
ORIGINAL RESEARCH
published: 07 April 2020

doi: 10.3389/fnins.2020.00290

Frontiers in Neuroscience | www.frontiersin.org 1 April 2020 | Volume 14 | Article 290

Edited by:

Hasan Ayaz,

Drexel University, United States

Reviewed by:

Damien Coyle,

Ulster University, United Kingdom

Masayuki Hirata,

Osaka University, Japan

*Correspondence:

Jun Wang

jun.wang@austin.utexas.edu

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 11 August 2019

Accepted: 13 March 2020

Published: 07 April 2020

Citation:

Dash D, Ferrari P and Wang J (2020)

Decoding Imagined and Spoken

Phrases From Non-invasive Neural

(MEG) Signals.

Front. Neurosci. 14:290.

doi: 10.3389/fnins.2020.00290

Decoding Imagined and Spoken
Phrases From Non-invasive Neural
(MEG) Signals

Debadatta Dash 1,2, Paul Ferrari 3,4 and Jun Wang 2,5*

1Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, United States, 2Department of

Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States, 3MEG Lab, Dell Children’s Medical

Center, Austin, TX, United States, 4Department of Psychology, University of Texas at Austin, Austin, TX, United States,
5Department of Communication Sciences and Disorders, University of Texas at Austin, Austin, TX, United States

Speech production is a hierarchical mechanism involving the synchronization of the brain

and the oral articulators, where the intention of linguistic concepts is transformed into

meaningful sounds. Individuals with locked-in syndrome (fully paralyzed but aware) lose

their motor ability completely including articulation and even eyeball movement. The

neural pathway may be the only option to resume a certain level of communication

for these patients. Current brain-computer interfaces (BCIs) use patients’ visual and

attentional correlates to build communication, resulting in a slow communication rate

(a few words per minute). Direct decoding of imagined speech from the neural signals

(and then driving a speech synthesizer) has the potential for a higher communication

rate. In this study, we investigated the decoding of five imagined and spoken phrases

from single-trial, non-invasive magnetoencephalography (MEG) signals collected from

eight adult subjects. Two machine learning algorithms were used. One was an artificial

neural network (ANN) with statistical features as the baseline approach. The other was

convolutional neural networks (CNNs) applied on the spatial, spectral and temporal

features extracted from the MEG signals. Experimental results indicated the possibility to

decode imagined and spoken phrases directly from neuromagnetic signals. CNNs were

found to be highly effective with an average decoding accuracy of up to 93% for the

imagined and 96% for the spoken phrases.

Keywords: MEG, speech, brain-computer interface, wavelet, convolutional neural network, neural technology

1. INTRODUCTION

Speech is an essential attribute of humans, with the execution of verbal communication being
underpinned by a very complex—yet poorly understood—relationship between neural processing
and articulation. Speech centers of the brain including primary motor regions in synchrony with
the articulators guide the mechanism of speech production where thoughts are transformed into
meaningful words in the form of acoustics (Levelt, 1999; Ackermann, 2008). Brain damage or
late-stage neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) leads to a state
called locked-in syndrome, where patients are cognitively intact but motorically “locked-in” (Smith
andDelargy, 2005; Kiernan et al., 2011). There is a population incidence of about 0.7/10, 000 for the
locked-in syndrome (Kohnen et al., 2013). Communication assistance is critical for these patients
to resume a meaningful life. Since the whole body, including the articulators, fingers, and eyes are
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paralyzed, a motoric bypass directly utilizing brain activity
might be the only option to reestablish their communication.
Electroencephalography (EEG) is the standard modality from
which cortical potentials, P300, or sensory-motor rhythm (SMR)
oscillations are used for assessing the brain dynamics in brain-
computer interfaces (BCIs) (Brumberg et al., 2010). EEG is a
reasonable choice for brain-based communication for patients
with debilitating neurodegenerative diseases, primarily because
of its non-invasiveness, low cost, and satisfactory temporal
resolution (Birbaumer, 2006). However, the major disadvantage
of current EEG-BCIs is the slow word synthesis rate which is
about a few words (< 10) per minute (Birbaumer, 2006). This
is mostly due to the passive letter selection paradigm of the
EEG-BCI designs where subjects are required to select control
characters randomly displayed on a screen prompted with visual
or attention correlates. A direct neural speech decoding approach
may improve efficacy by providing a faster communication rate
than the current BCIs. In this framework, once the imagined-
or intended-speech is generated internally, these signals are then
decoded to text or speech parameters, and then a text-to-speech
synthesizer (Cao et al., 2017) or a vocoder (Akbari et al., 2019)
can be used to construct speech immediately.

While a number of speech decoding studies have been
conducted using EEG recently such as for classification of
imagined syllables (D’Zmura et al., 2009; Brigham and Vijaya
Kumar, 2010; Deng et al., 2010), isolated phonemes (Chi
and John, 2011; Leuthardt et al., 2011; Zhao and Rudzicz,
2015; Yoshimura et al., 2016), alphabets (Wang et al., 2018),
or words (Porbadnigk et al., 2009; Nguyen et al., 2017;
Rezazadeh Sereshkeh et al., 2017), the decoding performances
have been intermediate, e.g., 63.45% for a binary (yes/no)
classification (Rezazadeh Sereshkeh et al., 2017) or 35.68%
for five vowel classification (Cooney et al., 2019a). There are
inherent disadvantages in using EEG that may have contributed
to the difficulty in attaining high decoding performance. For
example, EEG recorded signals are distorted by neural tissue
boundaries, skull, and scalp. Additionally, EEG is reference-based
and has a relatively lower spatial resolution. Functional magnetic
resonance imaging (fMRI), which has a high spatial resolution,
has also been used for speech decoding but only during speech
perception, speech categorization, and speaker recognition
(Formisano et al., 2008). Although these studies are important
for understanding the neural speech perception mechanism,
decoding speech perception is not adequate to drive a speech-
BCI for intended/imagined speech production. Furthermore,
fMRI has a low temporal resolution (Dash et al., 2018a,b) and
hence is not suitable for decoding speech production. Very
recently, Electrocorticography (ECoG) has shown great potential
for direct neural speech decoding of spoken, isolated phonemes
(Ramsey et al., 2018), words (Kellis et al., 2010; Martin et al.,
2016), and even of continuous speech (open set phrases) (Herff
et al., 2015). Direct synthesis of speech from neural signals has
also been shown to be possible with ECoG (Angrick et al.,
2019; Anumanchipalli et al., 2019). However, ECoG requires a
craniotomy and surgical placement of electrodes into the brain,
which presents a challenge for establishing bio-compatibility
between the device and the brain for long-term use. In addition,

with ECoG, only a part of the brain (usually speech centers) is
utilized as it is extremely impractical, if not impossible, to implant
electrodes across the whole brain. Thus, a non-invasive, high
temporal resolution, whole-head neuroimaging modality holds
the potential for the development of future BCIs with a faster
communication rate.

