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Amyloid-β (Aβ) peptides can form protease-resistant aggregates within and outside of
neurons. Accumulation of these aggregates is a hallmark of Alzheimer’s disease (AD)
neuropathology and contributes to devastating cognitive deficits associated with this
disorder. The primary etiological factor for Aβ aggregation is either an increase in Aβ

production or a decrease in its clearance. Aβ is produced by the sequential activity of β-
and γ-secretase on the amyloid precursor protein (APP) and the clearance is mediated
by chaperone-mediated mechanisms. The Aβ aggregates vary from soluble monomers
and oligomers to insoluble senile plaques. While excess intraneuronal oligomers can
transduce neurotoxic signals into neurons causing cellular defects like oxidative stress
and neuroepigenetic mediated transcriptional dysregulation, extracellular senile plaques
cause neurodegeneration by impairing neural membrane permeabilization and cell
signaling pathways. Paradoxically, senile plaque formation is hypothesized to be an
adaptive mechanism to sequester excess toxic soluble oligomers while leaving native
functional Aβ levels intact. This hypothesis is strengthened by the absence of positive
outcomes and side effects from immunotherapy clinical trials aimed at complete Aβ

clearance, and support beneficial physiological roles for native Aβ in cellular function.
Aβ has been shown to modulate synaptic transmission, consolidate memory, and
protect against excitotoxicity. We discuss the current understanding of beneficial and
detrimental roles for Aβ in synaptic function and epigenetic gene control and the future
promising prospects of early therapeutic interventions aimed at mediating Aβ induced
neuroepigenetic and synaptic dysfunctions to delay AD onset.
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INTRODUCTION

Alzheimer’s disease (AD) affects 5.8 million Americans aged 65 and older and is estimated to
grow to 13.8 million by mid-century. AD is the most common cause of dementia, presenting
with hallmarks such as amyloid-β (Aβ) plaques, tau neurofibrillary tangles, neuronal cell death,
cognitive dysfunction, and altered brain morphology. Aβ-plaques comprise of aggregated Aβ, a
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cleaved product of the glycoprotein amyloid precursor protein
(APP). According to the amyloid cascade hypothesis, it is these
plaques that are responsible for AD pathology.

Newly generated Aβ released into the extracellular space
remain in soluble form or aggregate into insoluble Aβ-plaques.
Soluble Aβ species can bind to various neuronal cell receptors
and transduce neurotoxic signals causing cellular defects that
include oxidative stress and epigenetic-mediated transcriptional
dysregulation (Chen et al., 2017). However, recent evidence
demonstrates that soluble Aβ shows beneficial physiological
roles such as regulating cellular signaling pathways and synaptic
function as well as possessing antimicrobial and antioxidant
properties (Brothers et al., 2018). In this review, we summarize
recent progress in understanding the beneficial and detrimental
aspects of Aβ in mediating processes underlying synaptic and
cognitive function and epigenetic neuronal gene control. We
further discuss therapeutic interventions aimed at synaptic
plasticity and epigenetic regulation to delay AD progression.

Aβ REGULATION OF SYNAPTIC
PLASTICITY

Synaptic plasticity mediated changes in neuronal connections
have long been established as the primary mechanism of learning
and memory (Martin et al., 2000; Ramirez and Arbuckle, 2016).
Accordingly, loss of synaptic connections is an early event
in AD pathogenesis and cognitive impairment (Selkoe, 2002;
Scheff et al., 2006; Kashyap et al., 2019). Although the precise
mechanisms underlying synaptic dysfunction in AD are obscure,
emerging studies have uncovered a feedback regulation between
Aβ and synaptic plasticity.

