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Current methods for early diagnosis of Alzheimer’s Dementia include structured

questionnaires, structured interviews, and various cognitive tests. Language difficulties

are a major problem in dementia as linguistic skills break down. Current methods do

not provide robust tools to capture the true nature of language deficits in spontaneous

speech. Early detection of Alzheimer’s Dementia (AD) from spontaneous speech

overcomes the limitations of earlier approaches as it is less time consuming, can

be done at home, and is relatively inexpensive. In this work, we re-implement the

existing NLP methods, which used CNN-LSTM architectures and targeted features from

conversational transcripts. Our work sheds light on why the accuracy of these models

drops to 72.92% on the ADReSS dataset, whereas, they gave state of the art results on

the DementiaBank dataset. Further, we build upon these language input-based recurrent

neural networks by devising an end-to-end deep learning-based solution that performs

a binary classification of Alzheimer’s Dementia from the spontaneous speech of the

patients. We utilize the ADReSS dataset for all our implementations and explore the deep

learning-based methods of combining acoustic features into a common vector using

recurrent units. Our approach of combining acoustic features using the Speech-GRU

improves the accuracy by 2% in comparison to acoustic baselines.When further enriched

by targeted features, the Speech-GRU performs better than acoustic baselines by

6.25%. We propose a bi-modal approach for AD classification and discuss the merits

and opportunities of our approach.

Keywords: affective computing, cognitive decline detection, natural language processing, deep learning,

computational paralinguistics

1. INTRODUCTION

Alzheimer’s disease and related dementia disorders constitute a significant cause of disability and
dependency among older adults worldwide and are among the costliest diseases in society. By
2030, it is estimated that the global cost of dementia could grow to US$ 2 trillion, which could
overwhelm health and social care systems (Wimo et al., 2017). Alzheimer’s Dementia (AD) is an
irreversible brain disease that results in a gradual decrease in an individual’s cognitive functioning.
The main risk factor for AD is age, and therefore its highest incidence is amongst the elderly.
However, if detected early, we can slow down or halt the degeneration with appropriate medication.
Current methods of diagnosis usually involve lengthy medical evaluations, including lengthy
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questionnaires. There is an urgency for cost-efficient and scalable
methods that can identify AD from an early stage. Thus,
researchers worldwide are trying to find non-invasive early
detection methods and treatments for these disorders.

Early symptoms of dementia are characterized by difficulty
in word-finding, impaired reasoning, changes in language and
speech, etc. This makes current research methodologies in
speech and language processing suitable to be applied for early
detection of cognitive impairment and AD. AD detection from
spontaneous speech has been approached using speech input-
based methods, language-based (text input-based) methods, and
multi-modal approaches. Deep learning is a part of a broader
family of machine learning methods based on artificial neural
networks with representation learning. In prior work using
language-based methods, we observe that deep learning based
approaches (Orimaye et al., 2016; Karlekar et al., 2018; Di Palo
and Parde, 2019; Kong et al., 2019) outperform pre-deep learning
approaches (Orimaye et al., 2014; Fraser et al., 2016) on the
DementiaBank dataset (Becker et al., 1994). Motivated by the
shortcomings of manual feature-engineering for such a diverse
and complex task, Karlekar et al. (2018) propose deep learning
models—Convolutional neural network (CNN), Long short-
term memory network (LSTM), and CNN-LSTM, to detect AD
using just the conversational transcripts with minimal feature
engineering using just word embeddings and parts-of-speech
(POS) tags. Word embedding is any set of language modeling
where words from a vocabulary are mapped to a vector of real
numbers. POS-tagging is assigning a parts-of-speech tag to every
word in the corpus, depending on it’s context and definition. It
is a method of enriching the feature processing stream. CNN
layers are locally connected layers and pick up features in shorter
time windows, where as LSTM layer is a type of recurrent neural
network (RNN) layer which learns features and remembers
features over longer timesteps. Recurrent layer or recurrent unit
is any layer whose output not only depends on the input at
the current timestep but also it’s hidden state in the previous
timestep. Thus, a CNN-LSTM architecture uses convolutional
layers early on for feature extraction and then LSTM layers to
learn patterns in a sequence. Di Palo and Parde (2019) further
enrich the deep neural network models by Karlekar et al. (2018)
by using targetted psycholinguistic, sentiment, and demographic
features and also use class weight correction to handle class
imbalance in the DementiaBank dataset (Becker et al., 1994). We
build upon the work by Karlekar et al. (2018) and Di Palo and
Parde (2019) and extend to multi-modal inputs and address the
challenges that come with effectively combining features from
multiple modalities for AD detection.

