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Abstract

Alzheimer’s disease (AD) is a neurodegenerative syndrome which affects tens of millions of 

elders worldwide. Although there is no treatment currently available, early recognition can 

improve the lives of people with AD and their caretakers and families. To find a cost-effective 

and easy-to-use method for dementia detection and address the dementia classification task of 

InterSpeech 2021 ADReSSo (Alzheimer’s’ Dementia Recognition through Spontaneous Speech 

only) challenge, we conduct a systematic comparison of approaches to detection of cognitive 

impairment based on spontaneous speech. We investigated the characteristics of acoustic modality 

and linguistic modality directly based on the audio recordings of narrative speech, and explored a 

variety of modality fusion strategies. With an ensemble over top-10 classifiers on the training set, 

we achieved an accuracy of 81.69% compared to the baseline of 78.87% on the test set. The results 

suggest that although transcription errors will be introduced through automatic speech recognition, 

integrating textual information generally improves classification performance. Besides, ensemble 

methods can boost both the accuracy and the robustness of models.
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1. Introduction

Dementia is a syndrome associated with a deterioration in memory, language, problem-

solving, and other cognitive functions to perform daily activities. According to the 

estimation of WHO, there are around 50 million people having dementia worldwide, 

and this number is increasing by nearly 10 million every year. Amongst many different 

forms of dementia, Alzheimer’s disease is the most common one and contributes to 60–

70% of total cases [1]. Screening of Alzheimer’s dementia is typically conducted through 

paper-and-pencil cognitive tests, such as the Mini Mental Status Examination (MMSE) 

[2] and the Montreal Cognitive Assessment (MoCA) [3]. Although cheap and quick to 

administer, the scoring process totally relies on the personal judgment of clinicians, which 
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may introduce errors and result in a high inter-rater variability [4]. To address these issues, 

extensive studies have been carried out for the purpose of automated cognitive assessment 

[5]. One promising direction is speech-based screening. Speech signals can be relatively 

easily collected throughout the day without burdening the participants or the researchers. 

Moreover, the rapid development of speech technology and machine learning algorithms 

provides us a good opportunity to utilize those speech data for automatic screening of 

dementia [6] and finally translate speech-based methods into clinical practice.

There are existing efforts on the acoustic characteristics of AD. In [7], Warnita et al. 

extracted several sets of paralinguistic features from speech utterances in DementiaBank 

Pitt Corpus [8]. They trained a gated convolutional neural network for utterance-level AD 

classification, and then made the final verdict for each subject through majority voting. 

The best accuracy of 73.6% was achieved from this acoustic-only method. Luz et al. [9] 

assessed the effectiveness of several other acoustic feature sets with different classifiers for 

AD detection on the same data set. They showed that the eGeMAPS feature set provided 

the best single feature set accuracy and simple hard fusion of feature sets could improve 

the accuracy from 71.34% to 78.70%. [10] used low-level descriptors of IS10-Paralinguistics 

feature set [11] and Bag-of-Acoustic-Words (BoAW) for feature aggregation, and achieved 

a leave-one-subject-out (LOSO) accuracy of 76.85% on the training set of InterSpeech 2020 

ADReSS challenge. Moreover, there are evidences showing that using manual transcripts 

of speech or a combination of transcripts and speech audio can generally lead to better 

performance compared to using audio alone. In [12], Yuan et al. explored disfluencies and 

language problems in Alzheimer’s Disease subjects, and achieved the best accuracy 89.6% 

on the test set of the ADReSS challenge by fine-tuning Transformer-based pre-trained 

language models. Syed et al. achieved an accuracy of 85.45% on the same challenge task 

[10] by using both acoustic features and linguistic features from manual transcription.

In this paper, we conducted a systematic comparison of methods of detecting cognitive 

impairment based on a narrative speech from a picture description task, and extensively 

explored different modality fusion strategies. We first investigated the characteristics of 

acoustic modality and trained machine learning classifiers based on speech paralinguistic 

feature sets. Next, we generated two sets of transcripts through automatic speech recognition 

(ASR) and extracted linguistic features, both deep text embedding, and human-defined 

psychological features, from transcripts for dementia screening. Finally, we compared 

different modality fusion strategies to boost the performance of our model. Our proposed 

model outperformed the ADReSSo challenge baseline for AD classification task on both 

training partition and test partition.

