on response inhi-

bition via machine learning on structural magnetic resonance imaging

data. Frontiers in Human Neuroscience, 12, 276.

Zhao, R., Zhang, X., Zhu, Y., Fei, N., Sun, J., Liu, P., Yang, X., & Qin, W.

(2019). Disrupted resting-state functional connectivity in hippocampal

subregions after sleep deprivation. Neuroscience, 398, 37–54.
Zhu, H., Huang, J., Deng, L., He, N., Cheng, L., Shu, P., Yan, F., Tong, S.,

Sun, J., & Ling, H. (2019). Abnormal dynamic functional connectivity

associated with subcortical networks in Parkinson's disease: A tempo-

ral variability perspective. Frontiers in Neuroscience, 13, 80.

Zhu, Y., Feng, Z., Xu, J., Fu, C., Sun, J., Yang, X., Shi, D., & Qin, W. (2016).

Increased interhemispheric resting-state functional connectivity after

sleep deprivation: A resting-state fMRI study. Brain Imaging Behavior,

10, 911–919.
Zhu, Y., Wang, L., Xi, Y., Dai, T., Fei, N., Liu, L., Xu, Z., Yang, X., Fu, C.,

Sun, J., Xu, J., Shi, D., Tian, J., Yin, H., & Qin, W. (2017). White matter

microstructural properties are related to inter-individual differences in

cognitive instability after sleep deprivation. Neuroscience, 365,

206–216.
Zhu, Y., Xi, Y., Fei, N., Liu, Y., Zhang, X., Liu, L., Xu, Z., Sun, J., Yang, X.,

Yin, H., Tian, J., & Qin, W. (2018). Dynamics of cerebral responses to

sustained attention performance during one night of sleep deprivation.

Journal of Sleep Research, 27, 184–196.
Zhu, Y., Xi, Y., Sun, J., Guo, F., Xu, Y., Fei, N., Zhang, X., Yang, X., Yin, H., &

Qin, W. (2019). Neural correlates of dynamic changes in working

memory performance during one night of sleep deprivation. Human

Brain Mapping, 40, 3265–3278.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Sun, J., Zhao, R., He, Z., Chang, M.,

Wang, F., Wei, W., Zhang, X., Zhu, Y., Xi, Y., Yang, X., & Qin,

W. (2022). Abnormal dynamic functional connectivity after

sleep deprivation from temporal variability perspective.

Human Brain Mapping, 43(12), 3824–3839. https://doi.org/10.

1002/hbm.25886

SUN ET AL. 3839

 10970193, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.25886, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/hbm.25886
https://doi.org/10.1002/hbm.25886

	Abnormal dynamic functional connectivity after sleep deprivation from temporal variability perspective
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Subjects
	2.2  Experimental procedure
	2.3  Psychomotor vigilance test
	2.4  MRI data acquisition
	2.5  Data analysis
	2.5.1  Preprocessing
	2.5.2  Temporal variability of regional-level FC architecture
	2.5.3  Temporal variability of network-level FC architecture

	2.6  Validation analysis
	2.7  Statistical analysis

	3  RESULTS
	3.1  Behavioral results
	3.2  Temporal variability of regional-level FC architecture
	3.3  Temporal variability of network-level FC architecture
	3.4  Validation results
	3.5  Correlations between temporal variability and clinical variables

	4  DISCUSSION
	5  CONCLUSIONS
	ACKNOWLEDGMENT
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