Amongst speech input-based methods, prior work has been
more focused on using handcrafted acoustic features (Beltrami
et al., 2016; Ambrosini et al., 2019) such as pitch, unvoiced
duration, shimmer, pause duration, speech rate, or using feature
banks. Haider et al. (2019) and Luz et al. (2020) use feature
banks such as such as emobase, eGeMAPS (Eyben et al.,
2015), ComParE (Eyben et al., 2013), and MRCG functionals
(Chen et al., 2014) for feature extraction from speech segments.
These features are not necessarily designed specifically for AD
speech but capture various paralinguistic features relevant to

AD speech. Effectively combining these features from various
speech segments is an ongoing research problem that our work
addresses. Previously, Haider et al. (2019) address it by proposing
a new Active Data Representation method (ADR) to combine
the features from a variable number of recordings into a fixed
dimensional feature vector. They get the best results using the
eGeMAPS feature set and even better results using a hard fusion
of the feature sets. However, these methods fail to capture the
temporal dynamics across the segments to the full extent. In
this work, by using a recurrent unit, we combine the speech
segment features in a fixed dimension vector while learning the
features across the time span of the participant’s conversation
session. Chien et al. (2019) implement a bidirectional RNN
on speech features extracted using a feature bank and propose
an end-to-end method for automatic assessment of cognitive
decline, but are restricted to speech input and do not extend
to multi-modal inputs. Amongst multi-modal approaches using
spontaneous speech, Zargarbashi and Babaali (2019) propose
a model that extracts a perplexity score from the transcripts
using an N-gram model extract I-vectors and X-vectors from
the speech input. The concatenation of these feature vectors is
then passed on to an SVM for AD classification. X-vectors and
I-vectors are speech embeddings used in speaker recognition
tasks, especially with speech segments of variable lengths. They
use these embeddings even though AD diagnosis and speaker
recognition are different tasks, as the voice biometrics and
Alzheimer’s signs are similar to an extent as both need to
extract some specific patterns from captured signal contaminated
with variations from various irrelevant sources. This prior work
mentioned is relevant to our work because our work focuses
on some of the open research problems, such as—How to
capture complex patterns and temporal relations in speech and
language modalities? And more importantly are there temporal
patterns in the acoustic features extracted using the feature sets
mentioned above, which can prove to be useful early detection
of AD.

The majority of the previous results have been benchmarked
on subsets from the Cookie theft task from the DementiaBank
dataset (Becker et al., 1994) except the work by Chien et al.
(2019) where they use NTUH Dataset which is a combination
of multiple datasets such as Mandarin_Lu dataset (MacWhinney
et al., 2011), NTU dataset (Chien et al., 2019), and 20 more
participants from independently collected data. Dementia Bank
dataset includes multiple transcripts from the same participant
and has a significant imbalance in the age and gender distribution
of the participants. ADReSS dataset (Luz et al., 2020) tries to
mitigate these issues, and thus we use the ADReSS dataset in
our work.

In this work, we address this by proposing a network that
can train on speech segments using recurrent units and can be
integrated with existing language-based deep learning models,
which can also be enriched with targeted features.

Our contributions are as follows:

1. We re-implement the prior work by Karlekar et al. (2018) and
Di Palo and Parde (2019) and benchmark the results on the
new shared standardized ADReSS dataset.
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2. We explore the deep learning-based methods of combining
acoustic features into a common vector using recurrent units
and propose a bi-modal approach for both the tasks.

3. We discuss the possibilities of further enriching the acoustic
processing stream using features specific to AD speech and
propose a bi-modal model based on concatenation of latent
outputs of acoustic and language based models.