2. Dataset

The ADReSSo challenge [6] released two distinct benchmark datasets for three different 

tasks. The dataset for AD classification consists of audio recordings of a picture descriptions 

task from both cognitively healthy people and patients diagnosed with AD. Participants 

were asked to describe the Cookie Theft picture from the Boston Diagnostic Aphasia 

Examination [8]. Recordings were preprocessed with stationary noise removal and audio 
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volume normalization across audio segments to reduce the variation caused by recording 

conditions [6].

The resulting dataset includes 237 audio files. To minimize the risk of bias in the prediction, 

these files are carefully partitioned into training and test sets at a ratio of 7:3 so as to 

preserve the balance of gender and age distribution [6]. There are 166 instances allocated to 

the training set. Among them, 87 subjects are diagnosed with dementia and 79 are elderly 

normal controls. The other 71 instances are allocated to the test set. among which 35 are 

with an AD diagnosis and 36 are cognitively normal.

3. Methodology

In this paper, we investigate the efficacy of logistic regression (LR) model on AD screening, 

as well as modality fusion strategies to boost the performance of the model. The schematic 

workflow of audio-based and ASR transcripts-based screening is shown in Figure 1.

3.1. Screening based on speech

In this section, we use python library librosa [13] and open-source audio feature extraction 

toolkit openSMILE [14] for audio preprocessing and paralinguistic acoustic feature 

extraction. Paralinguistics have been widely used for emotion recognition and detection 

of some other mental disorders such as depression [15] and bipolar disorder [16]. Evidence 

shows that AD patients have deterioration in emotional control [1] and may have difficulty 

in expressing emotions in prosodies [17]. Based on this, we hypothesize that paralinguistic 

acoustics is a good candidate for AD biomarkers. Five sets of acoustic features which are 

known to represent paralinguistic characteristics of speech are extracted as follows.

1. Mel-frequency cepstral coefficients (MFCCs)[18]

The first 13 MFCC bands (0-12). and corresponding 13 delta MFCCs and 13 

delta-delta MFCCs. which reflect the rate of change and the acceleration in 

MFCCs. are extracted. Descriptive statistics functions are applied, totaling 468 

features for one utterance.

2. The Geneva Minimalistic Acoustic Parameter Set (GeMAPS)[19]

GeMAPS contains the 18 low-level descriptors(LLD), including frequency 

related parameters pitch, jitter, formants. energy related parameters shimmer, 

loudness, harmonics-to-noise ratio (HNR). and several spectral parameters. 

Statistical functionals are applied to each LLD. totalling 62 parameters.

3. The extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)[19]

An extension set, which contains 7 LLDs of cepstral and dynamic parameters 

and corresponding functionals, is added to the GeMAPS. In total. 88 features are 

extracted per utterance.

4. INTERSPEECH 2016 Computational Paralinguistics Challenge Feature Set 

(ComParE-2016)[20]
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ComParE is the largest standard set of openSMILE with 6373 features. It is 

a brute-force feature set that has proved to be useful for a variety of speech 

paralinguistic tasks. ComParE-2016 is the most recent version of the ComParE.

5. INTERSPEECH 2010 Paralinguistics Challenge Feature Set (IS10-Paraling.)[11]

IS10-Paralinguistics contains 38 LLDs and 38 corresponding delta coefficients. 

21 functionals are applied to these LLDs. totaling 76 LLD for one frame and 

1582 features for one utterance. This feature set can be considered as a low-

dimensional alternate to the ComParE.

Extracted feature sets are normalized by standard min-max scaling and passed down to the 

logistic regression classifier as illustrated in the machine learning pipeline in Figure 1.

3.2. Screening based on auto-transcription

Language impairment is a distinguishing marker of dementia [5]. In addition to analyzing 

acoustic characteristics of AD, we also utilize ASR techniques to introduce the second 

modality. which is transcript text. Three sets of linguistic features are then extracted from 

each auto-transcript, as illustrated in Figure 1.