The current focus of neural decoding has been on either
overt speech (Dash et al., 2018d; Livezey et al., 2019) or
imagined (covert) speech, which corresponds to imagining
speech pronunciation in the absence of articulatory and acoustic
output (D’Zmura et al., 2009; Yoshimura et al., 2016; Rezazadeh
Sereshkeh et al., 2017; Cooney et al., 2018). Considering the
behavioral difficulty in investigating imagined speech, it is
understandable that the majority of the speech-BCI research
is dominated by overt speech decoding studies. Overt speech
performance can be verified with the produced acoustic output
whereas the verification of imagined speech production is
ambiguous, indefinite, and subjective. In fact, the current
decoding studies involving open-set brain to text (Herff et al.,
2015; Moses et al., 2019) or brain to speech (Angrick et al.,
2019; Anumanchipalli et al., 2019) decoding are on overt speech.
Current neural decoding of imagined or intended speech is
still limited to closed-set classifications (Guenther et al., 2009;
Brumberg et al., 2011; Ikeda et al., 2014; Nguyen et al., 2017;
Cooney et al., 2018). For instance, using EEG, researchers have
successfully performed imagined speech decoding by classifying
various short speech units, e.g., two syllables (D’Zmura et al.,
2009), five phonemes (Chi and John, 2011), two vowels (Iqbal
et al., 2015; Yoshimura et al., 2016), seven phonemes (Zhao and
Rudzicz, 2015), and even words (Porbadnigk et al., 2009; Nguyen
et al., 2017; Rezazadeh Sereshkeh et al., 2017; Hashim et al.,
2018). Studies using ECoG have also shown the possibility of
decoding imagined speech (Ikeda et al., 2014; Martin et al., 2016).
However, there is still room for improvement in the accuracies
obtained in all of these imagined speech decoding studies. There
is some evidence from fMRI that imagined speech produces
lower levels of brain activity compared to overt speech (Palmer
et al., 2001; Shuster and Lemieux, 2005), which may explain
the lower decoding performance of the former in literature. In
short, there is a need for improved performance of decoding
imagined speech.

In this study, we performed decoding of both imagined and
overt speech production. Instead of using isolated phonemes or
syllables, we collected neural data during the imagination and
production of phrases (e.g., how are you?), with the eventual
goal of open-vocabulary decoding (decoding phonemes within
phrases) for naturalistic communication (Iljina et al., 2017).
Here, we classified whole phrases, as a starting point. The
neurolinguistics underpinnings supporting phrase-level covert
or overt articulation is widely studied topic, but has not yet
been explored in a decoding experiment (Memarian et al.,
2012). Furthermore, acknowledging the difficulty in verifying the
behavioral compliance of imagined speech production (Cooney
et al., 2018), in contrast to the data acquisition paradigm of
current literature for separately collecting data for overt and
imagined speech, we collected the neural signals corresponding
to imagined and overt speech consecutively, within the same
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trial, where the timing of this paradigm constrained the subjects
to imagining/preparing the same phrase he/she is expected to
articulate for the trial.

We used magnetoencephalography (MEG) to record the
neuromagnetic signals corresponding to speech imagination and
production. Magnetoencephalography (MEG) is a non-invasive,
whole-head neuroimaging modality that uses highly sensitive
magnetometers and gradiometers to record the magnetic fields
associated with intracellular post-synaptic neuronal currents
in the brain (Cohen and Cuffin, 1983). Unlike the electric
signals measured with EEG and ECoG, the magnetic field
signals measured by MEG pass through the dura, skull, and
scalp relatively undistorted, and thus provide a more accurate
representation of the underlying brain activities. MEG has a
higher spatial resolution than EEG while maintaining a very high
temporal resolution (1ms or even lower). These unique benefits
make MEG a great fit for the investigation of speech decoding.
Recent MEG based speech studies suggest the efficacy of MEG
in capturing the fast temporal dynamics of the speech signal
(Simos et al., 1998; Memarian et al., 2012;Wang et al., 2017; Dash
et al., 2018d, 2019b), and provide further evidence in support of
the use of neuromagnetic signals to be used in speech decoding.
Although current MEG machines are non-portable and costly,
a recent study on wearable MEG (Boto et al., 2018) showed
the potential of building next-generation, portable MEG devices.
Further, unlike SQUID based measurement system, it uses
optically pumped magnetometers (OPMs) which can reduce the
cost dramatically. These recent advances in technology hold great
promise for suitable MEG mediated speech-BCI applications in
the near future.

Three decoding approaches were tested in this experiment.
First, we used an artificial neural network (ANN) trained on
the root mean square (RMS) features of the neural signals.
We considered this approach as our baseline, which was used
in our pilot studies (Dash et al., 2018c,d). Considering the
difficulty in collecting lots of neural signal data, previously,
researchers have employed simpler decoders for classification
equivalent to our baseline approach such as matched filter
on Hilbert envelope features (D’Zmura et al., 2009), Bayesian
classifier based on multi-class linear discriminant analysis (LDA)
on Hilbert envelope features (Deng et al., 2010), or spectral
features (Chi and John, 2011), nearest neighbor classification
on the features extracted with Euclidian distance of the
coefficients from autoregressive models (Brigham and Vijaya
Kumar, 2010), support vector machine on statistical features
(Zhao and Rudzicz, 2015), and Euclidian distance feature
(Martin et al., 2016), relevance vector machine on Riemannian
manifold features (Nguyen et al., 2017), hiddenMarkovmodel on
temporal neural signals (Porbadnigk et al., 2009), artificial neural
network on Wavelet-transform based statistical features (root
mean square and standard deviation) (Rezazadeh Sereshkeh
et al., 2017), etc. Among all, ANN with wavelet-transform
based statistical features (Rezazadeh Sereshkeh et al., 2017)
has shown comparatively better decoding performance which
inspired our pilot studies and baseline of this study for
exploring with statistical features and using ANN as the decoder.
Second, we employed convolutional neural networks (CNNs)