2. MATERIALS AND METHODS

2.1. ADReSS Dataset
Most earlier methods use a subset of the DementiaBank (Becker
et al., 1994). Cookie theft task provides the largest source of
unstructured speech and text data and thus has been used in
Karlekar et al. (2018), Di Palo and Parde (2019), and Kong et al.
(2019). The subset used in Di Palo and Parde (2019) includes
multiple transcripts from the same participants, thus comprises
a total of 243 transcripts from 104 non-AD participants and
1,049 transcripts from 208ADparticipants. It also has imbalances
in age and gender distribution. ADReSS Challenge dataset (Luz
et al., 2020) tries to mitigate these issues. ADReSS Challenge
dataset includes one full-wave audio (one session) per subject
with accompanying conversational transcript. It also has a
balanced distribution in terms of classes, age, and gender. As
a result, we notice more than ten times reduction in dataset
size in terms of the number of transcripts or full-wave session
audios when compared to the dataset used in Karlekar et al.
(2018), Di Palo and Parde (2019), and Kong et al. (2019). This
is important to us since deep learning methods proposed in the
previously mentioned approaches require larger amounts of data,
reduction in data size, and removal of imbalance in the dataset
can significantly affect replicability of results. ADReSS Challenge
dataset includes data from 82 AD and 82 non-AD participants,
of which 54 AD and 54 non-AD participants are included in the
train set. The full-wave audio from each participant is further
divided into an average of 24.86 (standard deviation sd =

12.84) normalized speech segments per participant using voice
activity detection.

2.2. Classification Models and Approach
In this section, we’ll briefly explain the language-based (transcript
text input), acoustic feature-based and bi-modal models that we
propose and progressively build on.

2.2.1. Language-Based Models

We first implement a CNN-LSTM model (Model A0) as
proposed in Karlekar et al. (2018), which takes word embeddings
(GloVe) as well as POS-tags as input, through two input streams,
finally concatenated in a dense layer before passing it to the
output layer. A dropout rate of 0.5 was used between the CNN
and LSTM layer to prevent overfitting. We then implement the
Model A1, as proposed by Di Palo and Parde (2019). It improves
upon Model A0 by replacing the unidirectional LSTM in Model
A0 with bidirectional LSTM layers with the insertion of attention
mechanism on the hidden states of the LSTM and by including
a dense neural network at the end of the LSTM layer to include
targeted psycholinguistic, sentiment, and demographic features

as described in Di Palo and Parde (2019). These targeted features
are further explained in section 2.3. For models A0 and A1, we
don’t need to implement class weighting as done in Di Palo and
Parde (2019) as ADReSS dataset doesn’t have a class imbalance.
Schematic representation of Models A0 and A1 can be found
in Figure 1i.

2.2.2. Acoustic-Feature Based Models

Similar to how previous models have proposed a recurrent
unit based language processing stream which is later further
enriched with targeted features, we propose a similar approach
of using speech input stream and taking acoustic features into
account, which is later enriched with relevant, targeted features.
These acoustic features are extracted from audio segments. The
Model B0 is comprised of a Speech-GRU, which is defined by
a recurrent layer (GRU) which takes in audio segment features
per from each speech segment while maintaining the temporal
structure across segments as in the full-wave audio session. The
goal of this GRU unit is to combine the features from the
speech segments into a common vector while maintaining the
temporal structure across segments. A schematic of the GRU cell
is included in Figure 1iii. We also briefly experimented with the
Model B0, by replacing the unidirectional GRUwith bidirectional
GRU layers with the insertion of attention mechanism on the
hidden states of the GRU. But, since they do not improve the
performance significantly, we continue with the Speech-GRU in
our further study. In Model B1, we progressively build upon
Model B0, by enriching the speech input processing stream
with various AD specific features extracted from lengths of
speech segments provided by voice activity detection (VAD) and
disfluency and interventional features as well as idea density-
based features from complete transcripts and full-wave audio.
Schematic representation of Models B0 and B1 can be found
in Figure 1ii.

2.2.3. Bi-Modal Model

The Model that we propose is a direct combination of Model A1
andModel B1. The dense outputs from these two input streams is
then concatenated and then connected to the output layer using
dense connections. We use all targeted features from both the
models in Model C. Schematic representation of Model C can be
found in Figure 1iv.

2.3. Feature Extraction
In this subsection, we’ll explain the targeted features used
in Model A1, the acoustic feature sets used in Model B0,
B1, C and the targeted features used in Model B1 and
C. The targeted features used in Model A1, are token-level
psycholinguistic features, token-level sentiment features and
demographic features as described in Di Palo and Parde
(2019). Each of the token-level features was averaged across
all tokens in the instance, allowing us to obtain a participant-
level feature vector to be coupled with the participant-level
demographic features. The psycholinguistic features include (1)
Age of acquisition of words which is the age at which a particular
word is usually learned by individuals, (2) Concreteness which
is a measure of word’s tangibility, (3) Familiarity which is a
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FIGURE 1 | (i) Language-based models, (ii) speech-based models, (iii) GRU cell schematic, and (iv) bi-modal model for AD detection.

measure of how often one might expect to encounter a word,
(4) Imageability which is a measure of how easily a word can
be visualized. Psycholinguistic features were obtained from an
open-source repository1 based on the work of Fraser et al.
(2016). Sentiment scores were based around measuring the
word’s sentiment polarity and were obtained using the NLTK’s
sentiment library. The demographic features include participants
age at the time of the visit and gender.