Multiple studies demonstrate that soluble Aβ oligomers
in pre- and post-synaptic compartments can disrupt synaptic
morphology and inhibit long-term potentiation (LTP) that
trigger cognitive dysfunction. Intriguingly, insoluble Aβ-plaques
are less active in promoting such alterations (Lambert et al.,
1998; Takahashi et al., 2002; Walsh et al., 2002; Shankar
et al., 2008; Figure 1). For example, studies in amyloid
mice reveal that reduction of synaptophysin puncta correlates
with soluble Aβ and not plaque load (Mucke et al., 2000).
Further, AD-associated apolipoprotein E4 has been implicated
in facilitating the transport of soluble Aβ species to synapses
elucidating toxic effects (Koffie et al., 2012). Aberrant activation
of neuronal signal transduction pathways can arise via Aβ

directly binding to Aβ receptors or competing with essential
ligands to bind their receptors (Xia et al., 2016). For
example, soluble Aβ dimers cause glutamate excitotoxicity
via blockage of glutamate reuptake in the synaptic cleft,
activating glutamate receptors and ion channels like N-Methyl-
D-aspartate (NMDA) receptors that trigger downstream cell
signaling transduction cascades to pathologically alter gene
expression profiles (Li et al., 2009). Additionally, accumulation of
extracellular Aβ42 triggers the loss of synaptic mushroom spines
via hyperactivation of metabotropic glutamate receptor type 5
(mGluR5) receptors, resulting in elevated endoplasmic reticulum
Ca2+ levels and downregulation of the Ca2+/calmodulin kinase

II signaling pathway (Zhang et al., 2015). Interestingly, soluble
APP has also been shown to directly modulate synaptic
plasticity by binding to the gamma-aminobutyric acid (GABA)
receptor and inducing a conformational change that facilitates
reduced neurotransmitter release and neuronal activity (Rice
et al., 2019; Figure 1). Together, these findings support the
concept that soluble APP and Aβ oligomers promote synaptic
impairment and cognitive deficits during the early stages
of AD, followed by neurodegeneration in the later stages
(Ferreira and Klein, 2011).

Conversely, synaptic activity positively modulates Aβ

production to promote synaptic function (Kamenetz et al., 2003;
Cirrito et al., 2005). Increased synaptic activity promotes APP
endocytosis, and β-secretase 1 (BACE1) mediated Aβ production
(Cirrito et al., 2008). Since Aβ depresses synaptic activity, the
activity-dependent modulation of endogenous Aβ production
has been suggested to be a finely tuned negative feedback loop
that regulates the neuronal activity and appropriate function by
preventing hyperactivation (Kamenetz et al., 2003). Perturbation
in this homeostatic mechanism may interfere with synaptic
activity and contribute to cognitive decline, as seen in AD. These
studies support the premise that physiological levels of Aβ are
critical for optimal synaptic activity (Kamenetz et al., 2003;
Parihar and Brewer, 2010; Jang and Chung, 2016).

Aβ AND EPIGENETIC MECHANISMS
UNDERLYING AD

Epigenetic modifications of DNA and histone proteins regulate
gene expression profiles via controlling chromatin accessibility.
The neuroepigenome has been proven to be critical in memory
formation and consolidation through dynamic control of neural
genes essential for these functions (Feng et al., 2007; Sultan
and Day, 2011). Neuroepigenetic imbalance in the brain causes
transcriptional dysregulation, a pivotal step in AD etiology
(Esposito and Sherr, 2019). Here, we summarize primary
epigenetic alterations that affect or are affected by Aβ production.

DNA methylation: DNA methylation occurs at cytosine
bases in CpG repeats and primarily controls gene repression
(Saxonov et al., 2006; Miranda and Jones, 2007). Reports on DNA
methylation and AD are conflicting with several studies reporting
global DNA hypermethylation in the AD brain (Rao et al., 2012;
Di Francesco et al., 2015; Liu et al., 2019), while other studies
show reduction (Chen et al., 2009; Chouliaras et al., 2013; Li
et al., 2019) or no alterations in global DNA methylation (Lashley
et al., 2015). Common AD-associated methylation alterations
often increase Aβ production. For example, AD-associated genes
APP, Apolipoprotein E, and BACE1 are hypomethylated in
AD brains with concomitant BACE1 activation increasing Aβ

levels via the amyloidogenic processing pathway (West et al.,
1995; Tulloch et al., 2018; Li et al., 2019). Conversely, the
neprilysin gene that encodes for an Aβ degrading enzyme is
hypermethylated and repressed in AD, also leading to increased
Aβ levels (Chen et al., 2009).