trained on spectral-temporal features in terms of scalograms
of the neuromagnetic signals. Third, to further utilize the
neural information, we added spatial dimension on top of
the second approach. In other words, CNNs were trained
using spatial-spectral-temporal features in the third approach.
CNNs have recently shown great potential in a wide variety of
application in computer vision, and acoustic speech decoding,
which outperform ANNs. CNNs are inspired by visual cortex
architecture of the brain where the cortical neurons work on a
restricted area of the visual domain (called receptive field) by
partial overlapping with each other to cover the whole visual
space. CNNs are functionally very similar to the traditional neural
networks as it operates as a variation of multilayer perceptions,
but are modeled to require minimal processing (Cireşan et al.,
2011). In Roy et al. (2019), it is reported that a total of 40% studies
amongst all research involving deep learning applications to EEG
have used CNNs, but none of them were for speech decoding.
Nevertheless, the efficacy of CNN for neural data analysis can
be translated for neural speech decoding which we experimented
within this study. Moreover, a few recent studies have shown the
efficacy of using CNN to analyze MEG (Hasasneh et al., 2018;
Dash et al., 2019a; Huang and Yu, 2019) or EEG data (Cooney
et al., 2019a,b), which further strengthens our motivation for this
approach. To our knowledge, this is the first study using CNNs to
explore neural speech decoding with MEG.

2. DATASET AND FEATURE EXTRACTION

2.1. Data Collection
Eight right-handed subjects (five males and three females) with a
mean age of 41 years (standard deviation = 14 years) participated
in the data collection. The subjects had normal or corrected to
normal vision. No speech/language/hearing or cognitive history
was reported from the subjects. All the subjects were English
speakers. Written consent was obtained from each subject prior
to the experiment. This study has been approved by the local
ethics committees at the University of Texas at Dallas, the
University of Texas at Austin, Dell Children’s Medical Center
(Austin, TX), and Cook Children’s Hospital (Fort Worth, TX).

The data acquisition was performed at two places, one at
the MEG Lab, Cook Children’s Hospital where the data were
collected from four subjects. The data for the other four subjects
were collected at the MEG lab, Dell Children’s Medical Center.
The two hospitals have identical Elekta Neuromag Triux MEG
devices as shown in Figure 1, which were used to record the
brain activity signals. The machine consists of 306 channels with
204 planar gradiometers and 102 magnetometer sensors. It is
housed within a magnetically shielded room (MSR) to discard
any unwanted environmental magnetic field interferences. Prior
to recording, the coordinate system based on three fiducial points
(the left and right pre-auricular points and one at the nasion)
was created for the subjects. For coregistration of the subjects
within the MEG system, five head-position-coils were fixed to
their head and digitalized using a Polhemus Fastrak, and then
localized in the MEG at the start of each experimental run.
The brain activity signals were acquired via MEG with 4 kHz
sampling frequency which were then band-pass filtered and
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FIGURE 1 | A MEG unit. The picture represents the Neuromag Eleckta Ltd.

MEG machine situated within a magnetically shielded room at the Cook

Children’s Hospital, Texas. A subject is seated comfortably in the unit. The

projected display is for showing the stimuli (text) in a pseudo-randomized order.

resampled to 1 kHz. Eye-blinking artifacts were collected through
electrooculography (EOG) by two integrated sensors placed at
the upper and lower aspect of the outer-canthi. The cardiac
signal was recorded by two bipolar integrated electrocardiograph
(ECG) sensors placed on top of the collarbone areas. Acoustic
output during the speech production stage was recorded through
a standard built-in microphone connected to a transducer placed
outside the MSR. To record the jaw movement, a custom-made
air bladder was used which was connected to an air pressure
sensor. By recording the depression in that bladder jaw motion
data during articulation was acquired. Both speech and jaw
movement analog signals were then digitized by feeding into the
MEGADC in real-time as separate channels. All the sensors were
checked for noise and calibrated prior to data collection. Subjects
sat upright in the MEG with their hands resting on a platform
in front of them. In order to reduce head movements, subjects
underwent a few minutes of adjustments and training about
slouching. Visual stimuli were generated by a computer running
the STIM2 software (Compumedics, Ltd.), and presented via a
DLP projector situated at 90 cm from the subjects’.

2.2. Experimental Protocol
The experiment was designed as a delayed overt reading
task, with four segments within each trial: pre-stimulus
(rest), perception, preparation (imagination), and production
(articulation) as shown in Figure 2. The pre-stimuli segment was
designated as a period of 0.5 s prior to the stimulus onset. The
perception segment was initiated by a single stimulus (phrase)
being displayed on the screen for the subjects to covertly read.
The stimulus was on the screen for 1 s after which it was replaced
by a fixation cross (+). The duration of the fixation was 1 s
which corresponded to the imagination (preparation) segment.
For this segment, the subjects were previously instructed to think
or imagine, and be prepared to speak. The removal of the fixation

FIGURE 2 | Protocol of the time-locked experiment. The four time-locked

stages of the experiment (rest → perception → preparation → articulation)

are shown here. The numbers represent the initial onset time of the stages.

Next trial starts with a non-movement baseline of 1 s. The screen was blank in

dark background during the pre-stimuli stage. A stimulus (text) was displayed

on the screen during the perception segment, then replaced by a cross sign

during the preparation stage. The cross disappeared (blank display) again

during the production stage.

cross prompted the subjects to overtly articulate the previously
viewed phrase at their natural speaking rate (production). The
average time for production/articulation segment was 2 s (for
one subject it was 1.5 s; for other two subjects it was 2 s,
and for the rest of the 5 subjects it was 2.5 s) based on the
natural speaking rate of the subjects. There was a 1 − 1.5
s of non-movement baseline prior to the next stimulus trial.
This 4-stage procedure was repeated for 100 trials for each
of the 5 stimuli. Five commonly used English phrases were
used as stimuli, selected from the phrase lists that are used
in alternative augmented communication (AAC) devices. They
are: phrase 1: Do you understand me, phrase 2: That’s perfect,
phrase 3: How are you, phrase 4: Good-bye, and phrase 5: I
need help. The presentation order of the stimuli was pseudo-
randomized to avoid response suppression to repeated exposure
(Grill-Spector et al., 2006; Cheyne and Ferrari, 2013). Subjects
were trained on some sample stimuli before the experiment to
ensure compliance. The whole experiment lasted approximately
45 min per subject.