We compare the use of different feature banks for acoustic
feature extraction, namely emobase, eGeMAPS (Eyben et al.,
2015), and ComParE (Eyben et al., 2013) on Model B0 and then
use the best performing feature set in Model B1 and C. These
acoustic feature sets are described as follows.

emobase: This feature set (Schuller et al., 2010) contains
the mel-frequency cepstral coefficients (MFCC) voice quality,
fundamental frequency (F0), F0 envelope, line spectral pairs
(LSP), and intensity features with their first and second-order
derivatives. Several statistical functions are applied to these
features, resulting in a total of 1,582 features for every speech
segment. Haider et al. (2019) and Luz et al. (2020) use an older

1https://github.com/vmasrani/dementia_classifier.

emobase feature set of 988 features, whereas we use the newer
emobase2010 set from the INTERSPEECH 2010 Paralinguistics
Challenge (Schuller et al., 2010).

eGeMAPS: The eGeMAPS feature set (Eyben et al., 2015)
is a result of attempts to reduce other feature sets to a basic
set of 88 features with theoretical significance (Eyben et al.,
2015). The eGeMAPS features thus have the potential to detect
physiological changes in voice production. It contains the F0
semitone, loudness, spectral flux, MFCC, jitter, shimmer, F1, F2,
F3, alpha ratio, Hammarberg index, and slope V0 features, as well
as their most common statistical functional.

ComParE: The ComParE feature set (Eyben et al., 2013)
includes energy, spectral, MFCC, and voicing related low-
level descriptors (LLDs). LLDs include logarithmic harmonic-
to-noise ratio, voice quality features, Viterbi smoothing for F0,
spectral harmonicity, and psycho-acoustic spectral sharpness.
Statistical functionals are also computed, bringing the total to
6,373 features.

We used OpenSMILE2 library for feature extraction using
the emobase, eGeMAPS, ComParE feature bank. We performed

2https://www.audeering.com/opensmile/.
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a Pearson correlation test on the whole dataset to remove
acoustic features that were significantly correlated with the
segment duration (when R > 0.2). Hence, 72 eGeMAPS, 1,072
emobase, and 3,056 ComParE features were not correlated with
the duration of the speech chunks and were therefore selected for
the machine learning experiments. The purpose of this step is to
remove acoustic features correlated with the segment duration to
remove the “local” features which are independent of segment
duration while training the Model B0 purely on the low-level
acoustic features. We later add global features such as mean,
median, and standard deviation of all the segment lengths in
an interview while training Model B1. Local features which are
highly correlated with the segment duration can at times act as
unnecessary noise and lead the machine learning models to learn
spurious correlations. This preprocessing step is common with
the approach by Luz et al. (2020) and Haider et al. (2019).

Our Model B1 is an extension of our Model B0, enriched
with targetted features and our Model C is a combination of
Model A1 and B1 and thus Model C uses targetted features
from both models A1 and B1. The additional targetted features
used in Model B1 and then subsequently in Model C are
specific to AD speech and are obtained from a combination of
speech segments, full wave audio as well as manually generated
transcripts. These targetted features specific to AD speech can be
broadly split into three categories—speech segment length-based
features, disfluency, and interventional rate-based features and
the features based on the concept of idea density. It is important
to note that these features are not captured by our Model
B0. Segment length features include six statistics about speech
chunks segmented by the VAD. Disfluency and interventional
features include a set of six distinct features from the transcripts,
such word rate, intervention rate, and different kinds of pause
rates reflecting upon speech impediments like slurring and
stuttering, which show up in the transcripts in forms of “umm,”
“uhh” etc. Lastly, idea density based features comprise of the
DEPID and DEPID-R features (Sirts et al., 2017) were computed
as a measure of idea density. Idea density measures the rate
at which ideas or elementary predications are expressed in an
utterance or a text. Proportional idea density (PID) counts the
expressed ideas and can be applied to any text. DEPID is a
dependency-based method for computing PID and its version
DEPID-R that enables to exclude repeating ideas which is a
feature characteristic of AD speech.