Histone acetylation: Histone modifications, including
acetylation, methylation, and phosphorylation on histone
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FIGURE 1 | The interplay of amyloid precursor protein (APP) and amyloid-β (Aβ) impact on synaptic activity and neuroepigenetic gene control. Synaptic activity
module. APP endocytosis and cleavage yield Aβ peptides and APP intracellular domain (AICD). Soluble APP regulates GABA receptor function to modulate synaptic
transmission and plasticity. At physiological levels, Aβ peptides promote glutamate recycling keeping glutamate levels in check. In contrast, at pathological Aβ levels,
impaired glutamate recycling increases post-synaptic uptake, leading to excitotoxicity, synaptic depression, and eventually neural cell death. Epigenetic
module. Soluble Aβ monomer and dimer competition for binding of essential ligands to receptors can alter signal transduction pathways causing global changes in
neuroepigenetic gene control. Such alterations include DNA methylation changes that alter the expression of genes involved in APP processing and Aβ degradation
pathways to favor increased Aβ levels and disruption of Tip60/HDAC balance causing hypoacetylation of chromatin with concomitant repression of associated
critical synaptic plasticity genes.

protein tails, modulate chromatin accessibility to control
gene expression. Of these modifications, histone acetylation
is best characterized for its role in learning and memory and
contribution to AD when altered (Saha and Pahan, 2006;
Sharma, 2010; Peixoto and Abel, 2013). Histone acetylation
homeostasis is regulated by the antagonistic activity of histone
acetyltransferases (HATs) and histone deacetylases (HDACs).
Evidence from our group and others shows that neural histone

acetylation dysregulation, caused by an imbalance between
specific HATs and HDACs, is a crucial early step in AD
pathology. Downregulation of the HAT Tip60 (KAT5) and
upregulation of HDAC2 causes epigenetic repression of critical
neuroplasticity genes in multiple types of AD animal models
and patients (Graff et al., 2012; Panikker et al., 2018). Further,
alteration of Tip60 epigenetic mediated control in the brain by
either APP or Aβ driven Alzheimer’s disease pathology leads
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to repression of a set of neuronal genes critical for synaptic
function (Panikker et al., 2018). Restoring such alterations
in Tip60/HDAC2 balance protects against AD-associated
pathologies in the AD Drosophila model expressing APP.

How might Aβ influence early HAT/HDAC disruption? Our
findings reveal that APP expression results in a reduction of
Tip60 protein levels but not Tip60 mRNA levels (Panikker
et al., 2018), suggesting a mechanism of post-transcriptional
regulation. Thus far, there is no evidence to demonstrate a
direct Aβ and Tip60 interaction underlying reduced Tip60
levels, but a potential mechanism is via ubiquitin-mediated
Aβ-induced Tip60 degradation. Another consideration is soluble
Aβ monomer and dimer competition for the binding of essential
ligands to receptors (Xia et al., 2016). Such interactions possibly
alter signal transduction pathways that disrupt Tip60/HDAC
balance and acetylation levels, inducing altered gene expression
profiles contributing to AD.

THERAPEUTIC INTERVENTION FOR Aβ

INDUCED NEUROEPIGENETIC AND
SYNAPTIC DYSFUNCTION

Currently, the Food and Drug Administration (FDA) approved
drugs for AD are limited to palliative medications: cholinesterase
inhibitors and a non-competitive NMDA antagonist (National
Institute on Aging, 2018, April 01). As Aβ-plaques are considered
as primary effector molecules in AD pathogenesis, therapeutic
strategies are focused on developing agents that can block Aβ

production or clear Aβ-plaques. The clinical trials are ongoing,
but the initial results thus far are not encouraging. The β-
and γ-secretase inhibitors, aimed to block Aβ production,
were discontinued due to unfavorable risk/benefit profile and
cognitive worsening. Also, Aβ immunotherapies, intended to
clear the Aβ-plaques, were terminated due to toxicity and
cognitive worsening. Efforts are in progress to refine the
approaches to these trials (reviewed in Panza et al., 2019).
Further, it is hypothesized that the complete reduction of Aβ as
a principal reason for these failures, underscoring the necessity to
understand the physiological roles of Aβ.