3.2.1. Automated transcript generation through ASR—We use two different 

approaches to generate transcripts from spontaneous speech. The first approach is using 

a pre-trained English DeepSpeech model from Mozilla [21]. The second is using 

Google Cloud standard speech-to-text service. Both transcribing processes can be done 

automatically, with no need for model fine-tuning or human intervention. Linguistic feature 

sets are extracted from transcripts produce by each approach.

3.2.2. Linguistic feature based screening—The language feature sets can be largely 

categorized into two classes. One is a transparent linguistic feature set, in which each 

individual feature has a well-defined meaning and thus having desirable interpretability. 

Linguistic Inquiry and Word Count (LIWC) [22] is one such text analysis method. It 

counts words in psychologically meaningful categories. Extensive studies using LIWC 

demonstrated its ability to detect meaning in a wide variety of experimental settings, such 

as attentional focus, emotion, and thinking styles. Here we extract a 64-dimensional LIWC 

vector from each transcript.

Another category of linguistic feature is language embedding which usually a dense 

numerical representation of a word or a sentence. Those embeddings have already shown 

great success in a variety of tasks of natural language processing [23]. We investigate 

the efficacy of pre-trained embeddings from deep language model Bidirectional Encoder 

Representations from Transformers (BERT) [24]. Specifically, we compute embedding for 

each word(BERTword) and embedding for the whole transcript(BERTsent) from pretrained 

BERT base uncased model using the Huggingface Transformers library[25]. BERTsent, as a 

768-dim linguistic feature, is passed to the downstream pipeline directly, while BERTword 

are first aggregated by four kinds of pooling functions (max, min, average, and standard 

deviation) to generate a transcript-level representation. The outputs of pooling operations are 
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concatenated, resulting in a 6373-dim vector, and passed down to the LR classifier (Figure 

1).

3.2.3. Modality fusion—To make full use of audio and text modalities, we explored a 

multimodal framework for the automatic screening of AD. We first apply a straightforward 

early fusion or data-level fusion [26] by selecting a good performing feature set in 

each modality, and concatenating features into a single vector for each sample. Different 

combinations of feature sets are investigated for comparison. Besides, we also applied 

the late fusion (decision level fusion) strategy which uses input modalities independently 

followed by fusion at a decision-making stage. It is inspired by the popularity of ensemble 

methods [27]. Three different rules are used in this paper to combine independently trained 

classifiers: a) majority voting of predicted class labels, b) average fusion of predicted class 

probabilities, and c) weighted average fusion of class probabilities with the weight set as the 

accuracy of the corresponding base classifiers.

4. Experiments and Results

We use LR classifier for the AD classification task. Two hyper-parameters are fine-tuned 

for optimized performance. Regularization strength λ was tuned with grid search between a 

range of 5e-5 and 1e2, and penalty is chosen from {L1, L2}.

4.1. LOSO evaluation of acoustic models

In Table 1, we show the classification results of five acoustic feature sets. eGeMAPS 

outperforms other sets with a leave-one-subject-out (LOSO) accuracy of 74.10% on 

the training set. This result is closely followed by the Paraling. and ComParE models 

which achieve the second-best single model accuracy of 71.69%. Since Paraling. is a 

low-dimensional alternate to the ComParE set, these tied results are as expected. The 

model based on GeMAPS achieved an accuracy of 68.67%, which is 5.43% lower than 

the eGeMAPS based model. This indicates that the 26 additional features in the extended 

minimalistic set do have some contribution to dementia recognition. Furthermore, the 

ensemble methods can boost the overall performance of audio modality to 77.11%.

4.2. LOSO evaluation of linguistic models

From the summary in Table 2, we see that models based on transcripts generated by Google 

Cloud universally outperform models based on DeepSpeech transcripts. Among them, BERT 

word embedding model achieved the best LOSO accuracy of 75.30%. This result is followed 

by the result of another embedding based model BERTsent. LIWC based models from both 

transcription settings have an accuracy of less than 70%.