2.4. Training and Validation Details
The following info is common to the training of all the models.
We implement the models using Tensorflow 2.0 (Abadi et al.,
2015). AdaGrad optimizer (Duchi et al., 2011) is used with a
learning rate of 0.001.We train all the models for 200 epochs with
early stopping as implemented in Di Palo and Parde (2019). All
classification metrics use a classification threshold of 0.5.

The total dataset is split into a train dataset of 108 participants
(54 AD and 54 non-AD participants) and test dataset of 48
participants (24 AD and 24 non-AD participants) as provided by
Luz et al. (2020). Thus the test set is 30% of the total ADReSS
dataset. K-fold cross validation (CV) is a useful CV strategy when
sample size is lower as it uses every sample in the dataset but

does not necessarily maintain balance in the labels (AD and
non-AD) in each fold while splitting the train dataset into “k”
folds. Performing a stratified k-fold CV assures this balance in
labels in each fold and thus increases the reliability of metrics
calculated on k-fold CV. We use 5-fold stratified cross-validation
for all our models with the same seed value. We chose this cross-
validation scheme over hold-out cross-validation schemes due
to the small size of the dataset and to use every sample in the
dataset. In Luz et al. (2020), the authors use leave one subject
out (LOSO) cross-validation scheme, we find it infeasible in
our case as training deep learning models are computationally
more demanding and LOSO cross-validation scheme won’t scale
with more data without necessary compute requirements. For
inference on test data, the models were trained on the complete
train set for both the tasks separately and then tested on the
test set.

3. RESULTS

The outputs of a binary classification algorithm fall into one
of the four categories—true positives tp, false positives fp, false
negatives fn and true negatives tn, depending on whether the
predicted label matches with the true label or not. Recall is also
known as Sensitivity or the true positive rate. Then classification
metrics are defined as follows,

Precision =
tp

tp+ fp
(1)

Recall =
tp

tp+ fn
(2)

F1 score = 2
(precision)(recall)

precision+ recall
(3)

In context of reproducing results by Karlekar et al. (2018) and
Di Palo and Parde (2019) on ADReSS dataset, the classification
task results (Precision, Recall, F1 score, and Accuracy) are
shown in Table 1 for 5-fold cross-validation and test setting,
respectively. The results show that Model A1 performs better
than Model A0 in all aspects of the classification task. We
notice the difference between AD classification accuracy (0.8384
and 0.8820, respectively) achieved in Karlekar et al. (2018) and
Di Palo and Parde (2019) on the complete Dementia Bank
dataset and the AD classification accuracy achieved (0.6875
and 0.7292, respectively) by re-implementing those methods on
ADReSS dataset.

In the context of the proposed acoustic feature processing
Speech-GRU, the classification task results with the use of
different acoustic feature set are shown in Table 2 for 5-fold
cross-validation and test sets, respectively. We observe that our
model B0 with use of emobase as the acoustic feature set performs
best followed by eGeMAPS and we observe that our recurrent
model with ComParE features as input fails to learn. Our model
B0 with the feature set emobase performs better than the acoustic
feature-based baseline accuracy of 0.62 set by Luz et al. (2020).
We use the best performing feature set (emobase) further, for our
models B1 and C. We further also experimented with Speech-
GRU in model B0 (emobase feature set) by replacing GRU layer
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TABLE 1 | Validation and Test results of the language based models on the classification task.

Model Val/Test Class Recall Precision F1 score Accuracy

A0 (Karlekar et al., 2018)

5-fold CV
Non-AD 0.811 ± 0.085 0.637 ± 0.071 0.710 ± 0.059

0.673 ± 0.065
AD 0.539 ± 0.121 0.752 ± 0.081 0.619 ± 0.090

Test set
Non-AD 0.8333 0.6451 0.7272

0.6875
AD 0.5416 0.7647 0.6341

A1 (Di Palo and Parde, 2019)

5-fold CV
Non-AD 0.836 ± 0.202 0.706 ± 0.152 0.735 ± 0.072

0.710 ± 0.067
AD 0.600 ± 0.241 0.866 ± 0.167 0.654 ± 0.113

Test set
Non-AD 0.9167 0.6667 0.7719

0.7292
AD 0.5416 0.8667 0.6667

Bold values represent the validation and test accuracies of best performing model amongst the models under consideration in the respective table.