2.3. Data Preprocessing
The recorded data of each stimulus type was then epoched into
trials from −0.5 to +4 s centered on stimulus onset. Through
visual inspection, trials containing high amplitude recorded
artifacts were then removed from the MEG data. Trials in which
the subject did not comply with the paradigm timing e.g., “subject
spoke before the cue to articulate,” were also discarded. After
data preprocessing a total of 3, 046 valid trials were retained
out of 4, 000 (8 subjects × 5 phrases × 100 trials) recorded
trials with an average of 75 trials per phrase per subject. These
valid trials were then low-pass filtered below 250Hz with a 4th
order Butterworth filter for further analysis. For this study, only
gradiometer sensors were considered for decoding considering
their effectiveness in noise reduction and representation of the
stimuli based activation. Out of 204 gradiometer sensors, four
sensors showed high channel noise during data collection from
different subjects. Further, in case of some subjects, one or two
more sensors showed artifact like irregularities. In total, data
from eight sensors were excluded. In other words, data from 196
sensors were used for analysis.
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FIGURE 3 | Wavelet denoising. The left image represents the 5 raw MEG signals obtained from a sensor corresponding to the five different phrases. The right image

represents the corresponding denoised signals.

2.4. Wavelet Analysis
Even though the signals were checked rigorously for artifacts,
further presence of noise would hamper the characteristics
of true brain oscillations. To address this issue, researchers
typically employ one or several denoising algorithms (Haumann
et al., 2016) including short-time Fourier transform, temporal
signal source separation (t-SSS), principal component analysis
(PCA), independent component analysis (ICA), and wavelet
transform, etc. In particular, wavelets have been widely used
for the denoising of bio-signals including MEG (Dash et al.,
2018c). Wavelets express a signal as a linear combination of
a distinct set of functions, obtained by shifting and scaling a
single function (mother wavelet). Although the preprocessed
MEG signals were in 1 kHz sampling frequency range, functional
brain oscillations are believed to exist up to the high-gamma
frequency range (<∼ 125Hz) (Ahnaou et al., 2017). Thus,
we employed the Daubechies (db)-4 wavelet with a 7 level
decomposition to perform discrete wavelet transform (DWT) for
denoising and decomposing the MEG signals to specific neural
oscillations. Mathematically, a signal s with a seven level wavelet
decomposition can be represented as:

s = d1 + d2 + d3 + d4 + d5 + d6 + d7 + a7 (1)

Here, d1−7 are the detail coefficients whereas a7 is the low-
frequency approximation coefficient. The signal is decomposed
in such a way that in each level the signal disintegrates
into two components (details and approximation) such that
the detail component carries the high-frequency (upper half)
element whereas the approximation component contains the
low-frequency (lower half) oscillations. In this case, d1 and d2 are
the high-frequency signals with the frequency range 250 − 500
and 125 − 250Hz respectively which were discarded as noise.
The effectiveness of the proposed db-4 based denoising can be
observed in Figure 3 which shows the comparison of raw signal
vs. denoised signal after reconstruction (<125Hz), Since it has
been repeatedly shown that the neural information is encoded up
to high gamma frequency bandwidth, removal of high-frequency
components (>125Hz) was necessary. After removing d1 and d2,
the reconstructed signals from the remaining detail frequency

components d3−7 represented the high-gamma (62–125Hz),
gamma (31–58Hz), beta (16–30Hz), alpha (8–16Hz), and theta
(4–8Hz) frequency bands of the neural signal. The reconstructed
approximation signal from a7 was the low-frequency delta band
oscillation (0.1–4Hz).

3. DECODING APPROACHES

In this study, we performed a five-class classification task
where each class corresponded to one phrase. Considering the
tremendous cognitive variance across subjects (Dash et al.,
2019c), only subject dependent decoding was performed, where
training and testing data were from the same speakers (but
unique). The classification task was performed on each of
the four whole data segments (i.e., pre-stimuli, perception,
preparation/imagination, and production/articulation). We
leveraged two machine learning algorithms including a classic
ANN as the baseline and the latest CNNs (i.e., AlexNet, ResNet,
Inception-ResNet). The input to ANN was the root mean square
(RMS) features of the denoised and decomposed MEG signals
from each data segment. The input to CNNs was scalogram
images generated from the denoised MEG signals of the whole
data segments. Each of these methods is briefly described below.

3.1. Artificial Neural Network (ANN)
ANNs have been widely used for pattern classification problems
to model a set of inputs leading to corresponding target outputs.
The architecture of ANN is characterized by multiple connected
nodes or neurons for functional processing. Considering its
robust and efficient non-linear computational modeling, we used
a shallow ANN as our baseline approach to classify the MEG
acquired neural responses of the brain for the five respective
stimuli. The input to the ANN classifier was the concatenated
RMS features obtained from each of the six neural oscillation
signals, high-gamma, gamma, beta, alpha, theta, and delta. A
total of 196 gradiometer sensors (204 gradiometers—8 discarded
due to noise) were considered for analysis. Thus, the input
feature dimension of the ANN was 1, 176 (6 frequency bands
×196 sensors). A variety of statistical features (mean, median,
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FIGURE 4 | ANN architecture. Here the circles represent the nodes whereas

the arrows represent the connections between the nodes. The input layer is an

1, 176 dimensional feature vector. The hidden layer consists of 256 nodes and

the remaining layers are of 5 nodes.

standard deviation, quartiles, tertiles, energy, windowed energy,
cross-correlation matrix) were first extracted and examined for
the statistically significant difference across the 5 classes. RMS
turned out to be the best feature which was significantly different
across classes (1-way ANOVA, followed by Tukey; P < 0.001).
Feature combination was not explored since the dimension of
a single type of feature was already very large (1, 176). A single
hidden layer consisting of 256 number of hidden nodes with
randomized weights was used during the initialization of the
ANNmodel. A five-dimensional sigmoid activation function was
connected after the hidden layer to transform the learned weights
into a non-linear hyper-dimensional space. A five-dimensional
fully connected softmax layer was used after sigmoid which was
further connected to a five-dimensional fully-connected (FC)
output classification layer to represent the cross-entropy of the
five phrases. The weights of the nodes in the hidden layer of
the ANNwere updated via back-propagation using the stochastic
gradient descent algorithm. The architecture of the used shallow
ANNmodel is shown in Figure 4.