The U-shaped natural course of cerebrospinal fluid Aβ levels
in aging suggests it as physiologically active (Shoji and Kanai,
2001). One of the main reasons for clinical trial failures is the
toxicity resulting from reducing Aβ, supporting a critical role for
Aβ in neuronal survival and function. In support of this concept,
synthetic Aβ42 monomers (30–100 nM) have been shown to
promote survival in developing neurons deprived with trophic
factors (Giuffrida et al., 2009). Further, in different neuronal cell
types, exogenous Aβ40 had a neuroprotective effect on cells dying
from Aβ immunodepletion, while the same levels of exogenous
Aβ42 oligomers proved to be toxic (Plant et al., 2003). These
studies demonstrate a hormetic effect of Aβ in neuroprotection
and the neurotoxicity of soluble oligomeric forms over
insoluble aggregates. Considering the physiological importance
of monomeric Aβ, monoclonal antibody Aducanumab was
developed with a much greater affinity to Aβ-aggregates
versus monomeric forms. Currently, Phase 3 trials have been

discontinued based on futility analysis but not on safety
concerns (U.S. National Library of Medicine, 2020a,b). In the
future, the predicted aggregate-specific N-terminal binding motif
of Aducanumab could potentially serve as a basis to re-engineer
Aducanumab for further enhanced preference to bind Aβ -
aggregates versus monomers (Frost and Zacharias, 2020).

Another disappointing outcome from clinical trials focused
on Aβ depletion is the failure to alleviate cognitive decline.
Studies show that Aβ affects memory by regulating synaptic
vesicle dynamics and synaptic plasticity with physiological levels
increasing recycling and supraphysiological levels decreasing
recycling (Lazarevic et al., 2017). Similarly, exogenously applied
Aβ42 shows a biphasic dose-response curve on hippocampal
LTP and reference memory (Puzzo et al., 2012). Additional
studies carried out to understand the synaptic plasticity and
memory formation by different isoforms (Aβ40 and Aβ42) and
aggregation status (monomer and oligomer) revealed that lower
levels of oligomeric Aβ42 enhanced LTP and spatial memory
while higher concentrations of oligomeric Aβ40, oligomeric Aβ42
& monomeric Aβ42 impaired LTP and spatial memory (Gulisano
et al., 2018). In addition to memory formation, Aβ is required
for memory consolidation and stability. Intrahippocampal
administration of picomolar concentrations of exogenous Aβ42,
following training, enhances memory retention (Garcia-Osta and
Alberini, 2009). Elevated soluble Aβ42 in the amygdala of adult
rats, during the formation of auditory fear memories, is required
for memory consolidation and stability (Finnie and Nader,
2020). These studies signify the importance of physiological
concentrations of Aβ on memory formation and retention and
substantiate the hypothesis that cognitive deficits increase due to
Aβ depletion.

The two major histopathological hallmarks of AD are
extracellular Aβ-plaques and intracellular neurofibrillary tangles.
These changes predominantly occur in the later stages of
AD. In contrast, synaptic dysfunction typically appears early
in prodromal or mild cognitive impairment (MCI) stages
of the disease, thus serving as a potent target for early
stage therapeutic intervention to slow AD progression. Soluble
Aβ42 oligomers can interact with proteins participating in
the regulation of the synaptic vesicle life cycle that includes
Syntaxin1a, Synaptophysin, and Synapsin1 (Snp1), causing
aberrant glutamate release and reduction in synaptic vesicle
recycling (reviewed in Marsh and Alifragis, 2018). Currently,
there are three publicly disclosed drug trials with endpoints
that specifically inform on synapse density and/or function
(reviewed in Jackson et al., 2019). First, Elayta (CT1812) is
a small-molecule that prevents and displaces beta-amyloid
binding to the sigma-2 receptor on the nerve cells and
interferes with its toxicity. Elayta lowered the neurogranin and
synaptotagmin-1, markers of synaptic damage, in AD patients
(U.S. National Library of Medicine, 2020d). A second trial is
using imaging techniques and cognitive performance testing to
assess the efficiency of LMTX (methylthioninium chloride), a
tau aggregation inhibitor, to elicit changes in brain function
(U.S. National Library of Medicine, 2020c). Finally, Saracatinib
inhibition of Fyn is another potential synaptic specific therapeutic
intervention in AD. Fyn is a non-receptor tyrosine kinase
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that is activated by Aβ oligomers and alters synaptic plasticity
(U.S. National Library of Medicine, 2019). These studies have
moved the field forward toward clinical trials testing therapuetic
drugs designed specifically for synaptic plasticity enhancement
(Figure 2). Indeed, recent years have shown an increase in
the number of drugs/biologics targeting pathways other than
amyloid or tau (Cummings et al., 2020).