TABLE 2 | Validation and Test results of the Model B0 with different feature sets on the classification task.

Feature set Val/Test Class Recall Precision F1 score Accuracy

eGeMAPS

5-fold CV
Non-AD 0.527 ± 0.120 0.710 ± 0.151 0.581 ± 0.058

0.635 ± 0.034
AD 0.745 ± 0.156 0.618 ± 0.029 0.667 ± 0.058

Test set
Non-AD 0.7500 0.5625 0.6428

0.5833
AD 0.4166 0.6250 0.5

emobase

5-fold CV
Non-AD 0.659 ± 0.094 0.704 ± 0.168 0.663 ± 0.057

0.665 ± 0.082
AD 0.673 ± 0.219 0.664 ± 0.049 0.652 ± 0.125

Test set
Non-AD 0.6667 0.6400 0.6530

0.6458
AD 0.6250 0.6521 0.6382

ComParE

5-fold CV
Non-AD 0.441 ± 0.176 0.534 ± 0.139 0.475 ± 0.148

0.533 ± 0.129
AD 0.625 ± 0.144 0.538 ± 0.132 0.573 ± 0.124

Test set
Non-AD 0.5833 0.5185 0.5490

0.5208
AD 0.4583 0.5238 0.4888

Bold values represent the validation and test accuracies of best performing model amongst the models under consideration in the respective table.

with a bidirectional GRU layer followed by the use of attention
mechanism, but it resulted in validation accuracy of 0.6632 ±

0.0368 which did not significantly better than our basic Speech-
GRU stream. Since we did not observe a significant improvement,
we use our plain GRU stream for acoustic feature processing in
models B1 and C.

The classification task results for the models B1 and C are
shown in Table 3. Our results show that model B1, enriched with
targeted features performs better thanmodel B0 with an accuracy
of 0.6875 on the test set.We further conduct ablation experiments
on model B1 to tease out which of these targeted features
contribute the most. The results of our ablation experiment in
Table 4 show that none of the targeted features (segment length
based, disfluency, and interventional rate based and idea-density
based) individually improve the test results of model B1, in
comparison to model B0. But all of these features combined
improve the classification accuracy of our model B1. Our model
C benefits from linguistic feature processing stream of model A1
but does not perform better than model A1 in terms of test or
validation accuracy. We notice a significant improvement in AD
class Recall and a reduction in AD class Precision frommodel A1
to model C.

Finally, we include the Area under the Receiver-Operator
characteristic curve for all the models in the Figure 2 for quick
comparison of the performance of all the models on the test set.

4. DISCUSSION

Amongst language-based models, the improvement in
performance from model A0 to A1 can be attributed to the
use of attention as well as the use of psycholinguistic and
sentiment features. As per our results, model A0 and A1
which have shown the state of the art results on the complete
Dementia bank dataset don’t perform better than the linguistic
feature baseline set by Luz et al. (2020) of accuracy 0.75 on the
ADReSS dataset. This is important to note because the primary
motivation of Karlekar et al. (2018) was to develop end to end
deep learning method for AD detection with minimal feature
engineering. Furthermore, noticing the difference in accuracy
and F1 scores, there could be multiple factors involved in the
success of Karlekar et al. (2018) and Di Palo and Parde (2019)
and those that hinder the replicability of results on ADReSS
dataset. The most prominent factor being, repeated occurrences
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TABLE 3 | Validation and Test results of the Model B1 and Model C on the classification task.

Model Val/Test Class Recall Precision F1 score Accuracy

B1

5-fold CV
Non-AD 0.662 ± 0.175 0.670 ± 0.101 0.652 ± 0.125

0.662 ± 0.109
AD 0.666 ± 0.170 0.675 ± 0.126 0.659 ± 0.139

Test set
Non-AD 0.8333 0.6452 0.7272

0.6875
AD 0.5416 0.7647 0.6341

C

5-fold CV
Non-AD 0.778 ± 0.104 0.673 ± 0.092 0.715 ± 0.070

0.693 ± 0.082
AD 0.615 ± 0.151 0.743 ± 0.097 0.659 ± 0.112

Test set
Non-AD 0.8333 0.6896 0.7547

0.7292
AD 0.6250 0.7894 0.6976

Bold values represent the validation and test accuracies of best performing model amongst the models under consideration in the respective table.