We used a coarse-to-fine hypermeter tuning strategy for
tuning the learning rate with the range of values: 0.1, 0.01,
0.001, and 0.0001 on validation data, where 0.01 yielded the
best performance and was used in the experiment. The data was
divided into three parts as train, validation, and test such that
train data consisted of 70% of the whole data whereas the test
and validation data consisted of 15% each of the whole data.
Our previous finding on determining the optimal number of
trials for speech decoding with ANN (Dash et al., 2018c) has
suggested that a total of 40 trials are sufficient for speech decoding
after which the performance saturates. Hence, the traditional data
split (70%− 15%− 15%) of train-validation-test was performed.
Further, to avoid biased split, we performed ANN training on
three separate random splits to find the average performance.
Data overfitting was checked with the validation data by ensuring
the early stopping of the training when the model started to
generalize the data. A continuous increase in validation loss
for more than 6 epochs was considered as the threshold for
data overfitting. Although the maximum number of epochs were
set to 100, as the data size was small, data overfitting started
to occur even after an average of 35 epochs. Further, we have

experimented with various combinations of hidden layer nodes
to train the model to find the optimal number of nodes to
train the MEG data. We tuned with various 64× nodes (i.e.,
64, 128, 192, 256, 320, 384, 448, 512, 640, and 1, 024 nodes) and
observed an increase in validation accuracy from 64 to 256 and
then the validation accuracy saturated after 256 nodes until 512
nodes. Early data over-fitting resulted while training with more
than 512 nodes in the hidden layer.

3.2. Convolutional Neural Networks (CNNs)
CNNs operate on the data by applying convolution operation on
a selected receptive field. CNN makes the implicit assumption
of the inputs to be images, which allows for encoding of certain
properties into the architecture. CNNs are scale and shift-
invariant based on their shared weight and translation invariance
characteristics. Typically, a CNN architecture is formed by a
stack of distinct layers (convolution, pooling, and activation)
that transform the input data to an output volume with relevant
class scores through a differentiable function. Here, we have
used three recent deep convolutional neural networks namely
AlexNet (Krizhevsky et al., 2017), ResNet101 (Wu et al., 2018),
and Inception-ResNet-v2 (Szegedy et al., 2016) to evaluate the
effectiveness of CNN for speech decoding (Figure 5). Each of the
three architectures has been popularly used as classifiers for their
high-performance achievement. These deep ConvNets are pre-
trained with more than a million images of 1, 000 categories from
the ImageNet database (Russakovsky et al., 2015) to learn rich
features from the images.

3.2.1. AlexNet

AlexNet was the first deep CNN to be introduced which increased
the accuracy with a very high stride compared to the then
traditional approaches. It consists of five convolution layers and
three fully connected (FC) layers. The kernels (filters) employed
in this CNN architecture are of 11 × 11, 5 × 5, and 3 × 3
sizes and has rectified linear unit (ReLU) activation function
after each convolution operation. ReLU along with dropouts
were first introduced in this architecture which make AlexNet
significantly faster and over-fit voided. Further, with dropouts,
neurons are randomly chosen and are switched off. This restricts
the neurons to coadapt and hence they learn meaningful features,
independent of other neurons.

3.2.2. ResNet

ResNets introduced residual modules in the architecture which
solved the degradation problem (naive addition of deeper layers
leading to high training error) during the training of deeper
networks. These modules create a direct pathway between input
and output and learn the features on top of the available input.
The residual networks were shown to be easily optimized and
can gain accuracy with a significantly deeper architecture. In
other words, residual modules can be thought of as shortcut
connections for identity mapping. This architecture consists of
101 layers with largely 3 × 3 filters. The other attribute of
this architecture is the use of global average pooling which is
discussed to contribute to better accuracy since it’s more native
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FIGURE 5 | CNN architecture. Three pre-trained deep CNNs were used with the final layers replaced by fully connected, softmax, and classification layer each with 5

nodes to suit for a 5-phrase classification problem.

to the convolutional structure and more robust to the spatial
translations of the input.

3.2.3. Inception-ResNet-v2

Inception-ResNet-v2 is the second version of the combined
Inception and ResNet architecture based on the idea of
Microsoft ResNet to integrate residual modules on top of
Inception architecture. This network has achieved one of the best
performances in the ILSVRC classification task (Russakovsky
et al., 2015). This ConvNet is 164 layers deep consisting of one
Inception-v4 with three residual networks. The advantage of the
Inception network is that here the inputs go through 1 × 1,
3× 3, and 5× 5 kernels simultaneously with max-pooling which
are then concatenated to form the output. Hence, there is no
need of deciding on the filter size at different layers. Further,
the addition of residual networks accelerates the training of the
Inception-v4 network.

3.2.4. Features for CNNs

In this experiment, two types of features were used to validate
the efficacy of CNN in speech decoding. The first of these
were spectral-temporal features extracted from the MEG signals,
that were the scalogram images of the gradiometer signals
which consist of the multi-scale variation of spectral and
temporal features. The second was spatial-spectral-temporal
features where we embedded the spatial information (sensors) of
the corresponding gradiometers in the images. Color scalogram
images were generated from the two types of features and were
used as the input to the three CNN architectures.

3.2.4.1. Spectral-temporal features
Spectral features of neural signals carry important latent
attributes of neural response (Halme and Parkkonen, 2016). To
benefit from the frequency information of the brain activity
signals we computed the wavelet scalograms of the denoised
MEG signals by performing continuous wavelet transform
(CWT) with Morlet wavelets. For this, the db-4 decomposed
signals were first reconstructed back up to the 2nd level
to accommodate all the neural oscillations (up to high-
gamma frequency bandwidth). CWT generates an overcomplete
representation of the signal under analysis by convolving the
input data with a set of functions obtained by scaling and

FIGURE 6 | Scalogram plot of neural signal. The image represents the cone of

influence (COI) plot of the scalogram representation of the brain signal

obtained from a sensor near Broca’s area. This is when the subject was

speaking “Do you understand me.” The color bar represents the change in

energy of various CWT coefficients obtained with Morlet wavelet.

translating the mother wavelet (here Morlet wavelet) across
various scales. The energy values of the CWT coefficients are
represented as scalogram images which are extremely useful in
conveying the spectral-temporal characteristics of a signal (Lilly
and Olhede, 2009). Morlet wavelet has been shown to be highly
effective in characterizing the MEG signal features (Tadel et al.,
2011), hence we used this wavelet to compute the scalograms.
Figure 6 gives an exemplary scalogram image of the neural
signal corresponding to a sensor approximately near to Broca’s
area while a subject is articulating “do you understand me.”
The scalogram images for each sensor signal during each stage
were generated for all the valid trials and then resized to the
specific size based on the requirement of the corresponding CNN
architecture (AlexNet, ResNet, and Inception-ResNet-v2) and
trained with each scalogram image as a sample. The evaluation
of classification accuracy with this feature was done on single-
trial level by computing the average cross-entropy score obtained
from the scalogram images of all 196 sensors within a single-trial.
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FIGURE 7 | Scalogram matrix of neural signal. The image represents a 14 × 14 matrix of scalogram images to represent the whole brain dynamics in a single image.