Compelling evidence demonstrates that repression of histone
acetylation mediated epigenetic gene control involving an
increase in HDAC2 and a reduction of Tip60 are early
contributors to AD (Panikker et al., 2018). Thus, epigenetic
therapeutic approaches that involve increasing acetylation levels
using HDAC inhibitors (HDACi) and HAT activators is a
promising therapeutic approach. At present, there are two
HDACi at clinical trials targeting AD pathology (Figure 2;
Cummings et al., 2020). Nicotinamide is at Phase 2 testing to
assess the reduction of phosphorylated tau in patients that display
MCI or mild AD dementia. Another HDACi vorinostat is in
Phase 1b to determine the maximal tolerable dose in AD patients
between (including) 55 and 90 years with mild symptoms. The
epigenetic drug valproic acid restores the physiological regulation
of Snp1, a pre-synaptic protein that regulates the availability
of synaptic vesicles, in Aβ42 treated primary rat hippocampal
neurons (Marsh et al., 2017). Mithramycin A (FDA approved
antineoplastic antibiotic) significantly upregulates the synaptic
plasticity gene expression and downregulates HDAC2 in SH-
SY5Y cells overexpressing APP (Atluri et al., 2019).

HDACi can be either multitargeting like M344, an inhibitor of
class I and IIB HDACs, or specific like CM-695 and RGFP966
selectively inhibiting HDAC6 and HDAC3, respectively. M344
regulated multiple AD-related genes and exhibited significant
cognitive benefits in vivo (Volmar et al., 2017). CM-695 inhibits
HDAC6 and phosphodiesterase 9 (PDE9) and ameliorates

memory impairment, and reduces Aβ42 levels in vivo (Cuadrado-
Tejedor et al., 2019). RGFP966 inhibits HDAC3 and reverse
the attenuation of LTP by Aβ oligomers in rat CA1 pyramidal
neurons (Krishna et al., 2016). Selective inhibition by specific
HDACi can reduce the side effects and serves as a viable
therapeutic strategy. An alternative approach to improve target
specificity is to target the binding partners in the HDAC complex
rather than the HDAC. Utilizing weighted gene co-expression
network analysis (WGCNA), transcription factor Sp3 identified
as a putative HDAC2 co-regulator, and its expression was
also elevated in AD patients. The knockdown of Sp3 reduced
the HDAC2 occupancy and reversed the HDAC2 associated
synaptic gene repression (Yamakawa et al., 2017). Therefore,
targeting the HDAC2-Sp3 complex may be a feasible approach for
AD therapy.

Many HATs as opposed to HDACs have non-redundant
physiological functions as different HATs exhibit a specialized
preference for site-specific chromatin marks that regulate
synaptic gene expression and cognitive function. Thus, HAT
activators are a potentially powerful epigenetic therapeutic
tool for the treatment of neurodegenerative diseases. As such,
chemical modifications are being made to existing drugs to
increase their cell permeability in the brain. For example,
TTK21, an activator of the HAT CBP/p300, is conjugated to a
glucose-based carbon nanosphere enabling it to cross the blood-
brain barrier (Chatterjee et al., 2013). It promotes neurogenesis
and extends memory duration in vivo. A patent publication
(US20180050982A1) covers the use of HAT activators to enhance
learning and memory and to treat AD (Francis et al., 2018).
Alternatively, downstream molecules/pathways regulated by
HATs can also be targeted for therapeutic effects.