of samples from the same participant in the Dementia Bank
dataset. This could lead to significant overfitting to participant
dependent features in models trained the DementiaBank dataset.
As explained in section 2.1, DementiaBank has 243 transcripts
from 104 non-AD participants whereas 1,049 transcripts from
208 AD participants. In comparison to that, ADReSS dataset
includes only one transcript and full wave audio per participant,
with 54 AD and 54 non-AD participants in the train set and 24
AD and 24 non-AD participants in the test set. Thus the total
number of samples in DementiaBank is 1,292, which is around
8 times the dataset size of ADReSS. ADReSS dataset allows us
to test the speaker independent nature of previously proposed
models and our new model as there are no multiple sessions
per participant. It is evident from other success of deep learning
methods in other domains (not specific to AD speech) that such
methods do scale with data, but that need not necessarily apply
to tasks such as early detection of AD. Thus, we cannot take a
purely minimal feature engineering approach, and future work
should instead focus more on developing and utilizing features
relevant to AD speech. Benchmarking on a dataset with more
subjects in the future would help build a better understanding
of whether these methods perform better compared to complete
manual feature engineering-based solutions or not. Accuracy

comparison of all the models with baselines on ADReSS dataset

by Luz et al. (2020) as well as results on the DementiaBank

dataset by Karlekar et al. (2018) and Di Palo and Parde (2019)
can be found in Figure 3.

Our results from Table 2 help us answer the question whether
there exist temporal patterns relevant to AD detection in the

acoustic features extracted using these feature sets emobase,

eGeMAPs,ComParE etc. which are not explicitly designed for

AD speech. Amongst the three feature sets, we observe that our
Speech-GRU does pickup some relevant temporal patterns and
effectively combines these features into a common vector. Our
Speech-GRU with emobase feature set also performs better than
the baseline by Luz et al. (2020), which takes the maximum
vote of classification output of each of the speech segment. Still,
the improvement is relatively small (2%). Moreover, the use
of attention did improve the performance in language-based
model A1, suggesting that there are temporal patterns which
are relevant to AD speech in word vectors and POS-tags. But

TABLE 4 | Ablation experiments with Model B1 with different targeted features;

Test results on classification task.

Targeted features Class Recall Precision F1 score Accuracy

Seglen
Non-AD 0.5833 0.6363 0.6087

0.6250
AD 0.6667 0.6154 0.6400

Disf-inv
Non-AD 0.5000 0.6000 0.5454

0.5833
AD 0.6667 0.5714 0.6154

DEPID
non-AD 0.6250 0.6522 0.6383

0.6458
AD 0.6667 0.6400 0.6530

All combined
non-AD 0.8333 0.6452 0.7273

0.6875
AD 0.5416 0.7647 0.6341

Bold values represent the validation and test accuracies of best performing model

amongst the models under consideration in the respective table.

the same approach did not improve the performance in Speech-
GRU, suggesting a general lack of temporal patterns across
paralinguistic features of the speech segments. Future work could
benefit from the development of AD specific feature sets.

It is important to note that our performance of model B0 is
representative of the performance of AD detection without the
use of any manual transcription. All the transcripts in Dementia
Bank and ADReSS dataset are manually generated, and deploying
this service would instead require automated transcription.
Readers can refer to Zayats et al. (2019) for detailed analysis
of impact of transcription errors (manual and automated)
on automatic disfluency detection. Various disfluency and
interventional features in our approach, as well as other state of
the art approaches, rely on these manually generated transcripts
for feature extraction and their performance may vary depending
on whether the transcription is automated or not. In the
ablation experiments, the decrease in the test accuracy in case
of enrichment with disfluency and interventional features could
be as these word rates, interventional rates, pause rates were
extracted from manual transcripts. A better approach could be
using forced alignment tools to get precise disfluency features,
but since not all samples in the ADReSS dataset aligned with the
transcript text, we didn’t explore that idea further.
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FIGURE 2 | Receiver operating characteristics for all Models A0, A1, B0, B1, and C and the area under the curve (AUC). Results on test set.

We observe that the language-based models A0 and A1 are
characterized by higher non-AD class recall scores and higher AD
class precision scores which are further aggravated from model
A0 to A1. We observe that speech-based models were generally
characterized by nearly equal precision and recall scores in AD
and non-AD classes and we can also observe similar influence in
the model C.