This is when the subject was speaking “Do you understand me” for a single trial.

3.2.4.2. Spatial-spectral-temporal features
To utilize the spatial information of the MEG signals in the
input images, we created a 14 × 14 matrix of scalogram images
(obtained from 196 sensors) within a single image (see Figure 7).
With this representation, for a single trial, the spatial (location)
information of all the sensors was encoded within a single image.
With this feature representation, the number of input images to
be trained with the networks became the same as the number
of trials which is about 50 per phrase per subject. Training

these deep ConvNets requires a considerably higher number of
inputs for proper training. Hence, we leveraged a commonly-
used data augmentation approach to address this issue. Data
augmentation as a self-regularizer has been demonstrated to be
effective in machine learning (Shorten and Khoshgoftaar, 2019)
particularly for small-data size problems. A linear positive shift of
both 100 and 200ms was performed on the signals and then their
scalogram images were generated. Since the average reaction
time of the subjects for speech production was about 250ms,
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this linear shift mechanism also helped in compensating for the
changes in the articulation onset along with inducing variability
in the input images. With this, the data size was increased to
three times larger than the original and was sufficient for the
training of the same three CNNs described above. To avoid
possible false positives, data augmentation was implemented
within each set (training, validation, or testing). In other words,
a trial and its augmented versions were always under the same
group (training, validation, or testing). Data augmentation for
the other CNN approach (with spectral-temporal features) and
the baseline approach was not needed since the training data
was sufficient as observed with low variance error. Further, for
ANN analysis, we have previously shown that after 40 trials, the
decoding performance saturates (Dash et al., 2018c), hence, data
augmentation was not necessary.

3.2.5. Experimental Setup for CNNs

As per the input requirement, for AlexNet the images were
resized to 227 × 227 × 3, for ResNet101 to 224 × 224 ×

3 and then for Inception-ResNet-v2 the input images were
of size 299 × 299 × 3. The third dimension (3) represents
the three (RGB) colored channels. Since, these networks have
been trained for a 1, 000 class image classification problem,
to tune these networks for our 5 class classification, the last
few layers were modified, keeping the initial layers untouched.
For AlexNet, the last three layers were replaced by an FC
layer, a softmax layer, and a classification layer each with five
nodes. Similarly, we used this five-dimensional FC layer and
softmax layer to replace the last two layers of ResNet101 (fc1000
and classificationLayer-Predictions) and of Inception-ResNet-v2
(Predictions and ClassificationLayer-predictions).

Figure 5 shows the architecture for implementing the deep
CNNs. For unbiased comparison, the learning rate for these three
networks was fixed at 0.0001. The weight-learn-rate-factor and
the bias-learn-rate-factor in the final fully-connected (FC) layer
were increased to 20 for faster learning in the new layers than
the transferred layers. For all the networks, Adam optimizer,
a minibatch size of 64, validation frequency and validation
patience of 6, a maximum epoch of 60 and gradient clipping
was used. The rest of the hyperparameters were kept at their
default values of the respective architectures. The same data
partitioning (70%-training, 15%-validation, and 15%-testing)
approach was employed here as well. The testing data were
completely unseen (without containing any augmented version
of the training or validation trials) and hence were new to
the model. Only validation data were used for hyperparameter
tuning and overfitting checking in the training stage. The CNNs
were trained on a 7-GPU parallel computing server running
on Linux (Ubuntu 16.04) platform using Keras imported to
Matlab 2018b.

4. RESULTS

4.1. Performances of the Decoding
Approaches
The classification accuracy was computed during each stage for
each subject and the average classification accuracy across the

eight subjects with each method can be seen in Figure 8. The
decoding performances during all the four stages (pre-stimuli,
perception, preparation/imagination, articulation) obtained with
ANN or CNNs were significantly higher than the chance level
accuracy (30%) (1-tail t-test, p < 0.05 for all). With the
shallow ANN (the baseline approach), the average classification
accuracy during the articulation stage was satisfactorily high
(90.55 ± 2.11%), but not for perception (71.95 ± 3.97%)
and imagination stage (80.83 ± 3.00%) (Figure 8). Both
of the approaches using CNN classifier [spectral-temporal
CNN (ST-CNN) and spatial-spectral-temporal CNN (SST-
CNN)] outperformed the baseline (ANN) in terms of the
average decoding accuracy during perception, imagination, and
articulation. The average classification accuracies obtained with
ST-CNN during perception, preparation, and production were
86.83 ± 2.93%, 91.71 ± 1.67%, and 93.56 ± 1.92%, respectively,
whereas, with SST-CNN the accuracies were 90.38 ± 2.28%,
93.24 ± 2.87%, and 96.65 ± 2.88%. The differences between
the decoding performances of ANN and CNN were statistically
significant, which was observed via the pairwise comparison of
the decoding performances with ANN, ST-CNN, and SST-CNN
(2-tail t-test, p < 0.05, for all possible pairs). The highest p-value
among all pairwise comparisons was 0.0099 when the decoding
performance of ANN and ST-CNN was compared during the
production stage. Among the two approaches involving CNN,
spatial-spectral-temporal-CNN (SST-CNN) performed better
than the spectral-temporal-CNN (ST-CNN) in terms of average
decoding accuracies. A 2-tail t-test comparison of decoding
performances between these twomethods resulted in a significant
difference between all pairs (p < 0.05), except between
spectral-temporal and spatial-spectral-temporal features with
CNN during the preparation stage (p = 0.2135). For the pre-
stimuli stage there was no significant difference between the
performances of all the three methods (2-tail t-test, p > 0.05).

Table 1 shows a comparison of the three specific CNN
architectures, where AlexNet slightly outperformed ResNet101
and Inception-ResNet-v2 in terms of decoding accuracy.
Although it has been shown that Inception-ResNet-v2 performs
better with the ImageNet database, in case of MEG scalograms it
was slightly different. We believe that the choice of higher initial
kernel size (11 × 11) in the AlexNet architecture might have
contributed to better performance. In the scalogram images, the
features are represented with energy blobs, thus a higher initial
kernel size might have helped produce better feature extraction.
Nevertheless, the performances of the three ConvNets were quite
similar with a standard deviation of <3% (Table 1). This further
strengthens the efficacy of CNNs for neural speech decoding.
To illustrate the details of the classification performance via
the best decoder (AlexNet), Table 2 gives the confusion matrix
obtained by combining the results from all the test sets across
all subjects during articulation, where the primary diagonal
numbers are the correctly classified sample. The average number
of misclassified samples per phrase was about 12 in the combined
test set (1, 382) of 8 subjects, i.e., 0.9% misclassification per
phrase. Further, the receiver operating characteristics was plotted
for each classification to observe the variation of true positive
rate (sensitivity) with false positive rate (1-specificity) (Figure 9:
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FIGURE 8 | Speech decoding accuracy. The bar graph represents the speech decoding accuracy obtained with different classifiers. For CNN the results with AlexNet

are reported. The error bars represent the standard deviation in decoding accuracy across subjects.