A recent growing interest among many researchers is
moving toward exploration of non-coding RNA (ncRNA) related

FIGURE 2 | Clinical Trials for therapeutic drugs targeting synaptic activity and neuroepigenetic mechanisms for Alzheimer’s disease treatment. The mechanism of
action of the drug is classified using Common Alzheimer’s and Related Dementias Research Ontology (CADRO) (Cummings et al., 2020). SV2A, Synaptic vesicle
glycoprotein 2A; PDE, Phosphodiesterase; HDAC, Histone deacetylases; hTERT, human telomerase reverse transcriptase.
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neuroepigenetic alterations in AD and its relationship with
synaptic dysfunction. Notably, some microRNAs (miRNAs)
are particularly enriched in presynaptic and postsynaptic
compartments. For example, miR-34a can target the synaptic
proteins synaptotagmin-1 and syntaxin-1A to regulate neurite
outgrowth and dendritic spine morphology and function
(Agostini et al., 2011). Further, in AD-associated HDAC2-
induced tauopathy, 5′ AMP-activated protein kinase (AMPK)
activation is correlated with the loss of spine density. AMPK
expression is under the control of the miR-101b promoter
and as such, miR-101b mimics have been shown to block
dendritic impairments in vitro (Liu et al., 2017). Thus,
understanding the various ncRNAs in AD pathology should
lead to new pharmacological interventions. Interestingly, non-
pharmacological approaches like an enriched environment
(EE) and non-invasive brain stimulation techniques can be
utilized to attenuate early stage synaptic dysfunction and
appear to act via neuroepigenetic mechanisms. For example, EE
triggers hippocampal induction of histone acetylation at specific
sites linked to synaptic plasticity and learning and memory
enhancement and also ameliorates soluble Aβ oligomer induced
synaptic dysfunction by upregulating miRNA-132 and reducing
HDAC3 signaling (Wei et al., 2020). Currently, transcranial
magnetic stimulation (TMS) and transcranial direct current
stimulation (tDCS) usage have been shown to be beneficial for
stroke and Parkinson’s patients to positively modulate brain
plasticity (reviewed in Schulz et al., 2013). Thus, exciting new
avenues involving these types of non-invasive treatment methods
likely hold promise for AD patients as well.

OUTLOOK

In AD patients, Aβ accumulation and associated neuroepigenetic
transcriptional alterations contribute to synaptic dysfunction and
cognitive impairment (Panikker et al., 2018). However, failure
to attenuate or reverse the cognitive decline by anti-amyloid
therapeutics in clinical trials raises concerns toward these

strategies. Intriguingly, recent studies demonstrate roles for Aβ in
neuroprotection, synaptic function, and memory consolidation
(Giuffrida et al., 2009; Lazarevic et al., 2017; Finnie and Nader,
2020). These beneficial roles are Aβ concentration- and species-
specific. Picomolar concentrations and monomers proved to be
beneficial, while higher concentrations and soluble oligomers
proved to be detrimental. These findings underscore the necessity
to understand the physiological and pathological roles of Aβ

for refining the current amyloid-based therapeutic strategies.
As AD is a multifactorial disease, targeting AD-associated
processes like tau-associated pathology, inflammatory responses,
synaptic activity, and neuroepigenetic regulation of AD-related
genes may provide alternative therapeutic strategies during
early AD progression. Additionally, exploring the synergistic
effects of HDACi and HAT activators to restore histone
acetylation homeostasis, opens new less invasive and early
avenues for treatment. Recent studies utilizing methodological
improvements to specifically target toxic Aβ species demonstrate
encouraging results. Thus, the development of early therapeutic
interventions aimed at mediating Aβ induced neuroepigenetic
and synaptic dysfunctions while simultaneously maintaining
beneficial physiological levels and forms of Aβ provide exciting
new avenues for preventing or treating AD.
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