There are two possible reasons for the bimodal model C not
performing significantly better than the language-based model
A1, which are explained as follows. The first is that, the inherent
representations learnt by the recurrent stream in Model A1
(trained on word embeddings and POS tags) and in Model
B1 (on acoustic features of each segment, in lieu of acoustic
embeddings) are quite different. And a mere concatenation of
the final layers, can be thought of as a linear combination
of the two representations and we observe that it does not
provide rich space for a variety of cross-dimensional and non-
linear combinations among the two representations. Because
of this, the outputs of a Model B1 (which is a relatively weak
learner in comparison to it’s language counterpart Model A1)
can act as noise in linear combination of these representations.

This problem has been addressed by a variety of trainable
feature aggregation methods, especially visual and language
based representations, in the context of multimodal emotion
detection or sentiment analysis. One of the most promising
solution, which has proven to be successful in the context
of multimodal sentiment analysis is focusing on word-level
fusion (Chen et al., 2017), where they align the words with the
speech segment of each word and generate combined Gated
Multimodal Embeddings (GME), rather than combine the two
representations in the final layers as we do in Model C. We
believe a similar approach to generating combined word-level
embeddings, where influence of each modality is also learnable
through gating, can also help in the context of AD speech.
Unfortunately, word-level fusion methods require alignment
of both the modalities, which is very expensive in terms of
reduction in data size as not all samples align even with the
state of the art methods. Though this is a feasible option for
other problems such as sentiment analysis, where data is in
abundance and where the study can be carried out with a fraction
of aligned data. But it’s not a feasible option in small sized
datasets like the ADReSS dataset as we observed while running
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the alignment tools (Montreal Forced Aligner3), <70% of the
full wave audio samples aligned with the manually generated
transcripts. The speech segment chunks provided by the ADReSS
dataset use voice activity detection (VAD) and often include
multiple words rather than providing a word-to-word alignment
thus cannot be used for creating multimodal word embeddings.
Readers can refer to Baltrušaitis et al. (2018) or a detailed survey
of approaches and challenges faced in multi-modal machine
learning in terms of representation, alignment, and fusion.

3https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner.

Future work, in availability of more data, can attempt similar
approaches to AD detection.

The second reason is that the idea density features used
in Model B1 and then subsequently in Model C, have
been computed using the transcripts. The disfluency and
interventional rates used are also obtained from transcripts
in lieu of aligning speech with transcripts. We compute the
similarity in predictions of two models as ratio of predictions
which match between two models upon total predictions in the
test set (i.e., 48). We find the similarity between predictions of
Model A1 and Model C to be 0.6667 whereas the similarity in

FIGURE 3 | Accuracy comparison of all Models A0, A1, B0, B1, and C with baselines on ADReSS dataset as well as referred state of the art approaches on

DementiaBank dataset.

FIGURE 4 | Confusion matrices of Test results of Model A1, B1, and C.
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predictions of model B1 and model C to be 0.5416. Furthermore,
we also observe that the similarity between predictions of
Model A1 and B1 is 0.6667 and is greater than similarity
between predictions of Model A1 and Model B0 which is 0.5834,
suggesting that the additional targeted features obtained from
transcripts and used in Model B1 might have already been
captured in the Model A1 which trained only on the transcript
data. Apart from the similarities in predictions, we can observe
the confusion matrices of test predictions of Model A1, B1, and
C in Figure 4 which show the influence of Model A1 and B1 on
Model C.

5. CONCLUSIONS

We re-implement existing deep learning-based methods on
ADReSS dataset and discuss the challenges of the approach.
We also introduce a bi-modal deep learning approach to AD
classification from spontaneous speech and study in detail
the Speech-GRU stream, which is further enriched with AD
specific features through comprehensive comparisons of different
variants. An important finding of this study is that the
addition of targeted features increases the performance in AD
detection in both language-based and acoustic-based models.
Though the speech-GRU stream in our bi-modal approach is
a relatively weaker learner compared to the language-based
counterparts in the network, future work can aim at improving
the acoustic feature extraction as well as a better combination
of representations from different modalities. The Speech-GRU
without and with extra targeted features performs much better
than acoustic baselines and Model B0 is also representative
of the extent of performance of solutions which don’t rely
on manual transcription. Our results help us answer questions
regarding the existence of temporal patterns relevant to AD
detection in para-linguistic acoustic features often extracted

using common feature sets as well as also address the reasons
for a drop in accuracy of models on ADReSS dataset which were
previously state of the art approaches on the complete Dementia
Bank dataset.
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