TABLE 1 | Performance comparison of AlexNet, ResNet101, and

Inception-ResNet-v2 in terms of decoding accuracies with

spatial-spectral-temporal features.

CNN architecture Pre-stimuli

(%)

Perception

(%)

Preparation

(%)

Production

(%)

AlexNet 43.77 90.38 93.24 96.65

ResNet101 42.61 84.75 87.78 92.36

Inception-ResNet-v2 42.52 87.98 91.66 94.49

Mean 42.96 87.70 90.89 94.50

STD 0.70 2.82 2.81 2.14

The test accuracies are averaged over 3 independent runs across subjects.

Exemplary ROC curve for overt speech decoding with SST-
CNN using AlexNet during training and testing) to validate
the classification. Figure 9 clearly shows the validation of the
classification performance across classes with a very high area
under the curve (AUC).

4.2. Performances During Pre-stimuli,
Perception, Imagination, and Production
Among the four stages (i.e., pre-stimuli, perception, imagination,
and production), best classification accuracy was always
during production, then imagination, followed by perception.
Comparing classification accuracies of all the four stages (i.e.,
pre-stimuli, perception, preparation/imagination, production; in
pairs), irrespective of classifiers, all the results were significantly
different (2-tail t-test, p < 0.05), except in one case, where no
significant difference was observed while comparing between
preparation and production stage using spectral-temporal
CNN. A slightly higher p-value than the desired confidence
(p = 0.0589) was observed. During imagination, the accuracy of
average speech decoding was above 91% in both cases of feature
representations (ST-CNN and SST-CNN), which indicates
that the information processing in the brain occurs prior to

articulation. Also, with the speech perception segment, a high
level (around 87–90%) accuracy was obtained, which is not
surprising. This provides further evidence in the literature that
decoding speech perception from the MEG signal is viable.
Theoretically, the decoding accuracy for the pre-stimuli segment
should be at the chance level which is about 30% for N =∼ 300
(∼ 60 trials× 5 classes) (Combrisson and Jerbi, 2015) (20% is for
ideal population size), as there was no stimulus or task during
this stage. However, the speech decoding accuracy obtained in
this stage with all the classifiers were significantly higher than the
chance level (1-tail t-test, p = 0.00013).

5. DISCUSSION

5.1. Comparison of Decoding Approaches
Overall, we found that CNNs with spatial-spectral-temporal
features performed better than CNNs using only the spectral-
temporal features, and that both CNN approaches outperformed
the ANN classifier. We used only a single value (RMS) feature
from one sensor for the ANN classifier. Temporal information
was not well represented here, which may explain the lower
accuracy compared to the CNNs and indicate the usefulness of
temporal information for decoding. In the current experiment,
the ANN feature dimension was 1, 176 which was higher than
the number of samples for training (about 250 per subject
across 5 phrases). A dimension reduction strategy prior to
the ANN training may improve the performance. There has
long been evidence regarding the role of neural oscillations
in brain function (Buzsáki and Draguhn, 2004; Formisano
et al., 2008), and spectral features of the brain activity signals
almost certainty carry more information than the integrated
energy of MEG signals. Thus, it is not surprising that we
found better classification accuracy using the spectral-temporal
features (scalograms) based CNN classifier compared to the
ANN classifier. However, a clear interpretation of what aspects
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TABLE 2 | Test confusion matrix for speech decoding accumulated across all subjects during articulation stage.

Predicted

Do you understand me That’s perfect How are you Good bye I need help Accuracy (%)

Do you understand me 1,332 12 19 11 8 96.38

That’s perfect 10 1,338 14 11 9 96.82

How are you 21 8 1,331 12 10 96.31

Good bye 12 15 12 1,337 6 96.74

True I need help 7 12 14 7 1,342 97.11

Average: 96.67

A total of 1,382 test trials have been taken (combined across 8 subjects).

FIGURE 9 | Receiver operating characteristics curve for one subject during the classification of phrases in the articulation stage using AlexNet. The plot represents the

variation between true positive rate (sensitivity) and true negative rate (1-specificity) to indicate the classification performance. For this curve average AUC >0.96

indicating a very high classification performance.

of the scalograms led to better performance is not straight
forward, because of the inherent differences in the feature sets,
in content and dimension. For our third approach, we added
spatial information on top of spectral-temporal features by
combining the scalograms of all the sensors into one image,
thereby representing the neural dynamics across the whole brain.
The improved results obtained with this approach (SST-CNN)
indicate that CNNs were indeed able to better utilize the spatial,
spectral, and temporal information from the MEG signals and
for learning the appropriate feature set for the decoding tasks.
The use of the scalogram images to represent the whole brain
dynamics is a novel strategy to leverage the efficiency of CNNs.
The same strategy can be applied while decoding with EEG or
ECoG channels as well. It is possible that the data augmentation
used in the SST-CNN approach might have contributed to better

performance by inducing variability in the data besides increased
data size for better CNN training. As mentioned previously, we
did not use data augmentation for the other CNN approach

(ST-CNN), because the data were sufficient for training it.
We believe that using data augmentation in ST-CNN might
also increase its performance. However, the training would be
extremely time-consuming.

One approach may be to transform the RMS features of 1, 176
dimension to a matrix (of size 14 × 28 × 3 or equivalent) and
then feed to the 2D-CNNs for classification. However, there
are numerous possible ways to construct such a matrix. The
other way of transforming the images into vectors to be used as
input to ANN is also not ideal as the feature vector dimension
would be huge. Thus, here we did not intend to compare the
features rather we compared the approaches used for decoding.
It should be noted that this study evaluated subject-dependent
classification performance, where training and testing data were
from the same subjects (but unique). Hence, the features learned
via CNNmight be subject-specific and may not generalize across
the population. Performing speaker-independent decoding is
extremely challenging considering the cognitive variance across
subjects. Subject normalization/adaptation based strategies are
needed to be assessed to address the subject-independent
decoding problem in the future (Dash et al., 2019d).