We noticed that the average number of words is 60.9 for transcripts generated by pretrained 

DeepSpeech and 91.2 for those generated by Google Cloud speech-to-text service, which 

indicates that the latter may have a better speech recognition performance on this particular 

data set. This partially explains why models based on the latter generally have better 

classification performance.
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4.3. Modality Fusion

An ideal feature set should be compact enough to be implemented in a real-time system 

and robust enough to detect subtle changes of spontaneous speech of people developing 

dementia. Here we used early and late fusion strategies to investigate the multi-modality 

classification problem and the results are summarized in Table 3. Three linguistic feature 

sets based on Google Cloud transcripts are combined with each one of the top three 

acoustic feature sets in Section 4.1. The best accuracy is achieved by simple early fusion of 

google-LIWC (g-LIWC) and eGeMAPS. This combination also produces the most compact 

feature set (152 features in total) in our modality fusion settings. Furthermore, feature sets 

from both modalities are interpretable, which can help us to have a better understanding of 

the linguistic and paralinguistic characteristics of the disease. The second-best performance 

comes from the late average fusion of google-BERTword (g-BERTword) and eGeMAPS, 

which is higher than the early fusion of the same sets. Late fusion, however, does not 

always outperform early fusion. Late fusion of g-LIWC and eGeMAPS, for example, has 

an accuracy 9% lower than the early fusion. Besides, we also applied ensemble methods to 

combine the predictions of either all of the twenty single classifiers or the selected top ten 

classifiers. An early fusion model is considered a single classifier here since it is trained 

only once after feature concatenation. The best ensemble accuracy is 80.72% following the 

majority voting rule.

4.4. Predictions for the test partition

ADReSSo challenge allows each team to submit the results of five attempts. A summary 

of the baseline and our results for the test set is provided in Table 4. For the first attempt, 

we use predictions from the early fusion of g-LIWC and eGeMAPS, which was the best 

performing model on the training partition by achieving an accuracy of 81.93%. On the test 

set, however, this model only achieved an accuracy of 64.79%, which indicates overfitting 

on the training set. The second attempt is the early fusion of g-BERTsent and Paraling., 

which is the second-best early fusion model. The performance dropped a little bit on 

the test set from 77.11% to 74.65%. The third attempt is the majority voting of all the 

classifiers from audio modality which achieved an accuracy of 67.61% on the test set. 

This indicates that the information that audio modality offers is not robust and sufficient 

enough for AD detection. The fourth and fifth attempts used ensemble strategies. Majority 

voting and average fusion are applied separately on the top 10 best-performing models. The 

resultant prediction accuracy scores for the test partition are 80.28% and 81.69%, which are 

both better than the challenge baseline of 78.87%. We also noticed that these two models 

achieved similar accuracy on the training set and test set, which shows that the ensemble 

increased the robustness of the models.

5. Discussion

The effectiveness of several paralinguistic feature sets for Alzheimer’s recognition was 

evaluated in Section 4.1. In addition to utilizing those predefined features sets, one future 

direction could be introducing paralinguistic embeddings generated from a representation 

model pretrained on a large external dataset to our dementia recognition pipeline. While 
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representation learning models like BERT have achieved great success in the text domain, 

such methods are underutilized in the speech domain.

Our model built on linguistic and acoustic features achieved the best accuracy of 81.69% 

on the test set, while paralinguistics based model only had an accuracy of 67.61%. This 

indicates that although paralinguistic changes are potential markers of dementia, acoustic 

modality alone may not have enough information for the diagnosis of disease. Introducing 

linguistic features through ASR often leads to a considerable improvement to the predictions 

accuracy of the disease, despite the fact that the ASR transcripts have a relatively high word 

error rate.

Another observation is that, from the aspect of accuracy and robustness, ensemble methods 

generally gives better performance, especially when we have lots of individual classifiers. 

This is because the errors from multiple models are dealt with independently.