5.2. Contribution of Wavelets in Decoding
In the current study, we used discrete (DWT) and continuous
(CWT) wavelet transforms as a means to both reduce the
influence of noise and extract neural features from the
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neuromagnetic signals. There are numerous studies showing
wavelet decomposition to be an effective method for noise and
artifact reduction, including those generated by muscles signals
(Vialatte et al., 2008; Klados et al., 2009; Safieddine et al., 2012;
Harender and Sharma, 2017). Indeed, in a previous study using a
subset of the current data, we observed an increase in SNR of the
neural signals after DWT (Dash et al., 2018c).

Likewise, decomposing the signal into discrete neural
brainwaves may have assisted in producing robust feature
representations. Comparing the current ANN decoding results—
for three subjects—with an earlier pilot study (Dash et al.,
2018d), we observed that wavelet decomposition accounts for
an average decoding accuracy improvement of roughly 2%.
While this may a be modest improvement, our ANN feature
(RMS) integrates over the temporal domain effectively, removing
temporal information that is well known to reflect specific
functional processes (Andreou et al., 2015). Specific frequencies
have been used in the past for decoding (Chi and John, 2011),
so it stands to reason that the temporal information in our
novel scalogram approach may have significantly contributed to
decoding efficiency in the present work.

5.3. Comparisons in Decoding Imagination
and Articulation
The observation that spoken information can be more efficiently
retrieved directly from the brain during articulation than
perception and preparation (imagination) could be because of the
involvement of motor cortex (for the movement of articulators)
and auditory cortex (for auditory feedback). One may argue that
the articulatory (jaw) motion artifact that remained in the brain
signals after denoising also contributed to the higher decoding
accuracy during speech production than imagination. However,
our previous study has suggested that MEG signals have more
information than just jaw motion signal itself in speech decoding
(Dash et al., 2018d). We found that by combining MEG and jaw
motion signals, better decoding performance can be achieved
than using each of them separately. Of note is that our current
protocol has 1–1.5 s delay after articulation ends (before the
next trial starts). However, the effect of speech processing may
continue in the brain (carryover) even many seconds after the
articulation ends. From the decoding perspective, however, we
considered this to be a challenge since previous trials could
possibly corrupt the current trial’s signals at least during the
pre-stimuli and possibly the perceptual phase. We interpret our
results to be robust despite the possible interference, and in
support of a hypothesis that it is possible to decode spoken
phrases from non-invasive signals.

Another concernmay be that the phrase duration information
might contribute to the decoding of spoken phrases, for example,
“good-bye” and “do you understand me” have considerably
different lengths. While we think this is a caveat of our
experimental design, there is reason to be optimistic that
the main contribution is from phrase information, not just
duration. As shown in Table 2, the decoding error (mislabeling)
between “Do you understand me?” and “Good-bye” (11) was not
considerably different from themislabeling between “I need help”

and “Good-bye” (7), which are of similar duration. In fact, all
the mislabeling across the five phrases were similar. On the other
hand, duration is an important feature for speech recognition and
is commonly used in decoders for phonemes. In future studies,
we plan to control the phrase duration to better understand the
role of duration in phrase/phoneme decoding.

High imagined phrase decoding performance opens up
the possibility of direct brain to text mapping applications
for completely paralyzed patients by retrieving the intended
speech from the brain without needing articulation. Although,
it can be argued that, participants could have already activated
vocal muscles during imagination, the inherent time-locked
experimental design prevents this before the start of the
articulation stage. Our experimental protocol was designed to
collect both imagined and overt speech consecutively within
a trial. After prompting the subject with the stimulus, only
1 s was given for the subject to imagine the pronunciation
of the phrase, after which the subject articulated the phrase.
This limited 1 s duration attempted to ensure the behavioral
compliance of the subject to imagine only that phrase. It
is extremely difficult to verify whether the subjects actually
performed the task of imagination in the traditional setting
of imagined speech data acquisition (Cooney et al., 2018).
Hence, we collected both imagined and overt speech in a single
trial with a limited duration for the imagination segment for
behavioral control. In our design, 1 s may be sufficient for
imagination because the average production time of the longest
phrase (Do you understand me?) was 0.97 ± 0.08 s across
trials, and considering that imagined speech may be faster than
overt speech (Indefrey and Levelt, 2004; Oppenheim and Dell,
2008). Nevertheless, our paradigm may have a combination
of both preparation and imagination within the 1 s duration.
Based on the extant literature, phonological representation is
shown to be activated during orthographical language processing
and the preparation (pre-speech) (Cooney et al., 2018). The
extent to which these phonological processes are existing in our
preparation/imagination stage is not clear and would require
specifically designed studies to dissociate them, if possible.
Nonetheless, the high accuracy obtained during the imagined
phrase segment is encouraging and provides strong support
of the existence of sufficient information for fast decoding of
intended speech for real-time BCI.

5.4. Toward a Next-Generation Speech-BCI
The objective of this study was to demonstrate the possibility of
direct speech decoding from neural signals, which is to support
the development of the next generation, more efficient, speech
decoding-based BCIs. Our results have shown the feasibility
to decode speech directly from MEG signals. Although we
focused on a small set of stimuli (five phrases) in the early
stage of this study, future studies will focus on decoding
an open vocabulary set (any phrases). Another barrier for
the development of a speech-BCI is that MEG is currently
not suitable for this application due to its high cost, size,
and immobility. Encouraging recent work on wearable, OPM-
based MEG systems (Boto et al., 2018; Roberts et al., 2019;
Zetter et al., 2019) has shown that it is possible to build
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portable MEG machines with a significantly reduced cost and
size (equivalent to the size of a helmet). This technological
advance opens the possibility for utilizing OPM-based MEG
as a speech-BCI to potentially restore communication for
locked-in patients.

6. CONCLUSIONS

In this study, we demonstrated the possibility of decoding
imagined and spoken phrase directly from non-invasive neural
(MEG) signals using ANN and CNNs. We observed that speech
decoding accuracy was the best during the speech production
stage over other stages. However, even during the speech
preparation (imagination) stage, the accuracies were very high,
which suggests the feasibility for decoding intended or covert
speech for the next-generation BCIs. Three state-of-the-art CNN
architectures were used to provide evidence in support of the
efficacy of CNNs in speech decoding over ANN. In addition, a
unique representation of spatial, spectral and temporal features
to represent the whole brain dynamics was found to be crucial
in this neural speech decoding experiment. This study was
only performed on healthy subjects. A further investigation on
neural speech decoding from locked-in/ALS patients is needed to
establish MEG as a potential device for the development of next
generation, faster BCIs.
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