We also noticed that the most promising model based on eGeMAPS and g-LIWC on the 

training set performs worst among the five attempts on the test partition. One explanation 

for the performance gap between training and test stages might be the disadvantage of 

LOSO cross validation. Even though test-error is unbiased in each iteration, LOSO has 

a high variability as only one observation is predicted for validation. Stratified 10-fold 

cross-validation or nested cross validation could be applied in future study to alleviate the 

overfitting issue caused by LOSO. Another possible explanation might be the choice of base 

classifier. Our logistic regression model marginally outperformed other machine learning 

classifiers, including SVM, decision tree, and multilayer perceptron, regarding the LOSO 

performance on the training set, while other classifiers might be more robust to the outliers 

or have a better generalization capability.
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Figure 1: 
Framework of automatic screening of AD.
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Table 1:

Summary of results for AD classification using acoustic features on LOSO cross-validation

Feature Set Accu. F1 Spec.

MFCC 67.47 69.32 64.56

GeMAPS 68.67 70.79 64.56

eGeMAPS 74.10 75.98 69.62

ComParE 71.69 72.83 70.89

Paraling. 71.69 72.19 73.42

Maj. voting 77.11 78.41 74.68

Avg. fusion 74.7 75.58 74.68

Wgt. fusion 74.7 75.58 74.68
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Table 2:

Summary of results for AD classification using linguistic features on LOSO cross-validation

ASR Model Feature Set Accu. F1 Spec.

DeepSpeech LIWC 67.47 71.28 56.96

BERTword 68.07 71.04 60.76

BERTsent 70.48 73.22 63.29

Maj. Voting 69.88 72.53 63.29

Avg. Fusion 66.87 69.95 59.49

Wgt. Fusion 67.47 70.33 60.76

GoogleCloud LIWC 69.88 71.26 68.35

BERTword 75.30 76.30 74.68

BERTsent 72.89 74.58 69.62

Maj. Voting 75.30 76.84 72.15

Avg. Fusion 71.08 72.41 69.62

Wgt. Fusion 71.08 72.41 69.62

Overall Maj. Voting 73.49 75.0 70.89

Avg. Fusion 72.29 74.44 67.09

Wgt. Fusion 72.29 74.44 67.09
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Table 3:

Results of multimodal methods on training set LOSO cross-validation

FS Feature Set Accu. F1 Spec.

Early g-LIWC+eGeMAPS 81.93 82.56 82.28

g-BERTword+eGeMAPS 75.90 76.74 75.95

g-BERTsent+eGeMAPS 74.10 75.71 70.89

g-LIWC+ComParE 71.69 73.45 68.35

g-BERTword+ComParE 74.70 75.58 74.68

g-BERTsent+ComParE 75.30 76.02 75.95

g-LIWC+Paraling. 75.90 76.74 75.95

g-BERTword+Paraling. 77.11 77.91 77.22

g-BERTsent+Paraling. 78.92 80.23 75.95

Late g-LIWC + eGeMAPS 72.29 74.16 68.35

g-BERTword + eGeMAPS 77.71 78.61 77.22

g-BERTsent + eGeMAPS 75.90 77.01 74.68

g-LIWC + ComParE 71.08 72.09 70.89

g-BERTword + ComParE 72.89 74.29 70.89

g-BERTsent + ComParE 72.29 73.26 72.16

g-LIWC + Paraling. 73.49 74.42 73.42

g-BERTword + Paraling. 72.29 74.73 65.82

g-BERTsent + Paraling. 71.08 71.76 72.15

Ens. Overall Avg. 75.3 76.84 72.15

Overall Maj. 77.11 79.12 70.89

Overall Wgt. 80.12 80.92 79.75

Top-10 Avg. 79.52 80.23 79.75

Top-10 Maj. 80.72 81.18 82.28

Top-10 Wgt. 79.52 80.23 79.75
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Table 4:

Summary of results for AD classification on test set

Feature Set Accu. F1 Spec.

g-LIWC+eGeMAPS 64.79 72.22 61.54

g-BERTsent+Paraling. 74.65 80.56 72.73

Audio Maj. 67.61 77.78 63.49

Top-10 Maj. 80.28 88.89 78.13

Top-10 Avg. 81.69 88.89 80.00

Challenge baseline[6] 78.87 77.78 78.87
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